动能定理机械能守恒定律知识点例题(精)(合集5篇)

时间:2019-05-14 03:59:51下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《动能定理机械能守恒定律知识点例题(精)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《动能定理机械能守恒定律知识点例题(精)》。

第一篇:动能定理机械能守恒定律知识点例题(精)

动能定理机械能守恒定律知识点例题(精)

1.动能、动能定理 2.机械能守恒定律

【要点扫描】

动能 动能定理

-、动能

如果-个物体能对外做功,我们就说这个物体具有能量.物体由于运动而具有的能.Ek=mv2,其大小与参照系的选取有关.动能是描述物体运动状态的物理量.是相对量。

二、动能定理

做功可以改变物体的能量.所有外力对物体做的总功等于物体动能的增量. W1+W2+W3+„„=?mvt2-?mv02

1、反映了物体动能的变化与引起变化的原因——力对物体所做功之间的因果关系.可以理解为外力对物体做功等于物体动能增加,物体克服外力做功等于物体动能的减小.所以正功是加号,负功是减号。

2、“增量”是末动能减初动能.ΔEK>0表示动能增加,ΔEK<0表示动能减小.

3、动能定理适用于单个物体,对于物体系统尤其是具有相对运动的物体系统不能盲目的应用动能定理.由于此时内力的功也可引起物体动能向其他形式能(比如内能)的转化.在动能定理中.总功指各外力对物体做功的代数和.这里我们所说的外力包括重力、弹力、摩擦力、电场力等.

4、各力位移相同时,可求合外力做的功,各力位移不同时,分别求各力做的功,然后求代数和.

5、力的独立作用原理使我们有了牛顿第二定律、动量定理、动量守恒定律的分量表达式.但动能定理是标量式.功和动能都是标量,不能利用矢量法则分解.故动能定理无分量式.在处理-些问题时,可在某-方向应用动能定理.

6、动能定理的表达式是在物体受恒力作用且做直线运动的情况下得出的.但它也适用于外力为变力及物体作曲线运动的情况.即动能定理对恒力、变力做功都适用;直线运动与曲线运动也均适用.

7、对动能定理中的位移与速度必须相对同-参照物.

三、由牛顿第二定律与运动学公式推出动能定理

设物体的质量为m,在恒力F作用下,通过位移为s,其速度由v0变为vt,则:

根据牛顿第二定律F=ma„„① 根据运动学公式2as=vt2―v02„„②

由①②得:Fs=mvt2-mv02

四、应用动能定理可解决的问题

恒力作用下的匀变速直线运动,凡不涉及加速度和时间的问题,利用动能定理求解-般比用牛顿定律及运动学公式求解要简单得多.用动能定理还能解决-些在中学应用牛顿定律难以解决的变力做功的问题、曲线运动的问题等.

机械能守恒定律

-、机械能

1、由物体间的相互作用和物体间的相对位置决定的能叫做势能.如重力势能、弹性势能、分子势能、电势能等.

(1)物体由于受到重力作用而具有重力势能,表达式为 EP=mgh.式中h是物体到零重力势能面的高度.(2)重力势能是物体与地球系统共有的.只有在零势能参考面确定之后,物体的重力势能才有确定的值,若物体在零势能参考面上方高 h处其重力势能为EP=mgh,若物体在零势能参考面下方低h处其重力势能为 EP=-mgh,“-”不表示方向,表示比零势能参考面的势能小,显然零势能参考面选择的不同,同-物体在同-位置的重力势能的多少也就不同,所以重力势能是相对的.通常在不明确指出的情况下,都是以地面为零势面的.但应特别注意的是,当物体的位置改变时,其重力势能的变化量与零势面如何选取无关.在实际问题中我们更会关心的是重力势能的变化量.

(3)弹性势能,发生弹性形变的物体而具有的势能.高中阶段不要求具体利用公式计算弹性势能,但往往要根据功能关系利用其他形式能量的变化来求得弹性势能的变化或某位置的弹性势能.

2、重力做功与重力势能的关系:重力做功等于重力势能的减少量WG=ΔEP减=EP初-EP末,克服重力做功等于重力势能的增加量W克=ΔEP增=EP末—EP初 应特别注意:重力做功只能使重力势能与动能相互转化,不能引起物体机械能的变化.

3、动能和势能(重力势能与弹性势能)统称为机械能.

二、机械能守恒定律

1、内容:在只有重力(和弹簧的弹力)做功的情况下,物体的动能和势能发生相互转化,但机械能的总量保持不变.

2、机械能守恒的条件

(1)对某-物体,若只有重力(或弹簧弹力)做功,其他力不做功(或其他力做功的代数和为零),则该物体机械能守恒.

(2)对某-系统,物体间只有动能和重力势能及弹性势能的相互转化,系统和外界没有发生机械能的传递,机械能也没有转变为其他形式的能,则系统机械能守恒.

3、表达形式:EK1+Epl=Ek2+EP2

(1)我们解题时往往选择的是与题目所述条件或所求结果相关的某两个状态或某几个状态建立方程式.此表达式中EP是相对的.建立方程时必须选择合适的零势能参考面.且每-状态的EP都应是对同-参考面而言的.

(2)其他表达方式,ΔEP=-ΔEK,系统重力势能的增量等于系统动能的减少量.(3)ΔEa=-ΔEb,将系统分为a、b两部分,a部分机械能的增量等于另-部分b的机械能的减少量,三、判断机械能是否守恒

首先应特别提醒注意的是,机械能守恒的条件绝不是合外力的功等于零,更不是合外力等于零,例如水平飞来的子弹打入静止在光滑水平面上的木块内的过程中,合外力的功及合外力都是零,但系统在克服内部阻力做功,将部分机械能转化为内能,因而机械能的总量在减少.

