圆周运动题型总结(合集5篇)

时间:2019-05-14 03:13:01下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《圆周运动题型总结》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《圆周运动题型总结》。

第一篇:圆周运动题型总结

1.如图,长均为L的两根轻绳,一端共同系住质量为m的小球,另一端分别固定在等高的A.B两点,A、B两点间的距离也为L.重力加速度大小为g.今使小球在竖直平面内以AB为轴做圆周运动,若小球在最高点速率为v时,两根绳的拉力恰好均为零,则小球在最高点速率为2v时,每根绳的拉力大小为()A.B.C.3mg D.故选:A.2.如图甲所示,一长为R的轻绳,一端穿在过O点的水平转轴上,另一端固定一质量未知的小球,整个装置绕O点在竖直面内转动,小球通过最高点时,绳对小球的拉力F与其速度平方v2的关系如图乙所示,图线与纵轴的交点坐标为a,下列判断正确的是()A.利用该装置可以得出重力加速度,且g=Ra

B.绳长不变,用质量较大的球做实验,得到的图线斜率更大 C.绳长不变,用质量较小的球做实验,得到的图线斜率更大 D.绳长不变,用质量较小的球做实验,图线a点的位置不变 解答:CD.3.质量为m的小球由轻绳a和b分别系于一轻质木架上的A点和C点。如图所示,当轻杆绕轴BC以角速度ω匀速转动时,小球在水平面内做匀速圆周运动,绳a在竖直方向,绳b在水平方向,当小球运动到图示位置时,绳b被烧断的同时木架停止转动,则()A.绳a对小球拉力不变 B.绳a对小球拉力增大

C.小球一定前后摆动 D.小球可能在竖直平面内做圆周运动 解答:

A.绳b被烧断前,小球在竖直方向没有位移,加速度为零,a绳中张力等于重力,在绳b被烧断瞬间,a绳中张力与重力的合力提供小球的向心力,而向心力竖直向上,绳a的张力大于重力,即张力突然增大,故A错误,B正确;

C.小球原来在水平面内做匀速圆周运动,绳b被烧断后,若角速度ω较小,小球原来的速度较小,小球在垂直于平面ABC的竖直平面内摆动,若角速度ω较大,小球原来的速度较大,小球可能在垂直于平面ABC的竖直平面内做圆周运动,故C错误,D正确。故选:BD

A、B两球的质量分别为m1与m2,用一劲度系数为k的弹簧相连,一长为l1的细线与A球相连,置于水平光滑桌面上,细线的另一端栓在竖直轴上,如图所示。当球A、B均以角速度ω绕轴OO′做匀速圆周运动时,弹簧长度为l2。(1)此时弹簧伸长量多大?细线拉力多大?(2)将细线突然烧断瞬间两球加速度各多大?

第二篇:圆周运动

圆周运动

质点在以某点为圆心半径为r的圆周上运动,即质点运动时其轨迹是圆周的运动叫“圆周运动”。它是一种最常见的曲线运动。例如电动机转子、车轮、皮带轮等都作圆周运动。圆周运动分为,匀速圆周运动和变速圆周运动(如:竖直平面内绳/杆转动小球、竖直平面内的圆锥摆运动)。在圆周运动中,最常见和最简单的是匀速圆周运动(因为速度是矢量,所以匀速圆周运动实际上是指匀速率圆周运动)。

匀速相关公式

1、v(线速度)=L/t=2πr/T=ωr=2πrf=2πnr(L代表弧长,t代表时间,r代表半径,n为频率,ω为角速度)

2、ω(角速度)=θ/t=2π/T=2πf(θ表示角度或者弧度)

3、T(周期)=2πr/v=2π/ω

4、f(频率)=1/T

6、Fn(向心力)=mrω^2=mv^2/r=mr4π^2/T^2=mr4π^2f^2

7、an(向心加速度)=rω^2=v^2/r=r4π^2/T^2=r4π^2n^2

一、水平面内的圆周运动的两种模型

模型Ⅰ 圆台转动类

小物块放在旋转圆台上,与圆台保持相对静止,如图1所示.物块与圆台间的动摩擦因数为μ,离轴距离为R,圆台对小物块的静摩擦力(设最大静摩擦力等于摩擦力)提供小物块做圆周运动所需的向心力.水平面内,绳拉小球在圆形轨道上运动等问题均可归纳为“圆台转动类”.

图1 摩擦力提供向心力

临界条件 圆台转动的最大角速度ωmax=,当ω<ωmax时,小物块与圆台保持相对静止;当ω>ωmax时,小物块脱离圆台轨道.

模型Ⅱ 火车拐弯类

如图2 所示,火车拐弯时,在水平面内做圆周运动,重力mg和轨道支持力N的合力F提供火车拐弯时所需的向心力.圆锥摆、汽车转弯等问题均可归纳为“火车拐弯类”.

