第一篇:X射线衍射与DNA双螺旋结构的测定
X射线衍射与DNA双螺旋结构的测定
(P718x射线及x射线衍射)
1895年,德国物理学家伦琴在研究阴极射线管的过程中发现用高能电子束轰击金属靶时,能得到一种穿透力很强的射线,由于当时不知这种射线的实质(或本性)而将它成为x射线。
图1 X射线的发现
为了解开x射线的本性之谜,当时的科学家让x射线通过电场或磁场,但没有发现偏转现象,这说明x射线不是一种带电的粒子流。人们也想过它可能是一种波长很短的光波,但很难找到一种有效的实验手段观察到x射线的干涉或衍射现象,更谈不上测
出它的波长。
直到1912年,既x射线发现17年后德国物理学家劳厄才找到了x射线具有波动本性的最有力的实验证据:。他用连续谱X射线照射单晶体,在晶体后放置感光片,发现感光片上出现许多分散的斑点(劳厄斑),这即是x射线通过晶体时发生的衍射现象。W.L.布拉格指出劳厄斑的产生是X射线衍射的结果,并给出了简单明了的解释。X 射线是波长很短的电磁波,在可见光波段使用的衍射器件(如光栅)对X射线几乎不起衍射作用。晶体内的原子作周期性的规则排列,排列的空间周期与 X射线波长同数量级,故晶体对X射线来说相当于
三维光栅,能产生明显的衍射效应。晶体可抽象成由格点组成的点阵结
构,这些格点均分布在一系列互相平行的平面上,称点阵平面或晶面,一组平行晶面构成晶面族。考虑任一晶面族,相邻两晶面的间距为d,X射线以掠入射角a(称说,在镜反射方向有最强的衍射,但就整个晶面族而言,镜反射方向(衍射角为2a)上总的衍射强度取决于各晶面的反射波的相干叠加结果。干涉极大满足如下条件:2dsina=kλ;,式中k为整数;λ为波长。上式称布拉格公式,是分析X射线衍射的基本公式。由此可见,若已知x射线的波长就可以通过测量掠射角来测定晶体的晶面间距,分析晶体结构;分析晶体结构;反之若已知晶体结构就可以通过测量入射角来测定x射线的波长。今天,x射线衍射测量原理已经发展成多种现代化的方法和技术,并广泛应用于晶体及物质结构的分析中。
图2 布拉格公式推导
20世纪50年代,结构学派的新西兰物理学家威尔金斯选择了DNA作为研究生物大分子的理想材料,并在方法上采取了“x射线衍射法”。他认为DNA分子的x射线衍射研究对于建立严格的分子模型是有帮助的。他和他的同事获得了世界上第一张DNA纤维x射线衍射图,证明了DNA分子式单链螺旋的,并在1951年意大利生物大分
子学术会议上报告了他们的研究成果。
图3
DNA衍射图案
沃森和克里克从非常清晰的X射线衍射照片中央的那些小小的十字架样的图案上,敏锐地意识到DNA分子很可能是双链结构。他们立即投入模型的重建工作,以脱
氧核糖和碱基间隔排列形成骨架——主链,让碱基两两相连夹于双螺旋之间。由于他们
让相同的碱基两两配对,做出来的模型是扭曲的。此后,美国生物化学家查伽夫的研究
成果给了沃森和克里克很大启发。查伽夫发现:(1)在他所分析的DNA样本中,A的数目总是和T的数目相等,C的数目总是和G的数目相等。即:(A+G):(T+C)=1。(2)(A+T):(C+G)的比值具有物种特异性。沃森和克里克吸收了美国生物化学家查伽夫的研究成果,经过深入的思考,终于建立了DNA的双螺旋结构模型。
“发现DNA双螺旋结构的意义对生物学来说怎么估量都不为过。”中国科学院发育研究所研究员莫鑫泉先生对记者说:“用双螺旋结构解释遗传是如何进行的,这是人类对自己、对生物学认识的巨大飞跃。发现双螺旋之前,科学家对生命现象进行了长期的思考
与研究:是什么因素使人类能够一代
图4
DNA双螺旋结构
一代地将遗传特性保持下去?”的确,就是一个桌子还有腐朽变坏的时候,为什么人类就能代代延续?什么决定了人生人,老鼠生老鼠?