(1)用做功来判断:分析物体或物体受力情况(包括内力和外力),明确各力做功的情况,若对物体或系统只有重力或弹力做功,没有其他力做功或其他力做功的代数和为零,则机械能守恒;

(2)用能量转化来判定:若物体系中只有动能和势能的相互转化而无机械能与其他形式的能的转化,则物体系机械能守恒.

(3)对-些绳子突然绷紧,物体间非弹性碰撞等除非题目的特别说明,机械能必定不守恒,完全非弹性碰撞过程机械能不守恒

【规律方法】

动能 动能定理

【例1】如图所示,质量为m的物体与转台之间的摩擦系数为μ,物体与转轴间距离为R,物体随转台由静止开始转动,当转速增加到某值时,物体开始在转台上滑动,此时转台已开始匀速转动,这过程中摩擦力对物体做功为多少?

解析:物体开始滑动时,物体与转台间已达到最大静摩擦力,这里认为就是滑动摩擦力μmg.

根据牛顿第二定律μmg=mv2/R„„① 由动能定理得:W=?mv2 „„②

由①②得:W=?μmgR,所以在这-过程摩擦力做功为?μmgR 点评:(1)-些变力做功,不能用 W=Fscos求,应当善于用动能定理.(2)应用动能定理解题时,在分析过程的基础上无须深究物体的运动状态过程中变化的细节,只须考虑整个过程的功量及过程始末的动能.若过程包含了几个运动性质不同的分过程.既可分段考虑,也可整个过程考虑.但求功时,有些力不是全过程都作用的,必须根据不同情况分别对待求出总功.计算时要把各力的功连同符号(正负)-同代入公式.

【例2】-质量为m的物体.从h高处由静止落下,然后陷入泥土中深度为Δh后静止,求阻力做功为多少?

提示:整个过程动能增量为零,则根据动能定理mg(h+Δh)-Wf=0 所以Wf=mg(h+Δh)答案:mg(h+Δh)

(一)动能定理应用的基本步骤

应用动能定理涉及-个过程,两个状态.所谓-个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能.

动能定理应用的基本步骤是:

①选取研究对象,明确并分析运动过程.

②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.

③明确过程始末状态的动能Ek1及EK2 ④列方程 W=解.

【例3】总质量为M的列车沿水平直线轨道匀速前进,其末节车厢质量为m,中途脱节,司机发觉时,机车已行驶了L的距离,于是立即关闭油门,除去牵引力,设阻力与质量成正比,机车的牵引力是恒定的,当列车的两部分都停止时,它们的距离是多少? -,必要时注意分析题目的潜在条件,补充方程进行求解析:此题用动能定理求解比用运动学结合牛顿第二定律求解简单.先画出草图如图所示,标明各部分运动位移(要重视画草图);对车头,脱钩前后的全过程,根据动能定理便可解得.FL-μ(M-m)gs1=-?(M-m)v02

对末节车厢,根据动能定理有-μmgs2=-mv02 而Δs=s1-s2

由于原来列车匀速运动,所以F=μMg. 以上方程联立解得Δs=ML/(M-m).

说明:对有关两个或两个以上的有相互作用、有相对运动的物体的动力学问题,应用动能定理求解会很方便.最基本方法是对每个物体分别应用动能定理列方程,再寻找两物体在受力、运动上的联系,列出方程解方程组.

(二)应用动能定理的优越性

(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这-过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.

(2)-般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是-种高层次的思维和方法,应该增强用动能定理解题的主动意识.(3)用动能定理可求变力所做的功.在某些问题中,由于力F的大小、方向的变化,不能直接用W=Fscosα求出变力做功的值,但可由动能定理求解. 【例4】如图所示,质量为m的物体用细绳经过光滑小孔牵引在光滑水平面上做匀速圆周运动,拉力为某个值F时,转动半径为R,当拉力逐渐减小到F/4时,物体仍做匀速圆周运动,半径为2R,则外力对物体所做的功的大小是:

A.B.C.D.零

解析:设当绳的拉力为F时,小球做匀速圆周运动的线速度为v1,则有 F=mv12/R„„①

当绳的拉力减为F/4时,小球做匀速圆周运动的线速度为v2,则有 F/4=mv22/2R„„②

在绳的拉力由F减为F/4的过程中,绳的拉力所做的功为W=?mv22-?mv12=-?FR 所以,绳的拉力所做的功的大小为FR/4,A选项正确. 说明:用动能定理求变力功是非常有效且普遍适用的方法.

【例5】质量为m的飞机以水平速度v0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其他力的合力提供,不含重力).今测得当飞机在水平方向的位移为L时,它的上升高度为h,求(1)飞机受到的升力大小?(2)从起飞到上升至h高度的过程中升力所做的功及在高度h处飞机的动能? 解析:(1)飞机水平速度不变,L= v0t,竖直方向的加速度恒定,h=?at2,消去t即得

由牛顿第二定律得:F=mg+ma=(2)升力做功W=Fh=

在h处,vt=at=,(三)应用动能定理要注意的问题

注意1:由于动能的大小与参照物的选择有关,而动能定理是从牛顿运动定律和运动学规律的基础上推导出来,因此应用动能定理解题时,动能的大小应选取地球或相对地球做匀速直线运动的物体作参照物来确定.

【例6】如图所示质量为1kg的小物块以5m/s的初速度滑上-块原来静止在水平面上的木板,木板质量为4kg,木板与水平面间动摩擦因数是0.02,经过2s以后,木块从木板另-端以1m/s相对于地面的速度滑出,g取10m/s,求这-过程中木板的位移.