合力提供向心力

图2 临界条件 若v=,火车拐弯时,既不挤压内轨也不挤压外轨;若v>,火车拐弯时,车轮挤压外轨,外轨反作用于车轮的力的水平分量与F之和提供火车拐弯时 所需的向心力;若v>,火车拐弯时,车轮挤压内轨,内轨反作用于车轮的力的水平分量与F之差提供火车拐弯时所需的向心力.

二、两种模型的应用

例1 如图3所示,半径为R的洗衣筒,绕竖直中心轴00'转动,小橡皮块P靠在圆筒内壁上,它与圆筒间的动摩擦因数为μ.现要使小橡皮块P恰好不下落,则圆筒转动的角速度ω至少为多大?(设最大静摩擦力等于滑动摩擦力)

图3 图4 【解析】此题属于“圆台转动类”,当小橡皮块P绕轴00'做匀速圆周运动时,小橡皮块P受到重力G、静摩擦力f和支持力N的作用,如图4所示.其中“恰好”是隐含条件,即重力与最大静摩擦力平衡fmax=G,μN=mg 列出圆周运动方程N=mω2minR 联立解得 ωmin=

例2 在半径为R的半球形碗的光滑内面,恰好有一质量为m的小球在距碗底高为H处与碗保持相对静止,如图5所示.则碗必以多大的角速度绕竖直轴在水平面内匀速转动?

图5 【解析】此题属于“火车拐弯类”,当小球做匀速圆周运动时,其受到重力G和支持力F的作用,如图5所示.隐含条件一是小球与碗具有相同的角速度ω,隐合条件二是小球做匀速圆周运动的半径r=Rcosθ.

列出圆周运动方程Fcosθ=mω2Rcosθ

竖直方向上由平衡条件有Fsinθ-mg=0 其中 sinθ=

联立解得 ω=

例3 长度为2l的细绳,两端分别固定在一根竖直棒上相距为l的A、B两点,一质量为m的光滑小圆环套在细绳上,如图6所示.则竖直棒以多大角速度匀速转动时,小圆环恰好与A点在同一水平面内? 2

图6 【解析】此题属于“火车拐弯类”,当小圆环做匀速圆周运动时,小圆环受到重力G、绳OB的拉力F和绳OA的拉力F的作用,如图7所示

图7 隐含条件一是小圆环与棒具有相同角速度ω,隐含条件二是小圆环光滑,两侧细绳拉力大小相等,隐含条件三是小圆环做匀速圆周运动的圆心为A点、半径为r(OA).

列出圆周运动方程 F+Fcosθ=mω2r 由平衡条件有 Fsinθ-mg=0 其中 cosθ=,sinθ=

联立解得 ω=练习

1,如图所示,半径为R半球形碗表面光滑,一质量为m小球以角速度ω在碗一做匀速,求小球所做轨道平面离碗底距离h.

如图所示,用长为L细线拴一个质量为m小球,使小球在做匀速,细线与竖直方向间夹角为θ,求:(1)细线拉力F;

(2)小球周期T

3、如图8所示,质量均为m的A、B两物体用细绳悬着,跨过固定在圆盘中央光滑的定滑轮.物体A与圆盘问的动摩擦因数为μ,离圆盘中心距离R.为使物体A与圆盘保持相对静止,则圆盘角速度ω的取值范围为多少?(设最大静摩擦力等于滑动摩擦力)

图8

4、如图9所示,长度分别为l1和l2两细绳OA、OB,一端系在竖直杆,另一端系上一质量为m的小球,两细绳OA和OB同时拉直时,与竖直杆的夹角分别为30°、45°.则杆以多大角速度转动时,两细绳同时且始终拉直?

绳模型底部速度

杆模型底部速度

例题解析 轻绳模型例题

1、用细绳拴着质量为m的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是 [ ] A.小球过最高点时,绳子中张力可以为零 B.小球过最高点时的最小速度为零 C.小球刚好过最高点时的速度是

D.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反

2、质量为m 的小球用一条绳子系着在竖直平面内做圆周运动,小球到达最低点和最高点时,绳子所受拉力之差是: [ ] A、6mg B、5mg C、2mg D、条件不充分,不能确定

3、小球在竖直放置的光滑圆轨道内做圆周运动,圆环半径为r,且刚能通过最高点,则球在最低点时的速度和对圆轨道的压力分别为: [ ] A、4rg,16mg B、,5mg C、2gr,5mg D、,6mg

4、图所示,在倾角α=30°的光滑斜面上,有一根长L=0.8m的细绳:一端固定在O点,另一端系一质量为m=0.2kg的小球,沿斜面作圆周运动,试计算:(1)小球通过最高点A的最小速度。

(2)细绳抗拉力不得低于多少?若绳的抗拉力为Fmax=10N,小球在最低点B的最大速度是多少?