然而,除了生物化学,DNA分子还有其他用途。通过现代生物技术,我们可以制造出很长的DNA分子,上面排列着根据意愿选择的构建模块序列。这为DNA的应用开辟了广阔的新天地,而不仅限于自然界中生物进化的领域。例如,1994年美国南加州大学的M.Adleman 证明了DNA如何被用作计算设备。DNA的另一项非生物学用途:建造纳米级的器械和设备——它们的基本元件和结构只有1到100纳米大小。这种元件有着许多潜在的应用。DNA制造的规则的栅格能够有序地容纳多个生物大分子,以便用X线晶体成像术测
DNA双螺旋结构的提出开启了分子生物学时代,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径。在以后的近50年里,分子遗传学、分子免疫学、细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。
定它们的结构,这是药物推理设计中的一个重要步骤。另外,这种栅格还 图5 DNA双螺旋结构的应用 可以成为搭载纳米级电子元件的平台——作为工作设备或是设备制造过程中的一个步骤。利用DNA制造的分子水平的精密元件还可制造新材料。活动的DNA元件还可用于纳米机械的传感器、开关、镊子以及更精密的机器人。
参考资料
1.廖耀发《大学物理教程》(第二版),高等教育出版社
2.[美]加兰E艾伦《20实际的生命科学史》,田明译,上海:复旦大学出版社 3.周公度《晶体结构测定》,北京:科学出版社
4.[美]《沃森JD双螺旋——发现DNA的故事》,刘望夷等译,北京:科学出版社
组员(排名不分先后):吴微,刘源,徐瑶月,李莹,曾洁,黄晶晶,
第二篇:发现DNA双螺旋结构的故事
发现DNA双螺旋结构的故事
在刚刚过去的20世纪,遗传学也许是发展最快、变化最烈的一门自然科学学科。1900年孟德尔(G.Mendel)揭示的生物遗传规律被重新发现,2000年人类基因组全序列工作草图宣告完成,这一头一尾两件大事充分展现了100年来遗传学的重大发展,而连接首尾的关节点,则是1953年沃森(J.D.Watson)和克里克(F.H.C.Crick)共同提出DNA双螺旋结构模型。
发现的前夜
20世纪上半叶的几十年,几代科学家不懈的努力终于将遗传物质的化学本质确定为DNA。在此基础上,玻尔(N.Bohr)、德尔布吕克(M.Delbrück)、薛定谔(E.Schr o dinger)等一批物理学家的适时加入,将物理学的新观点、思维方式和研究手段引入遗传学研究,深深影响着整整一代战后的青年科学家,包括沃森和克里克。
克里克是一个深受薛定谔思想影响的物理学家,战后从物理学转入生物学研究。他认为,运用物理学和化学的科学概念和精确的术语重新思考生物学的基本问题,是会有成果的。他思考问题敏锐深刻,不停顿地思考与评论是他最大的嗜好。沃森说:“他掌握别人的资料,并使之条理化的速度之快,令人倒吸一口冷气。”也正因为这一点,在克里克的周围聚集了一批沃森这样的优秀青年科学家。1951年,23岁的沃森来到英国剑桥著名的卡文迪什实验室,在那里遇到了大他12岁的克里克,开始了现代生物学史上最动人心弦的合作。
沃森和克里克决定一起揭示DNA分子结构后,立刻确定目标:提出一个结构模型,它既要能解释X射线衍射分析的图像,又要能阐明基因自体催化(复制)和异体催化(编码蛋白质)等生物学性质。
那当时有关DNA结构的知识是怎样的呢?从物理学性质讲:根据阿斯特伯里(W.Astbury)等人的X射线衍射分析资料,DNA是由许多亚单位叠合在一起组成的,叠层间距是0.34纳米;DNA是一个长链分子,在整个分子线性结构中,分子的直径是衡定的。
从化学性质讲:DNA含有4种碱基,即两种嘌呤(A和G)和两种嘧啶(C和T),以及脱氧核糖和磷酸根。一个碱基、一个糖分子和一个磷酸根组成一个结构单位,叫核苷酸。核苷酸之间经磷酸酯键相连,组成分子的骨架结构。影响重大的四件事情