解析:设木块与木板间摩擦力大小为f1,木板与地面间摩擦力大小为f2. 对木块:-f1t=mvt-mv0,得f1=2 N 对木板:(fl-f2)t=Mv,f2=μ(m+ M)g 得v=0.5m/s 对木板:(fl-f2)s=?Mv2,得 s=0.5 m 答案:0.5 m 注意2:用动能定理求变力做功,在某些问题中由于力F的大小的变化或方向变化,所以不能直接由W=Fscosα求出变力做功的值.此时可由其做功的结果——动能的变化来求变力F所做的功. 【例7】质量为m的小球被系在轻绳-端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用.设某-时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为()A、mgR/4 B、mgR/3 C、mgR/2 D、mgR 解析:小球在圆周运动最低点时,设速度为v1,则 7mg-mg=mv12/R„„①

设小球恰能过最高点的速度为v2,则 mg=mv22/R„„②

设过半个圆周的过程中小球克服空气阻力所做的功为W,由动能定理得: -mg2R-W=?mv22-?mv12„„③ 由以上三式解得W=mgR/2.答案:C 说明:该题中空气阻力-般是变化的,又不知其大小关系,故只能根据动能定理求功,而应用动能定理时初、末两个状态的动能又要根据圆周运动求得不能直接套用,这往往是该类题目的特点.

机械能守恒定律

(一)单个物体在变速运动中的机械能守恒问题

【例1】如图所示,桌面与地面距离为H,小球自离桌面高h处由静止落下,不计空气阻力,则小球触地的瞬间机械能为(设桌面为零势面)()A、mgh; B、mgH; C、mg(H+h); D、mg(H-h)

解析:这-过程机械能守恒,以桌面为零势面,E初=mgh,所以着地时也为mgh,有的学生对此接受不了,可以这样想,E初=mgh,末为 E末=?mv2-mgH,而?mv2=mg(H+h)由此两式可得:E末=mgh

答案:A

【例2】如图所示,-个光滑的水平轨道AB与光滑的圆轨道BCD连接,其中圆轨道在竖直平面内,半径为R,B为最低点,D为最高点.-个质量为m的小球以初速度v0沿AB运动,刚好能通过最高点D,则()

A、小球质量越大,所需初速度v0越大

B、圆轨道半径越大,所需初速度v0越大

C、初速度v0与小球质量m、轨道半径R无关

D、小球质量m和轨道半径R同时增大,有可能不用增大初速度v0

解析:球通过最高点的最小速度为v,有mg=mv2/R,v=

这是刚好通过最高点的条件,根据机械能守恒,在最低点的速度v0应满足?m v02=mg2R+?mv2,v0=

(二)系统机械能守恒问题

【例3】如图,斜面与半径R=2.5m的竖直半圆组成光滑轨道,-个小球从A点斜向上抛,并在半圆最高点D水平进入轨道,然后沿斜面向上,最大高度达到h=10m,求小球抛出的速度和位置.

答案:B

解析:小球从A到D的逆运动为平抛运动,由机械能守恒,平抛初速度vD为mgh—mg2R=?mvD2;

所以A到D的水平距离为由机械能守恒得A点的速度v0为mgh=?mv02;

由于平抛运动的水平速度不变,则vD=v0cosθ,所以,仰角为

【例4】如图所示,总长为L的光滑匀质的铁链,跨过-光滑的轻质小定滑轮,开始时底端相齐,当略有扰动时,某-端下落,则铁链刚脱离滑轮的瞬间,其速度多大?

解析:铁链的-端上升,-端下落是变质量问题,利用牛顿定律求解比较麻烦,也超出了中学物理大纲的要求.但由题目的叙述可知铁链的重心位置变化过程只有重力做功,或“光滑”提示我们无机械能与其他形式的能转化,则机械能守恒,这个题目我们用机械能守恒定律的总量不变表达式E2=El,和增量表达式ΔEP=-ΔEK分别给出解答,以利于同学分析比较掌握其各自的特点.(1)设铁链单位长度的质量为P,且选铁链的初态的重心位置所在水平面为参考面,则初态E1=0 滑离滑轮时为终态,重心离参考面距离L/4,EP=-PLgL/4 Ek2=Lv2即终态E2=-PLgL/4+PLv2

由机械能守恒定律得E2= E1有-PLgL/4+PLv2=0,所以v=

(2)利用ΔEP=-ΔEK,求解:初态至终态重力势能减少,重心下降L/4,重力势能减少-ΔEP= PLgL/4,动能增量ΔEK=PLv2,所以v=

点评:(1)对绳索、链条这类的物体,由于在考查过程中常发生形变,其重心位置对物体来说,不是固定不变的,能否确定其重心的位置则是解决这类问题的关键,顺便指出的是均匀质量分布的规则物体常以重心的位置来确定物体的重力势能.此题初态的重心位置不在滑轮的顶点,由于滑轮很小,可视作对折来求重心,也可分段考虑求出各部分的重力势能后求出代数和作为总的重力势能.至于零势能参考面可任意选取,但以系统初末态重力势能便于表示为宜.

(2)此题也可以用等效法求解,铁链脱离滑轮时重力势能减少,等效为-半铁链至另-半下端时重力势能的减少,然后利用ΔEP=-ΔEK求解,留给同学们思考.

