高中物理机械能守恒定律典型分类例题

时间:2019-05-13 15:04:34下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《高中物理机械能守恒定律典型分类例题》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《高中物理机械能守恒定律典型分类例题》。

第一篇:高中物理机械能守恒定律典型分类例题

一、单个物体的机械能守恒

判断一个物体的机械能是否守恒有两种方法:(1)物体在运动过程中只有重力做功,物体的机械能守恒。

(2)物体在运动过程中不受媒质阻力和摩擦阻力,物体的机械能守恒。

所涉及到的题型有四类:(1)阻力不计的抛体类。(2)固定的光滑斜面类。(3)固定的光滑圆弧类。(4)悬点固定的摆动类。

(1)阻力不计的抛体类 包括竖直上抛;竖直下抛;斜上抛;斜下抛;平抛,只要物体在运动过程中所受的空气阻力不计。那么物体在运动过程中就只受重力作用,也只有重力做功,通过重力做功,实现重力势能与机械能之间的等量转换,因此物体的机械能守恒。

(2)固定的光滑斜面类

在固定光滑斜面上运动的物体,同时受到重力和支持力的作用,由于支持力和物体运动的方向始终垂直,对运动物体不做功,因此,只有重力做功,物体的机械能守恒。

(3)固定的光滑圆弧类

在固定的光滑圆弧上运动的物体,只受到重力和支持力的作用,由于支持力始终沿圆弧的法线方向而和物体运动的速度方向垂直,对运动物体不做功,故只有重力做功,物体的机械能守恒。

(4)悬点固定的摆动类

和固定的光滑圆弧类一样,小球在绕固定的悬点摆动时,受到重力和拉力的作用。由于悬线的拉力自始至终都沿法线方向,和物体运动的速度方向垂直而对运动物体不做功。因此只有重力做功,物体的机械能守恒。

作题方法:

一般选取物体运动的最低点作为重力势能的零势参考点,把物体运动开始时的机械能和物体运动结束时的机械能分别写出来,并使之相等。

注意点:在固定的光滑圆弧类和悬点定的摆动类两种题目中,常和向心力的公式结合使用。这在计算中是要特别注意的。习题:

1、三个质量相同的小球悬挂在三根长度不等的细线上,分别把悬线拉至水平位置后轻轻释放小球,已知线长LaLbLc,则悬线摆至竖直位置时,细线中张力大小的关系是()

ATcTbTaBTaTbTcCTbTcTaDTa=Tb=Tc4、一质量m = 2千克的小球从光滑斜面上高h = 3.5米高处由静止滑下斜面底端紧接着一个半径R = 1米的光滑圆环(如图)求:

(1)小球滑至圆环顶点时对环的压力;

(2)小球至少要从多高处静止滑下才能越过圆环最高点;

(3)小球从h0 = 2米处静止滑下时将在何处脱离圆环(g =9.8米/秒2)。

二、系统的机械能守恒 由两个或两个以上的物体所构成的系统,其机械能是否守恒,要看两个方面

(1)系统以外的力是否对系统对做功,系统以外的力对系统做正功,系统的机械能就增加,做负功,系统的机械能就减少。不做功,系统的机械能就不变。

(2)系统间的相互作用力做功,不能使其它形式的能参与和机械能的转换。

系统内物体的重力所做的功不会改变系统的机械能

系统间的相互作用力分为三类:

1)刚体产生的弹力:比如轻绳的弹力,斜面的弹力,轻杆产生的弹力等

2)弹簧产生的弹力:系统中包括有弹簧,弹簧的弹力在整个过程中做功,弹性势能参与机械能的转换。

3)其它力做功:比如炸药爆炸产生的冲击力,摩擦力对系统对功等。

在前两种情况中,轻绳的拉力,斜面的弹力,轻杆产生的弹力做功,使机械能在相互作用的两物体间进行等量的转移,系统的机械能还是守恒的。虽然弹簧的弹力也做功,但包括弹性势能在内的机械能也守恒。但在第三种情况下,由于其它形式的能参

1与了机械能的转换,系统的机械能就不再守恒了。

归纳起来,系统的机械能守恒问题有以下四个题型:(1)轻绳连体类(2)轻杆连体类

(3)在水平面上可以自由移动的光滑圆弧类。(4)悬点在水平面上可以自由移动的摆动类。

(1)轻绳连体类

这一类题目,系统除重力以外的其它力对系统不做功,系统内部的相互作用力是轻绳的拉力,而拉力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。

[例]:如图,光滑斜面的倾角为,竖直的光滑细杆到定滑轮的距离为a,斜面上的物体M和穿过细杆的m通过跨过定滑轮的轻绳相连,开始保持两物体静止,连接m的轻绳处于水平状态,放手后两物体从静止开始运动,求m下降b时两物体的速度大小?