他们面临的第一个问题是如何设想DNA分子中核苷酸的排列和连接,使之保证DNA大分子内部的几何协调和力的平衡,在化学上趋于最稳态,还要保证DNA作为遗传物质所需的复制精确性。组成分子骨架的糖磷酯键是结合力最强的共价键。然而X射线衍射分析表明,DNA分子中有不止一个这样的骨架,那么多个长链骨架是怎样结合在一起的呢?会不会是多条核苷酸链靠碱基间的氢键相互连接?如果是这样,那碱基间就有三种不同连接方式:相同的碱基相互连接,如A与A相连;相同类别的碱基相连,即嘌呤与嘌呤、嘧啶与嘧啶相连;不同类别的碱基相连,即嘌呤与嘧啶相连。
还有,这种连接究竟是不同多核苷酸链上的碱基相互连接呢,还是同一条链不同部位上的碱基相互连接呢?这后一种设想也就是所谓单链回旋折叠自我连接,也是沃森和克里克最初的想法,显然受了蛋白质肽链折叠模式的影响。然而,在接下来的一年半中,至少有四件事使他们摒弃了这种看法。
第一件,1952年6月,在听完天文学家高尔特(T.Gold)的讲座“完美的宇宙学原理”后,沃森、克里克和剑桥大学数学系研究生格里菲斯(J.Griffith)闲谈有没有“完美的生物学原理”,又谈到DNA的复制,谈到DNA分子中碱基间如何形成稳态结构。格里菲斯对基因的复制很感兴趣,应他们的请求,他答应用量子力学和化学键理论来计算不同碱基间的吸引力大小,以及如何搭配才能使分子趋于最稳态。不久,格里菲斯告诉他们,理论计算表明A吸引T,G吸引C。克里克立刻想到,A吸引B、B吸引A,这样相互形成的专一性配对不就能解释链的复制吗。那么,怎样把碱基互补和DNA分子的三维结构联系起来呢?克里克动脑筋的速度实在太快了,甚至连格里菲斯所讲的相互间吸引力最大的碱基对是什么都没有记住。
第二件,也是在那年六七月间,哥伦比亚大学教授查伽夫(E.Chargaff)访问剑桥,来到卡文迪什实验室。肯德鲁(J.C.Kendrew)把两位年轻人介绍给查伽夫。这是一次非常重要的会见,克里克多年后记述了这次会见:“起初,我们谈了许多有关蛋白质的问题,后来我问及核酸研究现状,查伽夫顿了一下说:„一句话说完,就是1:1。‟ 我又问1:1是什么意思,他说:„文章已经发表了。‟ 毫无疑问,我漏读了查伽夫的重要文章,感到茫然若失。他又补充了一句:„这是电效应的缘故。‟我突然闪现了一个念头,„天哪!1:1不就是互补配对吗?‟他还讲了些什么,我一点也没有听见。告别了查伽夫,我立刻去找格里菲斯,请他再告诉我,理论计算表明哪两种碱基间吸引力最大。我转而去查阅查伽夫的文章,顿时惊呆了:格里菲斯算出来的碱基对A配T、G配C,正是查伽夫实验中克分子量呈现1:1比例的碱基对。”这就是著名的查伽夫当量定律,即分子数A=T、G=C。
第三件,沃森和克里克成功地运用了鲍林(L.C.Pauling)提出的生物大分子结构分析方法。鲍林根据量子力学原理,提出了作为量子化学基石的化学键理论,在蛋白质结构研究中提出了肽链折叠通过氢键形成α螺旋的学说。他通过多肽链基本构件的拼装组合,构建出符合蛋白质晶体X射线衍射分析图像的结构模型,并据此建立了结构分析的所谓“第一性原理”,又称逼近法。它要求从生物大分子最基本的构件出发,运用化学规律找出构件间可能形成的所有排列方式,特别要考虑对整个大分子结构稳定有决定作用的氢键的形成方式;再将所获得的各种理论模型与X射线图像一一对比,不断修正,并决定取舍。两人运用逼近法测定各种嘌呤和嘧啶的大小、碱基对的排列、氢键的引力,以及DNA分子直径、螺距、键角等结构数据,再与衍射图像一一对比,不断校正,逐步逼近真实状态。值得一提的是,鲍林当时也在构建DNA分子结构模型。威尔金斯(M.Wilkins)和富兰克林(R.Franklin)也在利用衍射图像分析DNA的结构,与沃森和克里克保持着经常的联系和深入交流。威尔金斯和富兰克林的思路与鲍林不同,他们作为晶体结构学家,总是先从衍射图像中的点及点的密集程度出发,并考虑衍射点的分布特点,经数学变换,将衍射图像诠释为分子中的各种化学键的键长、键角等结构要素。1953年2月,沃森和克里克从富兰克林的X射线衍射图像分析,虽然还不能肯定DNA是双链还是三链,却已明白在DNA的螺旋结构中糖磷酯骨架在外侧,碱基在分子内部。这是非常重要的发现,鲍林的错误之一就是认为糖磷酯键在分子中央。
现在,横在沃森和克里克面前的问题是DNA分子究竟由几条链组成,这些链又是怎样相互连接的。