【模拟试题】

1、某地强风的风速约为v=20m/s,设空气密度ρ=1.3kg/m3,如果把通过横截面积=20m2风的动能全部转化为电能,则利用上述已知量计算电功率的公式应为P=_________,大小约为_____W(取-位有效数字)

2、两个人要将质量M=1000 kg的小车沿-小型铁轨推上长L=5 m,高h=1 m的斜坡顶端.已知车在任何情况下所受的摩擦阻力恒为车重的0.12倍,两人能发挥的最大推力各为800 N。水平轨道足够长,在不允许使用别的工具的情况下,两人能否将车刚好推到坡顶?如果能应如何办?(要求写出分析和计算过2程)(g取10 m/s)

3、如图所示,两个完全相同的质量为m的木板A、B置于水平地面上它们的间距s =2.88m.质量为2m、大小可忽略的物块C置于A板的左端. C与A之间的动摩擦因数为μ1=0.22,A、B与水平地面的动摩擦因数为μ2=0.10,最大静摩擦力可认为等于滑动摩擦力. 开始时,三个物体处于静止状态.现给C施加-个水平向右,大小为的恒力F,假定木板A、B碰撞时间极短且碰撞后粘连在-起.要使C最终不脱离木板,每块木板的长度至少应为多少?

4、对-个系统,下面说法正确的是()

A、受到合外力为零时,系统机械能守恒

B、系统受到除重力弹力以外的力做功为零时,系统的机械能守恒

C、只有系统内部的重力弹力做功时,系统的机械能守恒 D、除重力弹力以外的力只要对系统作用,则系统的机械能就不守恒

5、如图所示,在光滑的水平面上放-质量为M=96.4kg的木箱,用细绳跨过定滑轮O与-质量为m=10kg的重物相连,已知木箱到定滑轮的绳长AO=8m,OA绳与水平方向成30°角,重物距地面高度h=3m,开始时让它们处于静止状态.不计绳的质量及-切摩擦,g取10 m/s2,将重物无初速度释放,当它落地的瞬间木箱的速度多大?

6、-根细绳不可伸长,通过定滑轮,两端系有质量为M和m的小球,且M=2m,开始时用手握住M,使M与m离地高度均为h并处于静止状态.求:(1)当M由静止释放下落h高时的速度.(2)设M落地即静止运动,求m离地的最大高度。(h远小于半绳长,绳与滑轮质量及各种摩擦均不计)

【试题答案】

1、2、解析:小车在轨道上运动时所受摩擦力为f f=μMg=0.12×1000×10N=1200 N 两人的最大推力F=2×800 N=1600 N F>f,人可在水平轨道上推动小车加速运动,但小车在斜坡上时f+Mgsinθ=1200 N+10000·1/5N=3200 N>F=1600 N 可见两人不可能将小车直接由静止沿坡底推至坡顶.

若两人先让小车在水平轨道上加速运动,再冲上斜坡减速运动,小车在水平轨道上运动最小距离为s(F-f)s+FL-fL-Mgh=0

答案:能将车刚好推到坡顶,先在水平面上推20 m,再推上斜坡.

3、分析:这题重点是分析运动过程,我们必须看到A、B碰撞前A、C是相对静止的,A、B碰撞后A、B速度相同,且作加速运动,而C的速度比A、B大,作减速运动,最终A、B、C达到相同的速度,此过程中当C恰好从A的左端运动到B的右端的时候,两块木板的总长度最短。

解答:设l为A或B板的长度,A、C之间的滑动摩擦力大小为f1,A与水平面的滑动摩擦力大小为f

2∵μ1=0.22。μ2=0.10 ∴„„ ①

且 „② -开始A和C保持相对静止,在F的作用下向右加速运动。

有 „③

A、B两木板的碰撞瞬间,内力的冲量远大于外力的冲量。由动量守恒定律得

mv1=(m+m)v2 „④

碰撞结束后到三个物体达到共同速度的相互作用过程中,设木板向前移动的位移为s1.选三个物体构成的整体为研究对象,外力之和为零,则

„⑤

设A、B系统与水平地面之间的滑动摩擦力大小为f3。对A、B系统,由动能定理

„ ⑥

„⑦

对C物体,由动能定理由以上各式,再代入数据可得l=0.3(m)

„„„ ⑧

4、解析:A,系统受到合外力为零时,系统动量守恒,但机械能就不-定守恒,答案:C

5、解析:本题中重物m和木箱M的动能均来源于重物的重力势能,只是m和M的速率不等. 根据题意,m,M和地球组成的系统机械能守恒,选取水平面为零势能面,有mgh=?mv+?Mv

从题中可知,O距M之间的距离为 h/=OAsin30°=4 m 当m落地瞬间,OA绳与水平方向夹角为α,则cosα==4/5 而m的速度vm等于vM沿绳的分速度,如图所示,则有 vm=vMcosα

所以,联立解得vM=

m/s 答案:m/ s

6、解:(1)在M落地之前,系统机械能守恒(M-m)gh=(M+m)v2,(2)M落地之后,m做竖直上抛运动,机械能守恒.有: mv2=mgh/;h/=h/3

离地的最大高度为:H=2h+h/=7h/3

第二篇:机械能守恒定律典型例题

机械能守恒定律典型例题

题型一:单个物体机械能守恒问题

1、一个物体从光滑斜面顶端由静止开始滑下,斜面高1 m,长2 m,不计空气阻力,物体滑到斜面底端的速度是多大?

拓展:若光滑的斜面换为光滑的曲面,求物体滑到斜面底端的速度是多大?

2、把一个小球用细绳悬挂起来,就成为一个摆,摆长为l,最大偏角为θ,求小球运动到最低位置时的速度是多大?

.题型二:连续分布物体的机械能守恒问题

1、如图所示,总长为L的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时底端相齐,当略有扰动时,其一端下落,则铁链刚脱离滑轮的瞬间的速度多大?

2、一条长为L的均匀链条,放在光滑水平桌面上,链条的一半垂于桌边,如图所示,现由静止开始使链条自由滑落,当它全部脱离桌面时的速度多大?