(2)轻杆连体类

这一类题目,系统除重力以外的其它力对系统不做功,物体的重力做功不会改

变系统的机械能,系统内部的相互作用力是轻杆的弹力,而弹力只是使系统内部的机械能在相互作用的两个物体之间进行等量的转换,并没有其它形式的能参与机械能的转换,所以系统的机械能守恒。

例:如图,质量均为m的两个小球固定在轻杆的端,轻杆可绕水平转轴在竖直平面内自由转动,两小球到轴的距离分别为L、2L,开始杆处于水平静止状态,放手后两球开始运动,求杆转动到竖直状态时,两球的速度大小

(3)在水平面上可以自由移动的光滑圆弧类。

光滑的圆弧放在光滑的水平面上,不受任何水平外力的作用,物体在光滑的圆弧上滑动,这一类的题目,也符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明

例:四分之一圆弧轨道的半径为R,质量为M,放在光滑的水平地面上,一质量为m的球(不计体积)从光滑圆弧轨道的顶端从静止滑下,求小球滑离轨道时两者的速度?

(4)悬点在水平面上可以自由移动的摆动类。

悬挂小球的细绳系在一个不受任何水平外力的物体上,当小球摆动时,物体能在水平面内自由移动,这一类的题目和在水平面内自由移动的光滑圆弧类形异而质同,同样符合系统机械能守恒的外部条件和内部条件,下面用具体的例子来说明

例:质量为M的小车放在光滑的天轨上,长为L的轻绳一端系在小车上另一端拴一质量为m的金属球,将小球拉开至轻绳处于水平状态由静止释放。求(1)小球摆动到最低点时两者的速度?(2)此时小球受细绳的拉力是多少?

习题

1.如图5-3-15所示,质量相等的甲、乙两小球从一光滑直角斜面的顶端同时由静止释放,甲小球沿斜面下滑经

过a点,乙小球竖直下落经过b点,a、b两点在同一水平面上,不计空气阻力,下列说法中正确的是()

A.甲小球在a点的速率等于乙小球在b点的速率

B.甲小球到达a点的时间等于乙小球到达b点的时间

C.甲小球在a点的机械能等于乙小球在b点的机械能(相对同一个零势能参考面)

D.甲小球在a点时重力的功率等于乙小球在b点时重力的功率

2. 一根质量为M的链条一半放在光滑的水平桌面上,另一半挂在桌边,如图5-3-

16(a)所示.将链条由静止释放,链条刚离开桌面时的速度为v1.若在链条两端各系一个质量均为m的小球,把链条一半和一个小球放在光滑的水平桌面上,另一半和另一个小球挂在桌边,如图5-3-16(b)所示.再次

将链条由静止释放,链条刚离开桌面时的速度为v2,下列判断中正确的是()

A.若M=2m,则v1=v2B.若M>2m,则v1<v

2C.若M<2m,则v1>v2D.不论M和m大小关系如何,均有v1>v2

5.如图5-3-19所示为某同学设计的节能运输系统.斜面轨道的倾角为37°,木箱与轨道之间的动摩擦因数μ=

0.25.设计要求:木箱在轨道顶端时,自动装货装置将质量m=2 kg的货物装入木箱,木箱载着货物沿轨道无初速滑下,当轻弹簧被压缩至最短时,自动装货装置立刻将货物御下,然后木箱恰好被弹回到轨道顶端,接着再重复上述过程.若g取10 m/s2,sin 37°=0.6,cos 37°=0.8.求:

(1)离开弹簧后,木箱沿轨道上滑的过程中的加速度大小;(2)满足设计要求的木箱质量.