第四件事,有机分子在不同的条件下往往具有不同的构型,它们互为异构体。当时,沃森和克里克画在草图上的碱基只是若干种异构体中的一种,这种结构很难同时符合分子的几何结构要求和化学稳定性要求。他们去请教实验室的访问学者多诺休(J.Donohue)。多诺休是曾和鲍林共事的量子化学家,他看了沃森的草图后,指出他们画的碱基构型属于烯醇式,应该改为酮式异构体。这真是神来之笔!克里克在回忆中写道:“多诺休和沃森站在黑板旁边,我坐在办公桌一侧。突然,我看到了一幅碱基对互补的图像,它能解释1:1。太妙了,真是再美不过了!就在1953年2月20日星期五的这一刻,我们都明白了,碱基在分子内部,它们是靠氢键来专一性配对的。”
沃森很快发现,在酮式结构情况下,A-T碱基对与G-C碱基对长度相等,又恰恰与DNA分子的直径相当,这使沃森和克里克确信DNA是双链而不是三链。
沃森和克里克花了整整一个星期来设计DNA结构模型,测量了两种碱基对和DNA长链上每一种键的旋转角度,并和X射线衍射图像一一对比,不断修正。沃森以惊人的记忆力把从威尔金斯和富兰克林实验室得到的新的信息全部融入了这个模型,克里克以他特有的思想和表达能力把一切都记录下来。他们的合作真是到了水乳交融、你我不分的地步。成功的模型
3月29日是三月份最后一个周末,两人终于完成了文稿。但因秘书休假,沃森请正在英国度假的姐姐帮忙打字,姐弟俩整整忙了一个下午。沃森对姐姐说:“我们的工作,称得上是达尔文进化论发表以来,生物学中最为轰动的事件。”
4月1日,他们把文章送给实验室主任布拉格(W.L.Bragg)。布拉格非常高兴,原因至少有两条:第一,这件了不起的事是在卡文迪什实验室完成的,而不是在鲍林的实验室;第二,他和他父亲所建立的晶体X射线衍射分析方法,在探索生命本质的研究中发挥了十分重要的作用。布拉格对文章作了少许文字修饰,附了一封推荐信,在4月2日就发往《自然》周刊。鲍林闻讯时正在赴布鲁塞尔开会途中,特地于4日赶到剑桥。他仔细看了模型,又看了富兰克林的DNA衍射照片,当即向两位年轻人祝贺。布拉格主任设宴欢庆。
1953年4月25日,《自然》周刊发表了这篇仅有900多字的文章:DNA的分子结构。这个结构模型的要义是:DNA是一个长长的双链分子,由两条同轴反向相互缠绕的多核苷酸链组成,外侧是由脱氧核糖和磷酸根组成的分子骨架,中间是由互补的碱基对组成的阶梯,碱基配对方式是A配T,C配G;碱基对间距为0.34纳米,每10个碱基对形成一个螺旋周期,螺旋直径为1纳米。这个模型既能从螺旋性、分子直径、碱基对的几何学尺度等方面阐明X射线衍射图像,又能以碱基专一性互补配对来解释查伽夫当量定律。
这个模型不但外形美,更有内在的科学美。它的科学美体现在两个方面。第一,碱基配对的专一性保证了复制的高度精确性,只要一条链上的碱基序列确定了,其互补链上的碱基序列也随之确定了;第二,就一条链而言,模型并不限制碱基排列顺序,这保证了DNA可以负载无穷多样的遗传信息。这充分体现了基因的属性:变异的无穷多样性和复制的高度精确性。1962年,沃森、克里克因发现DNA分子结构,与改进了X射线衍射技术的威尔金斯一起获得了诺贝尔医学或生理学奖。
也许大家会问:沃森和克里克为什么会成功?
从X射线衍射分析技术看,沃森和克里克是不及威尔金斯和富兰克林的;就结构化学知识而言,沃森和克里克更不是鲍林的对手。沃森和克里克能够在这场科学竞赛中取胜,靠的是两人的合作,靠的是知识和能力的互补,靠的是博采众家之长。这对组合最强的优势是把物理和化学的研究资料都放到生物学背景上去考虑,时刻牢记DNA是遗传物质,搞清楚DNA分子结构,就是为了在分子水平上阐明基因的自体催化和异体催化。迄今为止,搞清楚结构的大分子不计其数,结构之复杂、精度之高都大大超出双螺旋模型,有不少也得了诺贝尔奖。但全世界唯独把1953年4月25日来纪念,并把2003年4月25日定为国际DNA日,就是因为这个模型深刻的生物学内涵——它揭示了生命的分子本质,揭示了DNA的生物学之魂!
第三篇:X射线衍射仪结构与工作原理
X射线衍射仪结构与工作原理
1、测角仪的工作原理
测角仪在工作时,X射线从射线管发出,经一系列狭缝后,照射在样品上产生衍射。计数器围绕测角仪的轴在测角仪圆上运动,记录衍射线,其旋转的角度即2θ,可以从刻度盘上读出。与此同时,样品台也围绕测角仪的轴旋转,转速为计数器转速的1/2。为什么?