5、质量为m的小球,由长为l的细线系住,细线的另一端固定在A点,AB是过A的竖直线,E为AB上的一点,且AE=l/2,过E作水平线EF,在EF上钉一铁钉D,如图所示。若线能承受的最大拉力是9mg,现将小球悬线拉至水平,然后由静止释放,若小球能绕钉子在竖直平面内做圆周运动,求钉子位置在水平线上的取值范围(不计线与钉子碰撞时的能量损失)。P89

6、如图一摆长为l的摆,摆球质量为m,带电量为-q,如果在悬点A放一正电荷q,要使摆球在竖直平面内做完整的圆周运动,则摆球在最低点的速度最小值应为多少?

轻杆模型例题

1、轻杆一端固定在光滑的水平轴O上,另一端固定一质量为m的小球,如图所示,给小球一初速度,使其在竖直平面内做圆周运动,且刚好能通过最高点P。下列说法正确的是: A、小球在最高点时对杆的压力为零

B、小球在最高点时对杆的压作用力的大小为mg C、若增大小球的初速度,则在最高点时球对杆的力一定增大 D、若增大小球的初速度,则在最高点时球对杆的力可能增大

2,如图所示,细杆的一端与一小球相连,可绕过O点的水平轴自由转动,现给小球一初速度,使它在竖直平面内做圆周运动,图中a、b分别表示小球轨道的最低点和最高点,则杆对球的作用力可能是 [ ] A.a处为拉力,b处为拉力 B.a处为拉力,b处为推力 C.a处为推力,b处为拉力 D.a处为推力,b处为推力

3、如图所示,M为固定在水平桌面上的有缺口的方形木块,abcd为圆周的光滑轨道,a为轨道的最高点,de面水平且有一定长度。今将质量为m的小球在d点的正上方高为h处由静止释放,让其自由下落到d处切入轨道内运动,不计空气阻力,则()A.在h一定的条件下,释放后小球的运动情况与小球的质量有关

B.只要改变h的大小,就能使小球通过a点后,既可能落回轨道内,又 可能落到de面上

C.无论怎样改变h的大小,都不可能使小球通过a点后落回轨道内 D.调节h的大小,使小球飞出de面之外(即e的右面)是可能的

4、如图所示,在光滑水平地面上有一辆质量为M的小车,车上装有一个半径为R的光滑圆环。一个质量为m的小滑块从跟车等高的平台上以速度v0滑入圆环。试问:小滑块满足什么条件才能使它运动到环顶时恰好对环顶无压力? 注:此题中在最高点用的是相对速度,因半径是相对半径

5、如图所示,内径很小的光滑管道固定在水平桌面上,ABC部分为半圆形管道,CD部分为水平直管道,两部分接触处相切,管道平面在竖直平面内,上进口A处距地面的高度为H,下出口处与桌子的边缘相对齐,今有两个大小相同、质量均为m的弹性金属小球a和b,它们的半径略小于管道内径且可视为质点,先将b球静止放于D处,再将a球从A处由静止释放,让其开始沿管道运动,并与b球发生无能量损失的碰撞,求:(1)当a球即将与b球碰撞时,a球对管道的压力为多少?

(2)当管道半径R取何值时,a球与b球碰撞后,b球离开桌子边缘的水平距离最大?最大值为多少?

6、如图所示,ABDO是处于竖直平面内的光滑轨道,AB是半径为R=15m的1/4圆周轨道,半径OA处于水平位置,BDO是直径为15m的半圆形轨道,D为BDO轨道的中央。一个小球P从A点的正上方距水平半径OA高H处自由下落,沿竖直平面内的轨道通过D点时对轨道的压力等于其重力的14/3倍,取g=10m/s2。(1)求H的大小;

(2)试讨论此球能否到达BDO轨道上的O点,并说明理由;(3)小球沿轨道运动后再次落到轨道上的速度大小是多少?

第三篇:圆周运动和向心加速度知识点总结

圆周运动和向心加速度知识点总结

知识点一:圆周运动的线速度

要点诠释:

1、线速度的定义:

圆周运动中,物体通过的弧长与所用时间的比值,称为圆周运动的线速度。

公式:(比值越大,说明线速度越大)

方向:沿着圆周上各点的切线方向

单位:m/s2、说明

1)线速度是指物体做圆周运动时的瞬时速度。

2)线速度的方向就是圆周上某点的切线方向。

线速度的大小是的比值。所以是矢量。

3)匀速圆周运动是一个线速度大小不变的圆周运动。

4)线速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时线速度。

注:匀速圆周运动中的“匀速”二字的含义:仅指速率不变,但速度的方向(曲线上某点的切线方向)时刻在变化。

知识点二:描写圆周运动的角速度

要点诠释:

1、角速度的定义:

圆周运动物体与圆心的连线扫过的角度叫做角速度。

公式:

单位:

2、说明:

1)这里的必须是弧度制的角。

(弧度每秒)