3、如图所示,粗细均匀的U型管内装有同种液体,开始两边液面高度差为h,管中液体总长度为4h,后来让液体自由流动,当液面的高度相等时,右侧液面下降的速度是多大?题型三:机械能守恒定律在平抛运动、圆周运动中的应用(单个物体)

1、如图所示,AB是竖直平面内的四分之一圆弧轨道,其下端B与水平直轨道相切,一小球自A点起由静止开始沿轨道下滑。已知圆弧轨道半径为R,小球的质量为m,不计各处摩擦。求:(1)小球运动到B点时的动能

1(2)小球下滑到距水平轨道的高度为R时的速度大小和方向

2(3)小球经过圆弧轨道的B点和水平轨道的C点时,所受轨道支持力各是多大?

2、如图所示,固定在竖直平面内的光滑轨道,半径为R,一质量为m的小球沿逆时针方向在轨道上做圆周运动,在最低点时,m对轨道的压力为8mg,当m运动到最高点B时,对轨道的压力是多大?

3、如上图所示,可视为质点的小球以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道.若不计轨道的摩擦,为使小球能通过圆形轨道的最高点,则v0至少应为多大?

4、如右图所示,长度为l的无动力“翻滚过山车”以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道,若不计轨道的摩擦,且l>2πR,为使“过山车”能顺利通过圆形轨道,则v0至少应为多大?

5、游乐场的过山车可以底朝上在圆轨道上运行,游客却不会掉下来,如左图所示,我们把这种情况抽象为右图所示的模型:弧形轨道的下端与竖直圆轨道相接.使小球从弧形轨道上端滚下,小球进入圆轨道下端后沿圆轨道运动.实验发现,只要h 大于一定值.小球就可以顺利通过圆轨道的最高点.如果已知圆轨道的半径为R,h至少要等于多大?不考虑摩擦等阻力。

6、如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R。一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg(g为重力加速度)。求物块初始位置相对于圆形轨道底部的高度h的取值范围。

7、如图所示,以固定在竖直平面内的光滑的半圆形轨道ABC,其半径R=0.5m,轨道在C处与水平地面相切。在C处放一小物块,给它一水平向左的初速度V0=5m/s,结果它沿CBA运动,通过A点,最后落在水平面上的D点,求C、m2D间的距离S,取g=10/s8、如图所示,一个光滑的水平轨道与半圆轨道相连接,其中半圆轨道在竖直平面内,半径为R.质量为m的小球以某速度从A点无摩擦地滚上半圆轨道,小球通过轨道的最高点B后恰好做平抛运动,且正好落在水平地面上的C点,已知AC=AB=2R,求:

(1)小球在A点时的速度大小.

(2)小球在B点时半圆轨道对它的弹力.

9、如图所示,位于竖直平面上的1/4圆弧光滑轨道,半径为R,OB沿竖直方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,最后落在水平地面上C点处,不计空气阻力,求:

(1)小球运动到轨道上的B点时,对轨道的压力多大?(2)小球落地点C与B点水平距离s是多少?(3)要使小球的水平射程为最大值,求圆弧轨道半径R与高度H的关系。

10、如图所示,小球用不可伸长的轻绳悬于O点,在O点的正下方有一固定的钉子B,OB = d,开始时小球拉至 A点,且OA水平,小球在A点无初速度释放。绳子长为 L,为了使小球能绕B点做圆周运动.试求d的取值范围。

题型四:系统机械能守恒问题

1、如图所示,将A、B两个砝码用细线相连,挂在定滑轮上。已知mA=200g,mB=50g,托起砝码A,使其比B的位置高0.2m,然后由静止释放,当两砝码处于同一高度时,求它们的速度大小。(g=10 m/s2)

2、如图所示,质量为m 的木块放在光滑的水平桌面上.用轻绳绕过桌边的定滑轮 与质量为M的砝码相连,已知 M=2m.让绳拉直后使砝码从静止开始下降h(小于桌面)的距离,木块仍没离开桌面,则砝码的速度是多大?

3、如图所示,半径为R的光滑半圆上有两个小球A、B,质量分别为m和M,由细线挂着,今由静止开始无初速度自由释放,求小球A升至最高点C时A、B两球的速度?

4、有一光滑水平板,板的中央有一小孔,孔内穿入一根光滑轻线,轻线的上端系一质量为M的小球,轻线的下端系着质量分别为m1和m2的两个物体。当小球在光滑水平板上沿半径为R的轨道做匀速圆周运动时,轻线下端的两个物体都处于静止状态,若将两物体之间的轻线剪断,则小球的线速度为多大时才能再次在水平板上做匀速圆周运动?

6、如图所示,长为L的轻质杆,中点和右端分别固定着质量为m的A球和B球,杆可绕左端在竖直平面内转动,现将杆由静止释放,当杆摆到竖直位置时,B球的速率为多少?

7、如图所示,轻直细杆长为2l,中点有一转轴O,两端分别固定质量为2m、m的小球a和b。当杆从水平位置转到竖直位置时,两小球的速度为多大?

8、如图所示,质量为 m=2kg的小球系在轻弹簧的一端, 另一端固定在悬点O处,将弹簧拉至水平位置A处由静止释放,小球到达O点的正下方距O点h = 0.5 m处的B点时速度为2 m/s。求小球从A 运动到B的过程中弹簧弹力做的功。

9、如图所示,一个质量为 m=0.2 kg的小球系于轻质弹簧的一端,且套在光滑竖直的圆环上,弹簧的上端固定于环的最高点A,环的半径R=0.5m,弹簧的原长l0 = 0.5m,劲度系数为4.8N/m。若小球从图示位置B 点由静止开始滑动到最低点C时,弹簧的弹性势能Ep=0.6J,(g=10 m/s2)求:(1)小球到C点时的速度Vc的大小(2)小球在C点对环的作用力

第三篇:动能定理典型基础例题

动能定理典型基础例题

应用动能定理解题的基本思路如下: ①确定研究对象及要研究的过程

②分析物体的受力情况,明确各个力是做正功还是做负功,进而明确合外力的功③明确物体在始末状态的动能④根据动能定理列方程求解。

例1.质量M=6.0×10

3kg的客机,从静止开始沿平直的跑道滑行,当滑行距离S=7.2×lO

2m时,达到起飞速度ν=60m/s。求:

(1)起飞时飞机的动能多大?