为了能增大衍射强度,衍射仪法中采用的是平板式样品,以便使试样被X射线照射的面积较大。这里的关键是一方面试样要满足布拉格方程的反射条件。另一方面还要满足衍射线的聚焦条件,即使整个试样上产生的X衍射线均能被计数器所接收。
在理想的在理想情况下,X射线源、计数器和试样在一个聚焦圆上。且试样是弯曲的,曲率与聚焦圆相同。对于粉末多晶体试样,在任何方位上总会有一些(hkl)晶面满足布拉格方程产生反射,而且反射是向四面八方的,但是,那些平行于试样表面的晶面满足布拉格方程时,产生衍射,且满足入射角=反射角的条件。由平面几何可知,位于同一圆弧上的圆周角相等,所以,位于试样不同部位M,O,N处平行于试样表面的(hkl)晶面,可以把各自的反射线会聚到F点(由于S是线光源,所以厂点得到的也是线光源)。这样便达到了聚焦的目的。在测角仪的实际工作中,通常X射线源是固定不动的。计数器并不沿聚焦圆移动,而是沿测角仪圆移动逐个地对衍射线进行测量。因此聚焦圆的半径一直随着2θ角的变化而变化。在这种情况下,为了满足聚焦条件,即相对试样的表面,满足入射角=反射角的条件,必须使试样与计数器转动的角速度保持1:2的速度比。不过,在实际工作中,这种聚焦不是十分精确的。因为,实际工作中所采用的样品不是弧形的而是平面的,并让其与聚焦圆相切,因此实际上只有一个点在聚焦圆上。这样,衍射线并非严格地聚集在F点上,而是有一定的发散。但这对于一般目的而言,尤其是2θ角不大的情况下(2θ角越小,聚焦圆的曲率半径越大,越接近于平面),是可以满足要求的。
2、X射线探测器
衍射仪的X射线探测器为计数管。它是根据X射线光子的计数来探测衍射线是存在与否以及它们的强度。它与检测记录装置一起代替了照相法中底片的作用。其主要作用是将X射线信号变成电信号。探测器的有不同的种类。有使用气体的正比计数器和盖革计数器和固体的闪烁计数器和硅探测器。目前最常用的是闪烁计数器,在要求定量关系较为准确的场合下一般使用正比计数器。盖革计数器现在已经很少用了。
1)正比计数器和盖革计数器
计数管有玻璃的外壳,内充填惰性气体(如氩、氪、氙等)。阴极为一金属圆筒,阳极为共轴的金属丝。为窗口,由云母或铁等低吸收系数材料制成。阴、阳极之间保持一个电位差,对正比计数管,这个电位差为600至900伏。
X射线光子能使气体电离,所产生的电子在电场作用下向阳极加速运动,这些高速的电子足以再使气体电离,而新产生的电子又可引起更多气体电离,于是出现电离过程的连锁反应。在极短时间内,所产生的大量电子便会涌向阳板金属丝,从而出现一个可以探测到的脉冲电流。这样,一个X射线光子的照射就有可能产生大量离子,这就是气体的放大作用。计数管在单位时间内产生的脉冲数称为计数率,它的大小与单位时间内进入计数管的X射线光子数成正比,亦即与X射线的强度成正比。
正比计数器所绘出的脉冲大小(脉冲的高度)和它所吸收的X射线光子能量成正比。因此,只要在正比计数器的输出电路上加上一个脉高分析器(脉冲幅度分析器),对所接收的脉冲按其高度进行甑别,就可获得只由某一波长X射线产生的脉冲。然后对其进行计数。从而排除其它波长的幅射(如白色X射线、样品的荧光幅射)的影响。正由于这一点,正比计数器测定衍射强度就比较可靠。
正比计数器反应极快,它对两个连续到来的脉冲的分辨时间只需10-6秒。光子计数效率很高,在理想的情况下没有计数损失。正比计数器性能稳定,能量分辨率高,背底脉冲极低。
正比计数器的缺点在于对温度比较敏感,计数管需要高度稳定的电压,又由于雪崩放电所引起电压的瞬时脱落只有几毫优,故需要强大的放大设备。
盖革计数器与正比计数器的结构与原理相似。但它的气体放大倍数很大,输出脉冲的大小与入射X射线的能量无关。对脉冲的分辨率较低,因此具有计数的损失。2)闪烁计数管
闪烁计数管是利用X射线激发某此晶体的荧光效应来探测X射线的。它由首先将接收到的X射线光子转变为可见光光子,再转变为电子,然后形成电脉冲而进行计数的。
它主要由闪烁体和光电倍增管两部分组成。闪烁体是一种在受到X射线光子轰击时能够发出可见光荧光的晶体,最常用的是用铊活化的碘化钠Nal(TI)单晶体。光电倍增管的作用则是将可见光转变为电脉冲。闪烁晶体位于光电倍增器的面上,其外侧用铍箔密封,以挡住外来的可见光,但可让X射线较顺利通过。当闪烁晶体吸收了X射线光子后,即发出闪光(可见的荧光光子),后者投射到光电信增器的光敏阴极上,使之迸出光电子。然后在电场的驱使下,这些电子被加速并轰击光电信增器的第一个倍增极(它相对于阴极具有高出约100V的正电位),并由于次级发射而产生附加电子。在光电信增器中通常有10或11个倍增级,每一个倍增极的正电位均较其前~个高出约100V。于是电子依次经过各个倍增极,、最后在阳板上便可收结到数量极其巨大的电子,从而产生一个电脉冲,其数量级可达几伏。产生的脉冲的数量与入射的X射线光子的数目有关,亦即与X射线的强度有关。因此它可以用来测量X射线的强度。同时,脉冲的大小与X射线的能量有关,因此,它也可象正比计数器那样,用一个脉高分析器,对所接收的脉冲按其高度进行甑别。