与所用时间的比值

2)对于匀速圆周运动来说,这个比值是恒定的,即匀速圆周运动是角速度保持不变的圆周运动。

3)角速度的定义式,无论是对于变速圆周运动还是匀速圆周运动都成立,在变速圆周运动中,只要取得足够小,公式计算的结果就是瞬时角速度。

4)关于的方向:中学阶段不研究。

5)同一个转动的物体上,各点的角速度相等。

例如.木棒OA以它上面的一点O为轴匀速转动时,它上面的各点与圆心O的连线在相等时间内扫过的角度相等。

即:

3、关于弧度制的介绍

(1)角有两种度量单位:角度制和弧度制

(2)角度制:将一个圆的周长分为360份,其中的一份对应的圆心角为一度。因此一个周角是360°,平角和直角分别是180°和90°。

(3)弧度制:定义半径长的弧所对应的圆心角为一弧度,符号为rad。一段长为的圆弧对应的圆心角是

rad,(4)特殊角的弧度值:在此定义下,一个周角对应的弧度数是:;平角和直角分别是

(rad)。

(5)同一个角的角度和用弧度制度量的之间的关系是:rad ,说明:在物理学中弧度并没有量纲,因为它是两个长度之比,弧度(rad)只是我们为了表达的方便而 “给”的。

知识点三:匀速圆周运动的周期与转速

要点诠释:

1、周期的定义:做匀速圆周运动的物体运动一周所用的时间叫做周期,单位:s。

它描写了圆周运动的重复性。

2、周期T的意义:不难看到,周期是圆周运动的线速度大小和方向完全恢复初始状态所用的最小时间;周期长说明圆周运动的物体转动得慢,周期短说明转动得快。

观察与思考:同学们看一看你所戴的手表或者墙上钟表上的时、分、秒针,它们的周期分别是多少?想一想角速度和周期的关系如何?(秒针的周期最小,其针尖的最大,也最大。)

3、匀速圆周运动的转速

转速n:指转动物体单位时间内转过的圈数。

单位: r/s(转每秒),常用的单位还有

关系式:s(n单位为r/s)或

(转每分)

s(n单位为r/min)

注意:转速与角速度单位的区别:

知识点四:描述圆周运动快慢的几个物理量的相互关系

要点诠释:

因为这几个都是描述圆周运动快慢,所以它们之间必然有内在联系

1、线速度、角速度和周期的关系

匀速圆周运动的线速度和周期的关系

匀速圆周运动的角速度和周期的关系

匀速圆周运动的角速度和周期有确定的对应关系:角速度与周期成反比。

2、线速度、角速度与转速的关系:

匀速圆周运动的线速度与转速的关系:

匀速圆周运动的角速度与转速的关系:

3、线速度和角速度的关系:

(1)线速度和角速度关系的推导:

特例推导:

(n的单位是r/s)(n的单位是r/s)

设物体沿半径为r的圆周做匀速圆周运动,在一个T时间内转过的弧长2πr及2π角度,则:

一般意义上的推导:

由线速度的定义:

又因为,所以,所以

(2)线速度和角速度的关系:

可知:

同理: 一定时,一定时

(3)对于线速度与角速度关系的理解:

是一种瞬时对应关系,即某一时刻的线速度与这一时刻的角速度的关系,适应于匀速圆周运动和变速圆周运动。

知识点五:向心加速度

要点诠释:

1、向心加速度产生的原因:向心加速度由物体所受到的向心力产生,根据牛顿第二定律知道,其大小由向心力的大小和物体的质量决定。

2、向心加速度大小的计算方法:

(1)由牛顿第二定律计算:

(2)由运动学公式计算:

如果是匀速圆周运动则有:

3、向心加速度的方向:沿着半径指向圆心,时刻在发生变化,是一个变量。

4、向心加速度的意义:在一个半径一定的圆周运动中,向心加速度描述的是线速度方向改变的快慢。

5、关于向心加速度的说明

(1)从运动学上看:速度方向时刻在发生变化,总是有然有向心加速度;

(2)从动力学上看:沿着半径方向上指向圆心的合外力必然产生指向圆心的向心加速度。

思考回答:为什么匀速圆周运动不是匀变速运动?

加速度是个矢量,既有大小又有方向,匀速圆周运动中加速度大小不变,而方向却不断变化。因此,匀速圆周运动不是匀变速运动。

规律方法总结

1、注意圆周运动的速度和加速度的方向是变化的。

(1)圆周运动的线速度的方向时刻在发生变化,但是总是与半径垂直;

(2)无论是匀速圆周运动还是变速圆周运动,都是加速度变化的曲线运动,都不是匀变速运动。

2、熟练掌握线速度、角速度、周期和转速的关系能给解题带来

必方便。

(1)尽管线速度、角速度、周期和转速都能描写圆周运动的快慢,但是它们是有区别的;

(2)线速度与角速度的关系圆周运动和变速圆周运动都适应;