如图5-3-20所示,一个质量为m的小铁块沿半径为R的固定半圆轨道上边缘由静止滑下,到半圆底部时,轨

道所受压力为铁块重力的1.5倍,则此过程中铁块损失的机械能为()

1113A.mgRB.C.D.842

42.如图5-3-21所示,斜面置于光滑水平地面上,其光滑斜面上有一物体由静止下滑,在物体下滑过程中,下列说

法正确的是()

A.物体的重力势能减少,动能增加B.斜面的机械能不变

C.斜面对物体的作用力垂直于接触面,不对物体做功D.物体和斜面组成的系统机械能守恒

4.如图5-3-23所示,一很长的、不可伸长的柔软轻绳跨过光滑定滑轮,绳两端各系一小球a和b.a球质量为m,静置于地面;b球质量为3m,用手托住,高度为h,此时轻绳刚好拉紧.从静止开始释放b后,a可能达到的最大高度为()

A.hB.1.5hC.2hD.

5.如图5-3-24所示,在动摩擦因数为0.2的水平面上有一质量为3 kg的物体被一个劲度系数为120 N/m的压缩轻质弹

簧突然弹开,物体离开弹簧后在水平面上继续滑行了1.3 m才停下来,下列说法正确的是(g取10 m/s2)()

A.物体开始运动时弹簧的弹性势能Ep=7.8 JB.物体的最大动能为7.8 J

C.当弹簧恢复原长时物体的速度最大D.当物体速度最大时弹簧的压缩量为x=

0.05 m

8.如图5-3-27所示,小球从A点以初速度v0沿粗糙斜面向上运动,到达最高点B后返回A,C为AB的中点.下列说法中正

确的是()

A.小球从A出发到返回A的过程中,位移为零,合外力做功为零

B.小球从A到C过程与从C到B过程,减少的动能相等

C.小球从A到B过程与从B到A过程,损失的机械能相等

10.如图5-3-29所示,半径为R的竖直光滑圆轨道内侧底部静止着一个光滑小球,现给小球一个冲击使其在瞬间得到一个水平初速度v0,若v0大小不同,则小球能够上升到的最大高度(距离底部)也不同.下列说法中正确的是()

RRA.如果v0=gR,则小球能够上升的最大高度为B.如果v0=2gR,则小球能够上升的最大高度为2

2C.如果v0=3gR,则小球能够上升的最大高度为

11.如图5-3-30所示,AB为半径R=0.8 m的1/4光滑圆弧轨道,下端B恰与小车右端平滑对接.小车质量

M=3 kg,车长L=2.06 m,车上表面距地面的高度h=0.2 m.现有一质量m=1 kg的滑块,由轨道顶端无初速释放,滑到B端后冲上小车.已知地面光滑,滑块与小车上表面间的动摩擦因数μ=0.3,当车运行了1.5 s时,车被地面装置锁定.(g=10 m/s2)试求:

(1)滑块到达B端时,轨道对它支持力的大小;(2)车被锁定时,车右端距轨道B端的距离;

(3)从车开始运动到被锁定的过程中,滑块与车面间由于摩擦而产生的内能大小;

(4)滑块落地点离车左端的水平距离.

2.如图7-7-11所示,质量为2m和m可看做质点的小球A、B,用不计质量的不可伸长的细线相连,跨在固定的半径为R的光滑圆柱两侧,开始时A球和B球

与圆柱轴心等高,然后释放A、B两球,则B球到达最高点时的速率是多少?

3RD.如果v0=5gR,则小球能够上升的最大高度为2R

29.如图所示,长度相同的三根轻杆构成一个正三角形支架,在A处固定质量为2m的小球,B处固定质量为m的小球,支架悬挂在O点,可绕过O点并与支架所在平面相垂直的固定轴转动,开始时OB与地面相垂直,放手后开始运动,在不计任何阻力的情况下,下列说法正确的是()

A.A球到达最低点时速度为零

B.A球机械能减少量等于B球机械能增加量。

C.B球向左摆动所能达到的最高位置应高于A球开始运动时的高度。

D.当支架从左向右往回摆动时,A球一定能回到起始高度

14.如图所示,一劲度系数为k=800N/m的轻弹簧两端各焊接着两个质量均为m=12kg的物

体A、B。开始时物体A、B和轻弹簧竖立静止在水平地面上,现要在上面物体A上加一竖直向上的力F,使物体A开始向上做匀加速运动,经0.4s物体B刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g=10m/s2,求:此过程中外力F所做的功。

第二篇:机械能守恒定律典型例题

机械能守恒定律典型例题

题型一:单个物体机械能守恒问题

1、一个物体从光滑斜面顶端由静止开始滑下,斜面高1 m,长2 m,不计空气阻力,物体滑到斜面底端的速度是多大?