闪烁计数器的反应很快,其分辨时间达10-8秒。因而在计数率达到10-5次/秒以下时,不会有计数的损失。闪烁计数器的缺点是背底脉冲高。这是因为即使在没有X射线光电子进入计数管时,仍会产生“无照电流”的脉冲。其来源为光敏阴极因热离子发射而产生的电子。此外,闪烁计数器的价格较贵。晶体易于受潮解而失效。除了气体探测器和闪烁探测器外,近年来一些高性能衍射仪采用固体探测器和阵列探测器。固体探测器,也称为半导体探测器,采用半导体原理与技术,研制的锂漂移硅Si(Li)或锂漂移锗Ge(Li)固体探测器,固体探测器能量分辨率好,X光子产生的电子数多。固体探测器是单点探测器,也就是说,在某一时候,它只能测定一个方向上的衍射强度。如果要测不止一个方向上的衍射强度,就要作扫描,即要一个点一个点地测,扫描法是比较费时间。现已发展出一些一维的(线型)和二维(面型)阵列探测器来满足此类快速、同时多点测量的实验要求。所谓阵列探测器就是将许多小尺寸(如50μm)的固体探测器规律排列在一条直线上或一个平面上,构成线型或平面型阵列式探测器。阵列探测器一般用硅二极管制作。这种一维的(线型)或二维的(面型)阵列探测器,既能同时分别记录到达不同位置上的X射线的能量和数量,又能按位置输出到达的X射线强度的探测器。阵列探测器不但能量分辨率好,灵敏度高,且大大提高探测器的扫描速度,特别适用于X射线衍射原位分析。
3、X射线检测记录装置
这一装置的作用是把从计数管输送来的脉冲信号进行适当的处理,并将结果加以显示或记录。它由一系列集成电路或晶体管电路组成。其典型的装置如图所示。
由计数管所产生的低压脉冲,首先在前置放大器中经过放大,然后传送到线性放大器和脉冲整形器中放大、整形,转变成其脉高与所吸收 X射线光子的能量成正比的矩形脉冲。输出的矩形脉冲波再通过脉高甄别器和脉高分析器,把脉高不符合于指定要求的脉冲甄别开,只让其脉高与所选用的单色X射级光子的能量相对应的脉冲信号通过。所通过的那些脉高均一的矩形脉冲波可以同时分别输往脉冲平均电路和计数电路。
脉冲平均电路的作用是使在时间间隔上无规则地输入的脉冲减为稳定的脉冲平均电流,后者的起伏大小与平均脉冲速率成正比,亦即与接收到的 X射线的强度成正比。脉冲平均电路具有一个可调的电容来调节时间常数RC的大小。RC大,脉冲电流的平波效应就强,电流随时间变化的细小差别相应减小。RC小,则可以提高对这些细节的分辨能力。由脉冲平均电路输出的平均电流,然后馈送给计数率仪和长图自动记录仪。从计数率仪的微安计上可以直接读得脉冲平均电流的大小。长图自动记录仪把电流的起伏转变为电位差的变化,并带动记录笔画出相应的曲线,而记录纸的走纸速度则与计数管绕测角计轴线转动的速度(扫描速度)成正比关系。所以长图自动记录仅能够以强度分布曲线的形式自动记录下X射线衍射强度随衍射角2θ的变化,提供直观而又可以永久保存的衍射图谱。
计数电路由定标器和定时器组成。定标器的作用是对输入的脉冲进行计数。定标器与定时器相配合,可以定时计数(在规定的时间内进行累计计数),也可以定标计时(计算达到预定计数数目时所需的时间。定标一定时电路的输出可有几种不同的方式来显示或记录。一是由数码管直接显示出数字,它允许显示一定位数以内的任何累计计数,二是由数字打印器把结果打印出来。目前的衍射仪都用计算机将这些信号进行自动处理。如福州大学材料学院的日本岛津XD-5A型X射线粉末衍射仪经过改造,可由计算机控制和设定参数,以及图谱记录、处理。下图是计算机记录的图谱,横坐标为衍射峰位置2θ角,纵坐标为衍射峰强度的光子数量,以cps表示。
第四篇:X射线衍射(范文)
X射线衍射
(大庆师范学院 物理与电气信息工程系 10级物理学一班 周瑞勇 201001071465)
摘 要:X射线受到原子核外电子的散射而发生的衍射现象。由于晶体中规则的原子排列就会产生规则的衍射图像,可据此计算分子中各种原子间的距离和空间排列,是分析大分子空间结构有用的方法。
关键词:核外电子 散射 衍射 空间排列
一
前言