(3)在具体计算中,要注意角的单位和转速的单位。

3、同一个转动的物体上不同的点,其角速度是相同的,其线速度与半径成正比;皮带传动时或者齿轮传动时,两个轮子边缘上的点线速度是相同的,其角速度或转速与轮子的半径成反比。

4、向心加速度的计算公式

适用于圆周运动任何瞬时和

是瞬时对应关系,匀速的向心加速度的计算,其中的线速度和角速度都是瞬时值,无论是匀速圆周运动还是变速圆周运动都可以用来计算某时刻的向心加速度。

典型例题透析

类型一——角速度和线速度的计算

1、闹钟的秒针长4cm,求秒针针尖运动的线速度和角速度。

思路点拨:秒针的周期是60s,是一个不言而喻的条件,应自觉的运用。

解析:秒针转动的周期T=60s,又因为,故

针尖转动一周走过的弧长是2πr,所以针尖上一点的线速度

也可以用线速度和角速度的关系求解线速度

2、(2010 全国Ⅰ卷)图1是利用激光测转速的原理示意图,图中圆盘可绕固定轴转动,盘边缘侧面上有一小段涂有很薄的反光材料。当盘转到某一位置时,接收器可以接收到反光涂层所反射的激光束,并将所收到的光信号转变成电信号,在示波器显示屏上显示出来(如图2所示)。

(1)若图2中示波器显示屏横向的每大格(5小格)对应的时间为,则圆盘的转速为__转/秒。(保留3位有效数字)

(2)若测得圆盘直径为10.20cm,则可求得圆盘侧面反光涂层的长度为__cm。(保留3位有效数字)

思路点拨:从题目中提炼出相关条件,是解题的关键:小的矩形虚线的宽度表示反光涂层的运动时间,两个矩形虚线框之间的宽度表示圆盘运动一周的时间。

解析:(1)从图2可知圆盘转一圈的时间在横坐标上显示22格,由题意知图2中横坐标上每格表示0.22s,则转速为4.55转/秒。,所以圆盘转动的周期是(2)反光涂层的长度为

答案:(1)4.55(2)1.46。

总结升华:如何从题目中挖掘条件是解题的首要任务,也是一种阅读能力,从本题来看,紧密结合图1和图2,对两图中的对应量进行迁移,才会正确解题。同时一定要在平时训练这方面的能力。

举一反三

【变式1】:电风扇叶片边缘一点的线速度为56.7m/s,若它转动半径为18cm,求电扇转动的角速度和周期。

解析:根据线速度与角速度的关系

【变式2】(2011 山东聊城模拟)如图所示,用一根长杆和两个定滑轮的组合装置来提升重物M,长杆的一端放在地上通过铰链联结形成转轴,其端点恰好处于左侧滑轮正下方O点处,在杆的中点C处拴一细绳,绕过两个滑轮后挂上重物M.C点与O点距离为L,现在杆的另一端用力使其逆时针匀速转动,由竖直位置以角速度ω缓缓转至水平位置(转过了90°角),此过程中下列说法正确的是()

A.重物M做匀速直线运动 B.重物M做匀变速直线运动 C.重物M的最大速度是ωL D.重物M的速度先减小后增大

解析: 由题知,C点的速度大小为vC=ωL,设vC与绳之间的夹角为θ,把vC沿绳和垂直绳方向分解可得,v绳=vCcosθ,在转动过程中θ先减小到零再增大,故v绳先增大后减小,重物M做变加速运动,其最大速度为ωL,C正确.

类型二——向心加速度的计算

3、在长20cm的细绳的一端系一个小球,绳的另一端固定在水平桌面上,使小球以5m/s的速度在桌面上做匀速圆周运动,求小球运动的向心加速度和转动的角速度。

解析:由题意可知

根据向心加速度的计算公式

4、如图所示,定滑轮的半径r=2cm,绕在滑轮上的细线悬挂着一个重物,由静止开始释放,测得重物以加速度a=2m/s2做匀加速运动。在重物由静止下落距离为1m的瞬间,滑轮边缘上的点的角速度多大?向心加速度a多大?

思路点拨:这是一个关于变速圆周运动向心加速度计算的问题。物体的速度时刻等于轮缘上一点的线速度,求出物体下落1m时的瞬时速度,然后利用角速度、向心加速度和线速度的关系可以求解。

解析:

(1)重物下落1m时,瞬时速度为

显然,滑轮边缘上每一点的线速度也都是2m/s,故滑轮转动的角速度,即滑轮边缘上每一点的转动角速度为:

(2)向心加速度为:

总结升华:此题讨论的是变速运动问题,重物落下的过程中滑轮转动的角速度,轮上各点的线速度都在不断增加,但在任何时刻角速度与线速度的关系仍然成立。

类型三——皮带传动问题

5、如图,主动轮O2转动,已知

匀速转动,通过皮带不打滑地带动从动轮分别为r1、r2上的中点,A为O2轮边缘上一,向心加速度与角速度、线速度的关系点,B为O1轮边缘上一点,C为皮带上一点。试比较:

(1)A、B、C点线速度的大小?