拓展:若光滑的斜面换为光滑的曲面,求物体滑到斜面底端的速度是多大?

2、把一个小球用细绳悬挂起来,就成为一个摆,摆长为l,最大偏角为θ,求小球运动到最低位置时的速度是多大?

.题型二:连续分布物体的机械能守恒问题

1、如图所示,总长为L的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时底端相齐,当略有扰动时,其一端下落,则铁链刚脱离滑轮的瞬间的速度多大?

2、一条长为L的均匀链条,放在光滑水平桌面上,链条的一半垂于桌边,如图所示,现由静止开始使链条自由滑落,当它全部脱离桌面时的速度多大?

3、如图所示,粗细均匀的U型管内装有同种液体,开始两边液面高度差为h,管中液体总长度为4h,后来让液体自由流动,当液面的高度相等时,右侧液面下降的速度是多大?题型三:机械能守恒定律在平抛运动、圆周运动中的应用(单个物体)

1、如图所示,AB是竖直平面内的四分之一圆弧轨道,其下端B与水平直轨道相切,一小球自A点起由静止开始沿轨道下滑。已知圆弧轨道半径为R,小球的质量为m,不计各处摩擦。求:(1)小球运动到B点时的动能

1(2)小球下滑到距水平轨道的高度为R时的速度大小和方向

2(3)小球经过圆弧轨道的B点和水平轨道的C点时,所受轨道支持力各是多大?

2、如图所示,固定在竖直平面内的光滑轨道,半径为R,一质量为m的小球沿逆时针方向在轨道上做圆周运动,在最低点时,m对轨道的压力为8mg,当m运动到最高点B时,对轨道的压力是多大?

3、如上图所示,可视为质点的小球以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道.若不计轨道的摩擦,为使小球能通过圆形轨道的最高点,则v0至少应为多大?

4、如右图所示,长度为l的无动力“翻滚过山车”以初速度v0沿水平轨道运动,然后进入竖直平面内半径为R的圆形轨道,若不计轨道的摩擦,且l>2πR,为使“过山车”能顺利通过圆形轨道,则v0至少应为多大?

5、游乐场的过山车可以底朝上在圆轨道上运行,游客却不会掉下来,如左图所示,我们把这种情况抽象为右图所示的模型:弧形轨道的下端与竖直圆轨道相接.使小球从弧形轨道上端滚下,小球进入圆轨道下端后沿圆轨道运动.实验发现,只要h 大于一定值.小球就可以顺利通过圆轨道的最高点.如果已知圆轨道的半径为R,h至少要等于多大?不考虑摩擦等阻力。

6、如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道和与之相切的圆形轨道连接而成,圆形轨道的半径为R。一质量为m的小物块从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。要求物块能通过圆形轨道最高点,且在该最高点与轨道间的压力不能超过5mg(g为重力加速度)。求物块初始位置相对于圆形轨道底部的高度h的取值范围。

7、如图所示,以固定在竖直平面内的光滑的半圆形轨道ABC,其半径R=0.5m,轨道在C处与水平地面相切。在C处放一小物块,给它一水平向左的初速度V0=5m/s,结果它沿CBA运动,通过A点,最后落在水平面上的D点,求C、m2D间的距离S,取g=10/s8、如图所示,一个光滑的水平轨道与半圆轨道相连接,其中半圆轨道在竖直平面内,半径为R.质量为m的小球以某速度从A点无摩擦地滚上半圆轨道,小球通过轨道的最高点B后恰好做平抛运动,且正好落在水平地面上的C点,已知AC=AB=2R,求:

(1)小球在A点时的速度大小.

(2)小球在B点时半圆轨道对它的弹力.