1912年劳埃等人根据理论预见,并用实验证实了X射线与晶体相遇时能发生衍射现象,证明了X射线具有电磁波的性质,成为X射线衍射学的第一个里程碑。当一束单色X射线入射到晶体时,由于晶体是由原子规则排列成的晶胞组成,这些规则排列的原子间距离与入射X射线波长有X射线衍射分析相同数量级,故由不同原子散射的X射线相互干涉,在某些特殊方向上产生强X射线衍射,衍射线在空间分布的方位和强度,与晶体结构密切相关。这就是X射线衍射的基本原理。
X射线及其衍射X射线是一种波长很短(约为20~0.06埃)的电磁波,能穿透一定厚度的物质,并能使荧光物质发光、照相乳胶感光、气体电离。在用高能电子束轰击金属“靶”材产生X射线,它具有与靶中元素相对应的特定波长,称为特征(或标识)X射线。如通常使用的靶材对应的X射线的波长大约
为1.5406埃。考虑到X射线的波长和晶体内部原子面间的距离相近,1912年德国物理学家劳厄(M.von Laue)提出一个重要的科学预见:晶体可以作为X射线的空间衍射光栅,即当一束 X射线通过晶体时将发生衍射,衍射波叠加的结果使射线的强度在某些方向上加强,在其他方向上减弱。分析在照相底片上得到的衍射花样,便可确定晶体结构。这一预见随即为实验所验证。
二 发展
X射线是19世纪末20世纪初物理学的三大发现(X射线1895年、放射线1896年、电子1897年)之一,这一发现标志着现代物理学的产生。
自伦琴发现X射线后,许多物理学家都在积极地研究和探索,1905年和1909年,巴克拉曾先后发现X射线的偏振现象,但对X射线究竟是一种电磁波还是微粒辐射,仍不清楚。1912年德国物理学家劳厄发现了X射线通过晶体时产生衍射现象,证明了X射线的波动性和晶体内部结构的周期性,发表了《X射线的干涉现象》一文。
劳厄的文章发表不久,就引起英国布拉格父子的关注,当时老布拉格(WH.Bragg)已是利兹大学的物理学教授,而小布拉格(WL.Bragg)则刚从剑桥大学毕业,在卡文迪许实验室。由于都是X射线微粒论者,两人都试图用X射线的微粒理论来解释劳厄的照片,但他们的尝试未能取得成功。年轻的小布拉格经过反复研究,成功地解释了劳厄的实验事实。他以更简洁的方式,清楚地解释了X射线晶体衍射的形成,并提出了著名的布拉格公式:nX=Zdsino这一结果不仅证明了小布拉格的解释的正确性,更重要的是证明了能够用X射线来获取关于晶体结构的信息。
1912年11月,年仅22岁的小布位格以《晶体对短波长电磁波衍射》为题向剑桥哲学学会报告了上述研究结果。老布拉格则于1913年元月设计出第一台X射线分光计,并利用这台仪器,发现了特征X射线。小布拉格在用特征X射线分析了一些碱金属卤化物的晶体结构之后,与其父亲合作,成功地测定出了金刚石的晶体结构,并用劳厄法进行了验证。金刚石结构的测定完美地说明了化学家长期以来认为的碳原子的四个键按正四面体形状排列的结论。这对尚处于新生阶段的X射线晶体学来说是一个非常重要的事件,它充分显示了X射线衍射用于分析晶体结构的有效性,使其开始为物理学家和化学家普遍接受。
三 原理与应用
1913年英国物理学家布拉格父子(W.H.Bragg,W.L.Bragg)在劳厄发现的基础上,不仅成功地测定了NaCl、KCl等的晶体结构,并提出了作为晶体衍射基础的著名公式──布拉格方程:
2d sinθ=nλ
式中λ为X射线的波长,n为任何正整数。
当X射线以掠角θ(入射角的余角)入射到某一点阵晶格间距为d的晶面上时,在符合上式的条件下,将在反射方向上得到因叠加而加强的衍射线。布拉格方程简洁直观地表达了衍射所必须满足的条件。当 X射线波长λ已知时(选用固定波长的特征X射线),采用细粉末或细粒多晶体的线状样品,可从一堆任意取向的晶体中,从每一θ角符合布拉格方程条件的反射面得到反射,测出θ后,利用布拉格方程即可确定点阵晶面间距、晶胞大小和类型;根据衍射线的强度,还可进一步确定晶胞内原子的排布。这便是X射线结构分析中的粉末法或德拜-谢乐(Debye—Scherrer)法的理论基础。而在测定单晶取向的劳厄法中所用单晶样品保持固定不变动(即θ不变),以辐射束的波长作为变量来保证晶体中一切晶面都满足布拉格方程的条件,故选用连续X射线束。如果利用结构已知的晶体,则在测定出衍射线的方向θ后,便可计算X射线的波长,从而判定产生特征X射线的元素。这便是X射线谱术,可用于分析金属和合金的成分。
X射线衍射在金属学中的应用 X射线衍射现象发现后,很快被用于研究金属和合金的晶体结构,出现了许多具有重大意义的结果。如韦斯特格伦(A.Westgren)(1922年)证明α、β和δ铁都是立方结构,β-Fe并不是一种新相;而铁中的α─→γ