(2)A、B、E、F各点角速度的大小?

(3)E、F点线速度的大小?

思路点拨:分析比较各个点运动情况的异同,建立相互关系是解题的切入点。

解析:(1)因为皮带传动过程与轮子不打滑,所以A、B、C三个点可以看成是皮带上的三个点,相同时间必定通过相同的路程,因此,A、B、C点的线速度相等,这也是两个轮子的联系。

(2)比较各点角速度:

比较

所以(3)由

应通过,同理

入手分析

因为A、F是同一物体上的点,角速度必然相等即

总结升华:(1)同一转动物体上的各点,角速度必然相等;(2)皮带传动时,与皮带接触的点线速度相等。

举一反三

变式

1、如图所示,一皮带不打滑的皮带传动装置,A、B两点是轮缘上的点,C是O2B连线中点上的一点。大轮与小轮的半径之比为2:1,试分析A、B、C三点线速度、角速度、周期、向心加速度的关系。

解析:A、B、C三者中,A、B都是轮边缘上的点,所以具有相同的线速度。∴vA:vB=1:1。

再寻找vC与vA或vB间的关系。由于C与B在同一个轮子上,所以C、B具有相同角速度,根据v=ωr可以确定vB:vC=2:1。

因此vA:vB:vC=2:2:1。

再来看看角速度间的关系:B、C两点在一个轮上,所以它们具有相同的角速度,即ωB:ωC=1:1,而A、B两点具有相同的线速度,∴ωA:ωB=2:1,∴ωA:ωB:ωC=2:1:1。

根据角速度与周期的关系,ω=,可得到TA:TB:TC=1:2:2。

若从an=入手,∵vA:vB:vC=2:2:1,rA:rB:rC=1:2:1 ∴an==4:2:同理,也可以利用an=ω2r,或an=

r来找出向心加速度的关系,结果是一样的。

更简单的考虑方法是利用an=wv,因为w与v的关系已经求出,所以可以直接求出加速度的关系。

变式

2、如图所示的皮带传动装置,左边是主动轮,右边是一个轮轴,RA:RC=1:2,RA:RB=2:3。假设在传动过程中皮带不打滑,则皮带轮边缘上的A、B、C三点的角速度之比是__________;线速度之比是_________;向心加速度之比是_________。

分析:由于A、C同轴,所以角速度相等,ωA:ωC=1:由v=ωr有,vA:vC=rA:rC=1:2

A、B用皮带传动,皮带不打滑,所以线速度相等,vA:vB=1:ωA:ωB=rB:rA=3:2

综上:vA:vB:vC=1:1:2;ωA:ωB:ωC=3:2:3;aA:aB:aC=3:2:6

变式3:(2011 山东济宁模拟)如图所示,两轮用皮带传动,皮带不打滑,图中有A、B、C三点,这三点所在处半径rA>rB=rC,则这三点的向心加速度aA、aB、aC的关系是()

A.aA=aB=aC B.aC>aA>aB C.aCaA

解析: 皮带传动不打滑,A点与B点线速度大小相同,由

得,所以aAaC,所以aC<aA<aB,可见选项C正确.

类型四——平抛运动和匀速圆周运动综合题

6、如图示,在半径为的水平放置的圆板中心轴上距圆板高为的A处以沿水平抛出一个小球,此时正在做匀速转动的圆板上的半径恰好转动到与平行的位置,要使小球与圆板只碰一次且落点为B。求:

(1)小球抛出的速度;

(2)圆板转动时的角速度ω。

思路点拨:思维的切入点是分析小球落在B 点的条件即:小球平抛落地时的水平位移是R 且圆盘在这段时间内转动了整数圈。

解析:(1)“只碰一次”:若较小,小球有可能在圆板上弹跳几次后落在B点。

所以此小球第一次落至圆板上时的。由平抛运动的规律得

(2)因为圆板运动具有周期性,所以小球可在空中运动的时间t内,圆盘可能转动了整数圈,设圆板周期为T,则1,2,3„„)。

所以圆盘的角速度

1,2,3„„)

0,总结升华:解决圆周运动问题要充分注意到其周期性的特点;解决综合性的问题要重视分析物理现象发生的条件。

拓展深化:若使小球第一次直接落在过B直径的另一端C点,解析:

①平抛运动的水平位移和落地时间程不变,则不变,亦不变。

不变,所以(1)、(2)方

②小球落在直径的另一端,圆盘必定转过了整数圈加半圈,所以

0,1,2,3„„)

总结升华:利用匀速圆周运动的周期性,可分析、解决此类问题的多解性。

变式练习

变式:雨伞边缘的半径为r,且高出地面为h,现将雨伞以角速度ω旋转,使雨滴自伞边缘甩出落于地面成为一个大圆,求此大圆的半径R是多少?