9、如图所示,位于竖直平面上的1/4圆弧光滑轨道,半径为R,OB沿竖直方向,上端A距地面高度为H,质量为m的小球从A点由静止释放,最后落在水平地面上C点处,不计空气阻力,求:

(1)小球运动到轨道上的B点时,对轨道的压力多大?(2)小球落地点C与B点水平距离s是多少?(3)要使小球的水平射程为最大值,求圆弧轨道半径R与高度H的关系。

10、如图所示,小球用不可伸长的轻绳悬于O点,在O点的正下方有一固定的钉子B,OB = d,开始时小球拉至 A点,且OA水平,小球在A点无初速度释放。绳子长为 L,为了使小球能绕B点做圆周运动.试求d的取值范围。

题型四:系统机械能守恒问题

1、如图所示,将A、B两个砝码用细线相连,挂在定滑轮上。已知mA=200g,mB=50g,托起砝码A,使其比B的位置高0.2m,然后由静止释放,当两砝码处于同一高度时,求它们的速度大小。(g=10 m/s2)

2、如图所示,质量为m 的木块放在光滑的水平桌面上.用轻绳绕过桌边的定滑轮 与质量为M的砝码相连,已知 M=2m.让绳拉直后使砝码从静止开始下降h(小于桌面)的距离,木块仍没离开桌面,则砝码的速度是多大?

3、如图所示,半径为R的光滑半圆上有两个小球A、B,质量分别为m和M,由细线挂着,今由静止开始无初速度自由释放,求小球A升至最高点C时A、B两球的速度?

4、有一光滑水平板,板的中央有一小孔,孔内穿入一根光滑轻线,轻线的上端系一质量为M的小球,轻线的下端系着质量分别为m1和m2的两个物体。当小球在光滑水平板上沿半径为R的轨道做匀速圆周运动时,轻线下端的两个物体都处于静止状态,若将两物体之间的轻线剪断,则小球的线速度为多大时才能再次在水平板上做匀速圆周运动?

6、如图所示,长为L的轻质杆,中点和右端分别固定着质量为m的A球和B球,杆可绕左端在竖直平面内转动,现将杆由静止释放,当杆摆到竖直位置时,B球的速率为多少?

7、如图所示,轻直细杆长为2l,中点有一转轴O,两端分别固定质量为2m、m的小球a和b。当杆从水平位置转到竖直位置时,两小球的速度为多大?

8、如图所示,质量为 m=2kg的小球系在轻弹簧的一端, 另一端固定在悬点O处,将弹簧拉至水平位置A处由静止释放,小球到达O点的正下方距O点h = 0.5 m处的B点时速度为2 m/s。求小球从A 运动到B的过程中弹簧弹力做的功。

9、如图所示,一个质量为 m=0.2 kg的小球系于轻质弹簧的一端,且套在光滑竖直的圆环上,弹簧的上端固定于环的最高点A,环的半径R=0.5m,弹簧的原长l0 = 0.5m,劲度系数为4.8N/m。若小球从图示位置B 点由静止开始滑动到最低点C时,弹簧的弹性势能Ep=0.6J,(g=10 m/s2)求:(1)小球到C点时的速度Vc的大小(2)小球在C点对环的作用力

第三篇:机械能守恒定律典型例题剖析

高考资源网(),您身边的高考专家

机械能守恒定律典型例题剖析

1、如图示,长为l 的轻质硬棒的底端和中点各固定一个质量为m的小球,为使轻质硬棒能绕转轴O转到最高点,则底端小球在如图示位置应具有的最小速度v=。解:系统的机械能守恒,ΔEP +ΔEK=0

因为小球转到最高点的最小速度可以为0,所以,11vmv2mmglmg2l222

24gl52v

4.8gl

例 2.如图所示,一固定的楔形木块,其斜面的倾角θ=30°,另一边与地面垂直,顶上有一定滑轮。一柔软的细线跨过定滑轮,两端分别与物块A和B连结,A的质量为4m,B的质量为m,开始时将B按在地面上不动,然后放开手,让A沿斜面下滑而B上升。物块A与斜面间无摩擦。设当A沿斜面下滑S 距离后,细线突然断了。求物块B上升离地的最大高度H.解:对系统由机械能守恒定律

4mgSsinθ – mgS = 1/2× 5 mv

2∴v2=2gS/

5细线断后,B做竖直上抛运动,由机械能守恒定律

mgH= mgS+1/2× mv2∴H = 1.2 S

例 3.如图所示,半径为R、圆心为O的大圆环固定在竖直平面内,两个轻质小圆环套在大圆环上.一根轻质长绳穿过两个小圆环,它的两端都系上质量为m的重物,忽略小圆环的大小。

(1)将两个小圆环固定在大圆环竖直对称轴的两侧θ=30°的位置上(如图).在 两个小圆环间绳子的中点C处,挂上一个质量M= m的重

环间的绳子水平,然后无初速释放重物M.设绳

与大、小圆环间的摩擦均可忽略,求重物M下降的最大距离.