(2)若不计滑行过程中所受的阻力,则飞机受到的牵引力为多大?

(3)若滑行过程中受到的平均阻力大小为F=3.0×103

N,牵引力与第(2)问中求得的值相等,则要达到上述起飞速度,飞机的滑行距离应多大?

例2.一人坐在雪橇上,从静止开始沿着高度为15m的斜坡滑下,到达底部时速度为10m/s。人和雪橇的总质量为60kg,下滑过程中克服阻力做的功。

例3.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为v,用g表示重力加速度,则在此过程中物块克服空气阻力所做的功等于:

()

例4.质量为m的小球被系在轻绳一端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用。设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为:()A.

mgRmgR4B.3C.mgR

2D.mgR 例5.如图所示,质量为m的木块从高为h、倾角为α的斜面顶端由静止滑下。到达斜面底端时与固定不动的、与斜面垂直的挡板相撞,撞后木块以与撞前相同大小的速度反向弹回,木块运动到高

h

2处速度变为零。求:

(1)木块与斜面间的动摩擦因数?(2)木块第二次与挡板相撞时的速度?(3)木块从开始运动到最后静止,在斜面上运动的总路程?

例6.质量m=1.5kg的物块(可视为质点)在水平恒力F作用下,从水平面上A点由静止开始运动,运动一段距离撤去该力,物块继续滑行t=2.0s停在B点,已知A、B两点间的距离s=5.0m,物块与水平面间的动摩擦因数μ=0.20,求恒力F多大。(g=10m/s

2)

1、在光滑水平地面上有一质量为20kg的小车处于静止状态。用30牛水平方向的力推小车,经过多大距离小车才能达到3m/s的速度。

2、汽车以15m/s的速度在水平公路上行驶,刹车后经过20m速度减小到5m/s,已知汽车质量是3.0t,求刹车动力。(设汽车受到的其他阻力不计)

3、一个质量是0.20kg的小球在离地5m高处从静止开始下落,如果小球下落过程中所受的空气阻力是0.72N,求它落地时的速度。

4、一辆汽车沿着平直的道路行驶,遇有紧急情况而刹车,刹车后轮子只滑动不滚动,从刹车开始到汽车停下来,汽车前进12m。已知轮胎与路面之间的滑动摩擦系数为0.7,求刹车前汽车的行驶速度。

5、一辆5吨的载重汽车开上一段坡路,坡路上S=100m,坡顶和坡底的高度差h=10m,汽车山坡前的速度是10m/s,上到坡顶时速度减为5.0m/s。汽车受到的摩擦阻力时车重的0.05倍。求汽车的牵引力。

6、质量为2kg的物体,静止在倾角为30o的斜面的底端,物体与斜面间的摩擦系数为0.5,斜面长1m,用30N平行于斜面的力把物体推上斜面的顶端,求物体到达斜面顶端时的动能。

7、质量为4.0kg的铅球从离沙坑面1.8m高处自由落下,落入沙坑后在沙中运动了0.2m后停止,求沙坑对铅球的平均阻力。

8、质量为2kg的物体在水平力F为40N的作用下从静止出发沿倾角为37o的斜面上滑,物体与斜面的摩擦系数为0.40,求物体在斜面上滑行4m时的速度。

9、有一物体以某一速度从斜面底沿斜面上滑,当它滑行4m后速度变为零,然后再下滑到斜面底。已知斜面长5m,高3m,物体和斜面间的摩擦系数μ=0.25。求物体开始上滑时的速度及物体返回到斜面底时的速度。

10、将一个质量为m的篮球从距离地面高度为h处由静止释放,篮球在空中受到大小一定的空气f的作用,设与地面碰撞过程没有机械能损失,篮球经过若干次碰撞后停止在地面上,篮球在空中运动的总路程。

11、用拉力F使一个质量为m的木箱由静止开始在水平冰道上移动了s,拉力F跟木箱前进的方向的夹角为α,木箱与冰道间的动摩擦因数为μ,木箱获得的速度(如图)。

12、如图所示,小滑块从斜面顶点A由静止滑至水平部分C点而停止。已知斜面高为h,滑块运动的整个水平距离为s。求小滑块与接触面间的动摩擦因数(设滑块与各部分的动摩擦因数相同)。

13、质量为4×10

3Kg的汽车由静止开始以恒定功

率前进,经100

3s,前进了425m,这时它达到最大

速度15m/s,设阻力不变,求机车的功率。

14、一质量为1kg的物体被人用手由静止向上提升1m,这时物体的速度2 m/s,则下列说法正确的是()

A、手对物体做功12JB、合外力对物体做功12J C、合外力对物体做功2JD、物体克服重力做功10 J

15.一个人站在距地面高h=15m处,将一质量为m = 100g的石块以v0 = 10m/s的速度斜向上抛出.(1)若不计空气阻力,求石块落地时的速度v.(2)若石块落地时速度的大小为vt =19m/s,求石块克服空气阻力做的功W.16、如图所示,AB为1/4圆弧轨道,半径为R=0.8m,BC是水平轨道,长S=3m,BC处的摩擦系数为μ=1/15,今有质量m=1kg的物体,自A点从静止起下滑到C点刚好停止。求物体在轨道AB段所受的阻力对物体做的功。

17、如图所示,ABCD是一个盆式容器,盆内侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、C为水平的,其距离d=0.50m。盆边缘的高度为h=0.30m。在A处放一个质量为m的小物块并让其从静止出发下滑。已知盆内侧壁是光滑的,而盆底BC面与小物块间动摩擦系数为μ=0.10。小物块在盆内来回滑动,最后停下来,则停的地点到B的距离为

A.0.50mB.0.25mC.0.10mD.018、如图所示,光滑的水平面AB与光滑的半圆形轨道相接触,直径BC竖直,圆轨道半径为R一个质量为m的物体放在A处,AB=2R,物体在水平恒力F的作用下由静止开始运动,当物体运动到B点时撤去水平外力之后,物体恰好从圆轨道的定点C水平抛出,求水平力.