思路点拨:形成雨伞和雨滴运动的情景,画出空间关系图是解题的关键所在。

解析:依题意作出俯视图如图,其中小圆是雨伞边缘,半径为r,大圆是雨滴在地面上的轨迹。两个圆不在同一个水平面上。

雨伞以角速度旋转,所以雨滴离开雨伞边缘时的线速度大小为v=r,如图中画出了A点雨滴甩出时的速度方向,雨滴甩出后以上述速度做平抛运动落到B点,A B为雨滴的水平位移,OA为伞的半径,则OB即为所求大圆的半径。

雨滴飞行落地时间

抛射距离

第四篇:圆周运动教案教案

6.5 圆周运动

★新课标要求

(一)知识与技能

1、理解线速度的概念,知道它就是物体做匀速圆周运动的瞬时速度、理解角速度和周期的概念,会用它们的公式进行计算。

2、理解线速度、角速度、周期之间的关系:v=rω=2πr/T

3、理解匀速圆周运动是变速运动。

(二)过程与方法

1、运用极限法理解线速度的瞬时性。

2、运用数学知识推导角速度的单位。

(三)情感、态度与价值观

1、通过极限思想和数学知识的应用,体会学科知识间的联系,建立普遍联系的观点。

2、体会应用知识的乐趣。★教学重点

线速度、角速度的概念以及它们之间的联系。★教学难点

理解线速度、角速度的物理意义。★教学方法

教师启发、引导,学生归纳分析,讨论、交流学习成果。★教学工具

投影仪等多媒体教学设备 ★教学过程

(一)引入新课

上节课我们学习了抛体运动的规律,这节课开始我们再来学习一类常见的曲线运动――圆周运动。

(二)进行新课

教师活动:引导学生列举生活中常见的圆周运动的实例,增强学生的感性认识。学生活动:学生纷纷举例。选出代表发言。教师活动:待学生举例后,提出问题:

这些作圆周运动的物体,哪些运动得更快?我们应该如何比较它们运动的快慢呢?

引导学生讨论教材“思考与讨论”中的问题,选出代表发表见解。

学生活动:思考并讨论自行车的大齿轮、小齿轮、后轮上各点运动的快慢。

教师活动:听取学生的发言,针对学生的不同意见,引导学生过渡到对描述圆周运动快慢的物理量――线速度的学习上来。

1、线速度

教师活动:我们曾经用速度这个概念来描述物体作直线运动时的快慢,那么我们能否继续用这个概念来描述圆周运动的快慢呢?如果能,该怎样定义呢? 给出阅读提纲,学生先归纳,然后师生互动加深学习。(1)线速度的物理意义(2)线速度的定义(3)线速度的定义式(4)线速度的瞬时性(5)线速度的方向

学生活动:(1)结合阅读提纲阅读课本内容

(2)尝试自己归纳知识点(3)交流讨论,查缺补漏

师生互动:投影知识点并点评、总结

(1)物理意义:描述质点沿圆周运动的快慢.(2)定义:质点做圆周运动通过的弧长Δl和所用时间Δt的比值叫做线速度。(比值定义法)

(3)大小:v =l。单位:m/s(s是弧长,非位移)t(4)当选取的时间Δt很小很小时(趋近零),弧长Δl就等于物体在t时刻的位移,定义式中的v,就是直线运动中学过的瞬时速度了。(5)方向:在圆周各点的切线上(6)“匀速圆周运动”中的“匀速”指的速度的大小不变,即速率不变;而“匀速直线运动”的“匀速”指的速度不变是大小方向都不变,二者并不相同。

[结论]匀速圆周运动是一种变速运动.2、角速度

教师活动:描述圆周运动的快慢,除了用线速度外,还有没有其它方法?

给出阅读提纲,学生先归纳,然后师生互动加深学习。[投影]阅读提纲

(1)角速度的物理意义(2)角速度的定义(3)角速度的定义式

学生活动:(1)结合阅读提纲阅读课本内容

(2)尝试自己归纳知识点(3)交流讨论,查缺补漏

师生互动:投影知识点并点评、总结

(1)物理意义:描述质点转过的圆心角的快慢.(2)定义:在匀速圆周运动中,连接运动质点和圆心的半径转过Δθ的角度跟所用时间Δt的比值,就是质点运动的角速度;

(3)定义式:ω= t3、角速度的单位

教师活动:线速度的单位是米每秒,角速度的单位又是什么呢?

[投影]阅读提纲

(1)怎样度量圆心角的大小?弧度这个单位是如何得到的?在计算时要注意什么?

(2)国际单位制中,角速度的单位是什么?

(3)有人说,匀速圆周运动是线速度不变的运动,也是角速度不变的运动,这两种说法正确吗?为什么?