(2)若不挂重物M.小圆环可以在大圆环上自

由移动,且绳子与大、小圆环间及大、小圆环之2物,使两个小圆

欢迎广大教师踊跃来稿,稿酬丰厚。

高考资源网(),您身边的高考专家 间的摩擦均可以忽略,问两个小圆环分别在哪些位置时,系统可处于平衡状态?

解:(1)重物向下先做加速运动,后做减速运动,当重物速度

为零时,下降的距离最大.设下降的最大距离为h,由机械能守恒定律得

解得

Mgh2mgh2RsinθRsinθh

2R(另解h=0舍去)

(2)系统处于平衡状态时,两小环的可能位置为

a. 两小环同时位于大圆环的底端.

b.两小环同时位于大圆环的顶端.

c.两小环一个位于大圆环的顶端,另一个位于大圆环的底端.

d.除上述三种情况外,根据对称性可知,系统如能平衡,则两小圆环的位置一定关于大圆环竖直对称轴对称.设平衡时,两小圆环在大圆环竖直对称

轴两侧α角的位置上(如图所示).

对于重物,受绳子拉力与重力作用,有T=mg

对于小圆环,受到三个力的作用,水平绳的拉力T、竖直绳子的拉力T、大圆环的支持力N.两绳子的拉力沿大圆环切向的分力大小相等,方向相反

得α=α′, 而α+α′=90°,所以α=45 °

例 4.如图质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于

静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩。开始时各段绳都牌伸直状态,A上方的一段沿竖直方向。现在挂钩上挂一质量为m3的物体C上升。

若将C换成另一个质量为(m1+m3)物体D,仍从上述初始位置

由静止状态释放,则这次B则离地时D的速度的大小是多少?

已知重力加速度为g。

解:开始时,B静止平衡,设弹簧的压缩量为x1,kx1m1g

挂C后,当B刚要离地时,设弹簧伸长量为x2,有

kx2m2g 欢迎广大教师踊跃来稿,稿酬丰厚。

高考资源网(),您身边的高考专家 此时,A和C速度均为零。从挂C到此时,根据机械能守恒定律弹簧弹性势能的改变量为

Em3g(x1x2)m1g(x1x2)

将C换成D后,有

1E(m1m3m1)v2(m1m3)g(x1x2)m1g(x1x2)2

2m1(m1m2)g2

k(2m1m3)联立以上各式可以解得

v

欢迎广大教师踊跃来稿,稿酬丰厚。

第四篇:高中物理牛顿运动定律知识点含几种典型例题

牛顿运动定律的综合应用习题

典型例题透析

类型

一、瞬时加速度的分析

1、质量分别为mA和mB的两个小球,用一根轻弹簧联结后用细线悬挂在顶板下,如图所示,当

细线被剪断的瞬间。关于两球下落加速度的说法中,正确的是()

A、aA=aB=0

B、aA=aB=g

C、aA>g,aB=0 D、aA<g,aB=0

解析:分别以A、B两球为研究对象。当细线束剪断前,A球受到竖直向下的重力mAg、弹簧的弹力T,竖直向上细线的拉力T′;B球受到竖直向下的重力mBg,竖直向上弹簧的弹力T,如下图。

它们都处于力平衡状态,因此满足条件,T =mBg

T′=mAg+T=(mA+mB)g

细线剪断的瞬间,拉力T′消失,但弹簧仍暂时保持着原来的拉伸状态,故B球受力不变,仍处于平衡状态。所以,B的加速度aB=0,而A球则在重力和弹簧的弹力作用下,其瞬时加速度为:

答案:C举一反三

【变式】如图所示,木块A与B用一轻弹簧相连,竖直放在木块C上,三者静置于地面,它们的质量

之比是l∶2∶3,设所有接触面都光滑,当沿水平方向抽出木块C的瞬间,木块A和B的加速度分别是aA=

,aB=。

解析:在抽出木块C前,弹簧的弹力F=mAg。抽出木块C瞬间,弹簧弹力不变,所以,A所受合力仍为零,故aA=0。木块B所受合力FB=mBg+F=

答案:,所以。

类型

二、力、加速度、速度的关系

2、如图,自由下落的小球下落一段时间后,与弹簧接触,从它接触弹簧开始,到弹簧压缩到最短的过程中,小球的速度、加速度、合外力的变化情况是怎样的?(按论述题要求解答)