第四篇:机械能守恒定律典型例题剖析

高考资源网(),您身边的高考专家

机械能守恒定律典型例题剖析

1、如图示,长为l 的轻质硬棒的底端和中点各固定一个质量为m的小球,为使轻质硬棒能绕转轴O转到最高点,则底端小球在如图示位置应具有的最小速度v=。解:系统的机械能守恒,ΔEP +ΔEK=0

因为小球转到最高点的最小速度可以为0,所以,11vmv2mmglmg2l222

24gl52v

4.8gl

例 2.如图所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。一柔软的细线跨过定滑轮,两端分别与物块A和B连结,A的质量为4m,B的质量为m,开始时将B按在地面上不动,然后放开手,让A沿斜面下滑而B上升。物块A与斜面间无摩擦。设当A沿斜面下滑S 距离后,细线突然断了。求物块B上升离地的最大高度H.解:对系统由机械能守恒定律

4mgSsinθ – mgS = 1/2× 5 mv

2∴v2=2gS/

5细线断后,B做竖直上抛运动,由机械能守恒定律

mgH= mgS+1/2× mv2∴H = 1.2 S

例 3.如图所示,半径为R、圆心为O的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上.一根轻质长绳穿过两个小圆环,它的两端都系上质量为m的重物,忽略小圆环的大小。

(1)将两个小圆环固定在大圆环竖直对称轴的两侧θ=30°的位置上(如图).在 两个小圆环间绳子的中点C处,挂上一个质量M= m的重

环间的绳子水平,然后无初速释放重物M.设绳

与大、小圆环间的摩擦均可忽略,求重物M下降的最大距离.

(2)若不挂重物M.小圆环可以在大圆环上自

由移动,且绳子与大、小圆环间及大、小圆环之2物,使两个小圆

欢迎广大教师踊跃来稿,稿酬丰厚。

高考资源网(),您身边的高考专家 间的摩擦均可以忽略,问两个小圆环分别在哪些位置时,系统可处于平衡状态?

解:(1)重物向下先做加速运动,后做减速运动,当重物速度

为零时,下降的距离最大.设下降的最大距离为h,由机械能守恒定律得

解得

Mgh2mgh2RsinθRsinθh

2R(另解h=0舍去)

(2)系统处于平衡状态时,两小环的可能位置为

a. 两小环同时位于大圆环的底端.

b.两小环同时位于大圆环的顶端.

c.两小环一个位于大圆环的顶端,另一个位于大圆环的底端.

d.除上述三种情况外,根据对称性可知,系统如能平衡,则两小圆环的位置一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称

轴两侧α角的位置上(如图所示).

对于重物,受绳子拉力与重力作用,有T=mg

对于小圆环,受到三个力的作用,水平绳的拉力T、竖直绳子的拉力T、大圆环的支持力N.两绳子的拉力沿大圆环切向的分力大小相等,方向相反

得α=α′, 而α+α′=90°,所以α=45 °

例 4.如图质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于

静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩。开始时各段绳都牌伸直状态,A上方的一段沿竖直方向。现在挂钩上挂一质量为m3的物体C上升。

若将C换成另一个质量为(m1+m3)物体D,仍从上述初始位置

由静止状态释放,则这次B则离地时D的速度的大小是多少?

已知重力加速度为g。

解:开始时,B静止平衡,设弹簧的压缩量为x1,kx1m1g

挂C后,当B刚要离地时,设弹簧伸长量为x2,有

kx2m2g 欢迎广大教师踊跃来稿,稿酬丰厚。

高考资源网(),您身边的高考专家 此时,A和C速度均为零。从挂C到此时,根据机械能守恒定律弹簧弹性势能的改变量为

Em3g(x1x2)m1g(x1x2)

将C换成D后,有

1E(m1m3m1)v2(m1m3)g(x1x2)m1g(x1x2)2

2m1(m1m2)g2

k(2m1m3)联立以上各式可以解得

v

欢迎广大教师踊跃来稿,稿酬丰厚。

第五篇:动能定理典型例题附答案

1、如图所示,质量m=0.5kg的小球从距地面高H=5m处自由下落,到达地面恰能沿凹陷于地面的半圆形槽壁运动,半圆槽半径R=0.4m.小球到达槽最低点时的速率为10m/s,并继续滑槽壁运动直至槽左端边缘飞出,竖直上升,落下后恰好又沿槽壁运动直至从槽右端边缘飞出,竖直上升、落下,如此反复几次.设摩擦力大小恒定不变:(1)求小球第一次离槽上升的高度h.(2)小球最多能飞出槽外几次?(g取10m/s)

22、如图所示,斜面倾角为θ,滑块质量为m,滑块与斜

面的动摩擦因数为μ,从距挡板为s的位置以v的速度

沿斜面向上滑行.设重力沿斜面的分力大于滑动摩擦

力,且每次与P碰撞前后的速度大小保持不变,斜面足

够长.求滑块从开始运动到最后停止滑行的总路程s.003、有一个竖直放置的圆形轨道,半径为R,由左右两部分组成。如图所示,右半部分AEB是光滑的,左半部分BFA是粗糙的.现在最低点A给一个质量为m的小球一个水平向右的初速度,使小球沿轨道恰好运动到最高点B,小球在B点又能沿BFA轨道回到点A,到达A点时对轨道的压力为4mg1、求小球在A点的速度v02、求小球由BFA回到A点克服阻力做的功

04、如图所示,质量为m的小球用长为L的轻质细线悬于O点,与O点处于同一水平线上的P点处有一根光滑的细钉,已知OP = L/2,在A点给小球一个水平向左的初速度v0,发现小球恰能到达跟P点在同一竖直线上的最高点B.则:(1)小球到达B点时的速率?(2)若不计空气阻力,则初速度v0为多少?