转变实质上是由体心立方晶体转变为面心立方晶体,从而最终否定了β-Fe硬化理论。随后,在用X射线测定众多金属和合金的晶体结构的同时,在相图测定以及在固态相变和范性形变研究等领域中均取得了丰硕的成果。如对超点阵结构的发现,推动了对合金中有序无序转变的研究,对马氏体相变晶体学的测定,确定了马氏体和奥氏体的取向关系;对铝铜合金脱溶的研究等等。目前 X射线衍射(包括散射)已经成为研究晶体物质和某些非晶态物质微观结构的有效方法。在金属中的主要应用有以下方面。
四 物相分析与取向分析
物相分析 是 X射线衍射在金属中用得最多的方面,分定性分析和定量分析。前者把对材料测得的点阵平面间距及衍射强度与标准物相的衍射数据相比较,确定材料中存在的物相;后者则根据衍射花样的强度,确定材料中各相的含量。在研究性能和各相含量的关系和检查材料的成分配比及随后的处理规程是否合理等方面都得到广泛应用。
取向分析 包括测定单晶取向和多晶的结构(见择优取向)。测定硅钢片的取向就是一例。另外,为研究金属的范性形变过程,如孪生、滑移、滑移面的转动等,也与取向的测定有关。
晶粒(嵌镶块)大小和微观应力的测定 由衍射花样的形状和强度可计算晶粒和微应力的大小。在形变和热处理过程中这两者有明显变化,它直接影响材料的性能。
宏观应力的测定 宏观残留应力的方向和大小,直接影响机器零件的使用寿命。利用测量点阵平面在不同方向上的间距的变化,可计算出残留应力的大小和方向。
对晶体结构不完整性的研究 包括对层错、位错、原子静态或动态地偏离平衡位置,短程有序,原子偏聚等方面的研究(见晶体缺陷)。
合金相变 包括脱溶、有序无序转变、母相新相的晶体学关系,等等。
结构分析 对新发现的合金相进行测定,确定点阵类型、点阵参数、对称性、原子位置等晶体学数据。
液态金属和非晶态金属 研究非晶态金属和液态金属结构,如测定近程序参量、配位数等。
特殊状态下的分析 在高温、低温和瞬时的动态分析。
此外,小角度散射用于研究电子浓度不均匀区的形状和大小,X射线形貌术用于研究近完整晶体中的缺陷如位错线等,也得到了重视。
五 最新进展
X射线分析的新发展 金属X射线分析由于设备和技术的普及已逐步变成金属研究和材料测试的常规方法。早期多用照相法,这种方法费时较长,强度测量的精确度低。50年代初问世的计数器衍射仪法具有快速、强度测量准确,并可配备计算机控制等优点,已经得到广泛的应用。但使用单色器的照相法在微量样品和探索未知新相的分析中仍有自己的特色。从70年代以来,随着高强度X射线源(包括超高强度的旋转阳极X射线发生器、电子同步加速辐射,高压脉冲X射线源)和高灵敏度探测器的出现以及电子计算机分析的应用,使金属 X射线学获得新的推动力。这些新技术的结合,不仅大大加快分析速度,提高精度,而且可以进行瞬时的动态观察以及对更为微弱或精细效应的研究。
参考文献:
[1] 梁栋材,X射线晶体学基础,科学出版社,2006年,北京
[2] 于全芝,宋连科等.多晶材料X射线衍射定量分析的多项式拟合法.光谱学与光谱分析,2004.2.[3] 姬洪,左长明等.SrTiO3薄膜材料的高分辨率X射线衍射分析研究.功能材料,2004.z1.[4] 张俊,王苏程等.X射线衍射法测定加载条件下镍基单晶高温合金的表层应力状态.金属学报,2007.11.
第五篇:DNA双螺旋结构的发现对生物技术的影响
DNA双螺旋结构的发现对生物技术的影响
生工1202 陆晴川(3120100400)DNA双螺旋结构的提出开始,便开启了以遗传学为中心的分子生物学时代。分子生物学使生物大分子的研究进入一个新的阶段,使遗传的研究深入到分子层次,“生命之谜”被打开,人们清楚地了解遗传信息的构成和传递的途径.在以后的近50年里,分子遗传学,分子免疫学,细胞生物学等新学科如雨后春笋般出现,一个又一个生命的奥秘从分子角度得到了更清晰的阐明,DNA重组技术更是为利用生物工程手段的研究和应用开辟了广阔的前景。在此基础上相继产生了基因工程、酶工程、发酵工程、蛋白质工程等,这些生物技术的发展必将使人们利用生物规律造福于人类。
在我看来,对生物技术的影响主要有以下几类。
DNA检测技术。这个可以用在亲子鉴定,犯罪现场检验。
转基因技术。目前转基因经常在报纸上出现,主要是民众对转基因食品的安全性有怀疑。
克隆技术,如克隆鱼,克隆细胞,克隆羊多莉等。
基因治疗:遗传病的基因治疗是指应用基因工程技术将正常基因引入患者细胞内,以纠正致病基因的缺陷而根治遗传病。