学生活动:结合阅读提纲阅读课本内容,完成对角速度单位的学习。师生互动:投影知识点并点评、总结

(1)圆心角θ的大小可以用弧长和半径的比值来描述,这个比值是没有单位的,为了描述问题的方便,我们“给”这个比值一个单位,这就是弧度。弧度不是通常意义上的单位,计算时,不能将弧度带道算式中。(2)国际单位制中,角速度的单位是弧度每秒(rad/s)

(3)第一句话是错误的,因为线速度是矢量,匀速圆周运动是线速度大小不变的运动,后一句话是正确的,因为角速度是标量,没有方向,因此角速度是不变的。

教师活动:教材中还提到了描述圆周运动快慢的两种方法,它们是什么?单位如何? 学生活动:阅读教材,掌握转速和周期的概念。

4、线速度跟角速度的关系

教师活动:线速度和角速度都能描述圆周运动的快慢,它们之间有何关系呢?

引导学生阅读教材,推导出线速度和角速度的关系。

学生活动:在练习本上推导线速度和角速度的关系式.

第五篇:圆周运动练习

1.如图所示光滑管形圆轨道半径为R(管径远小于R)固定,小球a、b大小相同,质量相同,均为m,其直径略小于管径,能在管中无摩擦运动.两球先后以相同速度v通过轨道最低点,且当小球a在最低点时,小球b在最高点,以下说法正确的是()

A.速度v至少

B.当v=

为,才能使两球在管内做圆周运动

时,小球b在轨道最高点对轨道无压力

C.当小球b在最高点对轨道无压力时,小球a比小球b所需向心力大5mg

D.只要v≥,小球a对轨道最低点压力比小球b对轨道最高点压力都大6mg

2.如图2所示,劲度系数为k的轻质弹簧一端固定在墙上,另一端连接一质量为m的滑块,静止在光滑水平面上O点处,现将滑块从位置O拉到最大位移x处由静止释放,滑块向左运动了s米(s

3.如图3所示,质量为m的物块与转台之间能出现的最大静摩擦力为物块重力的k倍,它与转轴OO`相距R,物体随转台由静止开始转动,当转速增加到一定值时,物块开始在转台上滑动,在物块由静止到开始滑动前的这一过程中,转台对物块做的功为多少?

4.如图4所示,一质量均匀的不可伸长的绳索重为G,A、B两端固定在天花板上,今在最低点C施加一竖直向下的力将绳拉至D点,在此过程中,绳索AB的重心位置将()

A.逐渐升高

B.逐渐降低

C.先降低后升高

D.始终不变

5.如图,半径为R的光滑圆形轨道固定在竖直面内。小球A、B质量分别为m、βm(β为待定系数)。A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为力加速度为g。试求:

且碰撞中无机械能损失。重

(1)待定系数β;

(2)第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;

下载圆周运动题型总结(合集5篇)word格式文档
下载圆周运动题型总结(合集5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《圆周运动》教案

    朝阳区公开课优秀教案 教科版高中物理必修2第二章第一节 §2.1 圆周运动 八十中 王朝祥 2011.03.07 【教学目标】 (一)知识与技能 1.理解线速度、角速度、周期的概念,会用它们......

    圆周运动教案

    第二章圆周运动 2.1 匀速圆周运动 (一) 圆周运动 (二) 匀速圆周运动 1、匀速圆周运动定义: 2、描述匀速圆周运动快慢的几个物理量“ (1)、线速度 A、物理意义:描述质点沿圆......

    《圆周运动》说课稿

    《圆周运动》说课稿 山东省平原第一中学 xxx 开场白: 大家好!各位评委好!我是来自平原一中的xxx,我今天说课的课题是《圆周运动》。我将从以下六个方面来说一下对这节课的设计,依......

    圆周运动教案(初稿)

    第四节:圆周运动 江苏省宿豫中学赵伦兵 一、教学任务分析 匀速圆周运动是继直线运动后学习的第一个曲线运动,是对如何描述和研究比直线运动复杂的运动的拓展,是力与运动关系知......

    专题7:圆周运动

    专题7:圆周运动参考答案1.向心力有哪些主要特点?(1)大小:F向=ma向=m=mω2r=mr=m(2πn)2r(2)方向:总是沿半径方向指向圆心,方向时刻改变,是变力.(3)效果:产生向心加速度.仅改变速度的方向,不......

    《圆周运动》说课稿

    《匀速圆周运动》说课稿 各位评委好!我今天说课的课题是《匀速圆周运动》。我将从以下六个方面来说一下对这节课的设计,依次是:教材分析、学情分析、教法学法、教学设计、板书......

    散文题型总结__2012

    散文题型总结2012-03-02 09:58:46|分类: 默认分类 |标签: |字号大中小 订阅 . 散文题型繁复而庞大,因此,我总结了散文的题型如下:散文类型赏读。 文体意识:明确各种文体的相关特点......

    高中物理题型总结

    第一章 质点的直线 第一节 描述运动的物理量 匀速直线运动 主题1 物体能否简化为质点的判断(*)(A 必考必刷题组) 主题2 参考系的选取和运动的描述(*)(A 必考必刷题组) 主题3 较复杂......