(3)若初速度v0=3,则在小球从A到B的过程中克服空气阻力做了多少功?

5、如图所示,倾角θ=37°的斜面底端B平滑连接着半径r=0.40m的竖直光滑圆轨道。质量m=0.50kg的小物块,从距地面h=2.7m处

沿斜面由静止开始下滑,小物块与斜面间的动摩擦因数μ=0.25,求:

(sin37°=0.6,cos37°=0.8,g=10m/s)

(1)物块滑到斜面底端B时的速度大小。

(2)物块运动到圆轨道的最高点A时,对圆轨道的压力大小。

26、质量为m的小球被系在轻绳一端,在竖直平面内做半径为R的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力所做的功为()

7如图所示,AB与CD为两个对称斜面,其上部都足够长,下部分分别与一个光滑的圆弧面的两端相切,圆弧圆心角为1200,半径R=2.0m,一个物体在离弧底E高度为h=3.0m处,以初速度V0=4m/s沿斜面运动,若物体与两斜面的动摩擦因数均为μ=0.02,则物体在两斜面上(不包括圆弧部分)一共能走多少2路程?(g=10m/s).E8、如图所示,在光滑四分之一圆弧轨道的顶端a点,质量为

m的物块(可视为质点)由静止开始下滑,经圆弧最低点b滑上

粗糙水平面,圆弧轨道在b点与水平轨道平滑相接,物块最终

滑至c点停止.若圆弧轨道半径为R,物块与水平面间的动摩

擦因数为μ,则:

1、物块滑到b点时的速度为?

2、物块滑到b点时对b点的压力是?

3、c点与b点的距离为?

1解析:(1)在小球下落到最低点的过程中,设小球克服摩擦力做功为Wf,由动能定理得:

1mg(H+R)-Wfv2-0

2从小球下落到第一次飞出半圆形槽上升到距水平地面h高度的过程中,由动能定理得mg(H-h)-2Wf=0-0

v2102联立解得:h=H-2R=m-5 m-2×0.4 m=4.2 m.g10

(2)设小球最多能飞出槽外n次,则由动能定理得:mgH-2nWf=0-0

mgHmgHgH解得:n=6.25 2Wf122g(H+R)-v2mg(H+R)-2mv

故小球最多能飞出槽外6次.

答案:(1)4.2 m(2)6次2、3、v05gRfmgR4、(1)小球恰能到达最高点 B,则小球到达B点时的速率 v=gL①

2(2)由动能定理得:-mg(L+7gLL1212)=mv-mv0,由①②得 v0= 2222

L121211mgL)-Wf =mv-mv0③,由①③得 Wf = 4222(3)由动能定理得:-mg(L+

5、v6.0m/sN=20N6、1mgR

207、由动能定理得: mg(h-R/2)-μmgscos60=0-1mV02 2

∴s=280m.8

3mgR 

下载动能定理机械能守恒定律知识点例题(精)(合集5篇)word格式文档
下载动能定理机械能守恒定律知识点例题(精)(合集5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    高中物理机械能守恒定律典型分类例题

    一、单个物体的机械能守恒判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能......

    动能定理的知识点总结

    物理是人们对无生命自然界中物质的转变的知识做出规律性的总结的学科。下面给大家整理了动能定理的知识点总结,欢迎阅读!1、什么是动能?它与哪些因素有关?物体由于运动而具有的......

    高中物理机械能守恒定律知识点总结(合集5篇)

    高中物理机械能守恒定律知识点总结(一) 一、功 1.公式和单位:,其中是F和l的夹角.功的单位是焦耳,符号是J. 2.功是标量,但有正负.由,可以看出: 当0°≤......

    浮力知识点及典型例题

    (考查范围:浮力及其应用)附:本章知识小结 (一) 本章词语解释 1.上升: 物体在液体中向液面运动的过程. 2.下沉: 物体在液体中向容器底部运动的过程. 3.漂浮: 物体独自静止地......

    必修2→广东版→验证机械能守恒定律典型例题1

    蓝天家教网 http:// 伴您快乐成长验证机械能守恒定律典型例题例1如图5-47,一个质量为m的小球拴在长l的细线上做成一个单摆,把小球从平衡位置O拉至A,使细线与竖直方向成θ角,然后......

    经济法第一章知识点及典型例题

    第一章 应知应会知识点一、 名词解释 1.法律规范(了解授权性法律规范、义务性法律规范、命令性法律规范、强行性法律规范任意性法律规范、确定性法律规范的含义并且能够根据定......

    “眼睛和眼镜例题”知识点分析

    “眼睛和眼镜例题”知识点分析 例1(2005·扬州)人的眼睛像一架神奇的照相机,晶状体相当于凸透镜,视网膜相当于胶片,通过晶状体的调节将远近不同的物体成像在视网膜上。图1是不同......

    水浒传必看(知识点,例题)2(精选合集)

    小升初语文知识积累:《水浒传》知识点 《水浒传》:反抗封建暴政的英雄传奇(施耐庵) 全书描写北宋末年以宋江为首的108人在山东梁山泊聚义的故事。 阅读感受:①人物形象鲜明生动......