解析:因为速度变大或变小取决于速度方向与加速度方向的关系(当a与v同向时v变大,当a与v反向时v变小),而加速度由合力决定,所以此题要分析v、a的大小变化,必须要分析小球受到的合力的变化。

小球接触弹簧时受两个力作用:向下的重力和向上的弹力(其中重力为恒力)。

在接触的头一阶段,重力大于弹力,小球合力向下,且不断变小(因为F合=mg-kx,而x增大),因而加速度减少(a=F合/m),由于a与v同向,因此速度继续变大。

当弹力增大到大小等于重力时,合外力为零,加速度为零,速度达到最大。

之后,小球由于惯性仍向下运动,但弹力大于重力,合力向上且逐渐变大(F合=kx-mg)因而加速度向上且变大,因此速度减小至零。

(注意:小球不会静止在最低点,将被弹簧上推向上运动,请同学们自己分析以后的运动情况).

综上分析得:小球向下压弹簧过程,F方向先向下后向上,大小先变小后变大; a方向先向下后向上,大小先变小后变大;v方向向下,大小先变大后变小。

(向上推的过程也是先加速后减速)。举一反三

【变式】如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点,今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是:()

A.物体从A到B速度越来越大,从B到C速度越来越小

B.物体从A到B速度越来越小,从B到C速度不变

C.物体从A到B先加速后减速,从B到C一直减速运动

D.物体在B点受合外力为零

解析:物体从A到B的过程中水平方向一直受到向左的滑动摩擦力Ff=μmg大小不变;还一直受到向右的弹簧的弹力,从某个值逐渐减小为零,开始时,弹力大于摩擦力,合力向右,物体向右加速,随着弹力的减小,合力越来越小;到A、B间的某一位置时,弹力和摩擦力大小相等,方向相反,合力为零,速度达到最大;随后,摩擦力大于弹力,合力增大但方向向左,合力方向与速度方向相反,物体开始做减速运动,所以小物块由A到B的过程中,先做加速度减小的加速运动,后做加速度增大的减速运动。从B到C一直减速运动。

答案: C

类型

三、整体法和隔离法分析连接体问题

3、为了测量木板和斜面间的动摩擦因数,某同学设计这样一个实验。在小木板上固定一个弹簧秤(弹簧秤的质量不计),弹簧秤下端吊一个光滑的小球。将木板和弹簧秤一起放在斜面上。当用手固定住木板时,弹簧秤示数为F1;放手后使木板沿斜面下滑,稳定时弹簧秤示数为F2,测得斜面倾角为θ,由以上数据算出木板与斜面间的动摩擦因数。(只能用题中给出的已知量表示)

解析:把木板、小球、弹簧看成一个整体,应用整体法。

木板、小球、弹簧组成的系统,当沿斜面下滑时,它们有相同的加速度。

设,它们的加速度为a,则可得:(m球+m木)gsinθ-μ(m球+m木)gcosθ=(m球+m木)a 可得:a=gsinθ-μgcosθ

隔离小球,对小球应用隔离法,对小球受力分析有:mgsinθ-F2=ma ②

而:mgsinθ=F1

由①②得:F2=μmgcosθ

由③④得举一反三 tanθ

【变式】如图示,两个质量均为m的完全相同的物块,中间用绳连接,若绳能够承受的最大拉力为T,现将两物块放在光滑水平面上,用拉力F1拉一物块时,恰好能将连接绳拉断;倘若把两物块放在粗糙水平面上,用拉力F2拉一物块时(设拉力大于摩擦力),也恰好将连接绳拉断,比较F1、F2的大小可知()。

A、F1>FB、F1<FC、F1=FD、无法确定

解析:(1)当放置在光滑水平面上时。

由于两物体的加速度相同,可以把它们看成一个整体,对此应用整体法。

由F=ma可知,两物体的整体加速度。

在求绳子张力时,必须把物体隔离(否则,绳子张力就是系统内力),应用隔离法。

隔离后一物体,则绳子的张力:。

(2)当放置在粗糙水平面上时,同样应用整体法与隔离法。

设每个物块到的滑动摩擦力为F′,则整体加速度

隔离后一个物体,则绳子的张力。

可见这种情况下,外力都等于绳子的最大张力T的两倍,故选项C正确。

答案:C。

类型

四、程序法解题

4、如图所示,一根轻质弹簧上端固定,下挂一质量为m0的平盘,盘中有物体质量为m,当盘静止时,弹簧伸长了l,现向下拉盘使弹簧再伸长Δl后停止,然后松手放开,设弹簧总处在弹性限度内,则刚松开手时盘对物体的支持力等于:

A、(1+

B、(1+)mg C、D、解析:题目描述主要有两个状态:(1)未用手拉时盘处于静止状态;(2)松手时盘处于向上加速状态,对于这两个状态,分析即可:

当弹簧伸长l静止时,对整体有

当刚松手时,对整体有:

对m有:F-mg=ma ③

对①、②、③解得:

答案:B

类型

五、临界问题的分析与求解

5、如图所示,斜面是光滑的,一个质量是0.2kg的小球用细绳吊在倾角为53°的斜面顶端。

2斜面静止时,球紧靠在斜面上,绳与斜面平行;当斜面以8m/s的加速度向右做匀加速运动时,求绳子的拉力及斜面对小球的弹力。

思路点拨:斜面由静止向右加速运动过程中,当a较小时,小球受到三个力作用,此时细绳平行于斜面;当a增大时,斜面对小球的支持力将会减少,当a增大到某一值时,斜面对小球的支持力为零;若a继续增大,小球将会“飞离”斜面,此时绳与水平方向的夹角将会大于θ角。而题中给出的斜面向右的加速度,到底属于上述哪一种情况,必须先假定小球能够脱离斜面,然后求出小球刚刚脱离斜面的临界加速度才能断定。

解析:处于临界状态时小球受力如图示:

则有:mgcotθ=ma0

解得:a0=gcotθ=7.5m/s

∵a=8m/s>a0

∴小球在此时已经离开斜面

∴绳子的拉力

斜面对小球的弹力:N=0 举一反三

22【变式】一个弹簧放在水平地面上,Q为与轻弹簧上端连在一起的秤盘,P为一重物,已知P的质量

M=10.5kg,Q的质量m=1.5kg,弹簧的质量不计,劲度系数k=800N/m,系统处于静止,如下图所示,现给P施加一个方向竖直向上的力F,使它从静止开始向上做匀加速运动,已知在前0.2s以后,F为恒力,求:力F的最大值与最小值。(取g=l0m/s)

解析:(1)P做匀加速运动,它受到的合外力一定是恒力。P受到的合外力共有3个:重力、向上的力F及对Q对P的支持力FN,其中重力Mg为恒力,FN为变力,题目说0.2s以后F为恒力,说明t=0.2s的时刻,正是P与Q开始脱离接触的时刻,即临界点。

(2)t=0.2s的时刻,是Q对P的作用力FN恰好为零的时刻,此时刻P与Q具有相同的速度及加速度。因此,此时刻弹簧并未恢复原长,也不能认为此时刻弹簧的弹力为零。

(3)当t=0时刻,应是力F最小的时刻,此时刻F小=(M+m)a(a为它们的加速度)。随后,由于弹簧弹力逐渐变小,而P与Q受到的合力保持不变,因此,力F逐渐变大,至t=0.2s时刻,F增至最大,此时刻F大=M(g+a)。

以上三点中第(2)点是解决此问题的关键所在,只有明确了P与Q脱离接触的瞬间情况,才能确定这0.2s时间内物体的位移,从而求出加速度a,其余问题也就迎刃而解了。

解:设开始时弹簧压缩量为x1,t=0.2s时弹簧的压缩量为x2,物体P的加速度为a,则有:

kx1=(M+m)g

kx2-mg=ma ②

x1-x2=

由①式得:

解②③式得:a=6m/s

2力F的最小值:F小=(M+m)a=72N

力F的最大值:F大=M(g+a)=168N

类型

六、利用图象求解动力学与运动学的题目

6、放在水平地面上的一物块,受到方向不变的水平推力的作用,F的大小与时间t的关系和物

2块速度v与时间t的关系,如图甲、乙所示。取重力加速度g=10m/s。由此两图线可以求得物块的质量m和物块与地面之间的动摩擦因数μ分别为()

A、m=0.5kg,μ=0.4

B、m=1.5kg,μ=

C、m=0.5kg,μ=0.2

D、m=1kg,μ=0.2

2解析:由v-t图可知在0~2s 静止,2~4s是以初速度为0,加速度a=2m/s做匀加速运动,4~6s内以v=4m/s做匀速直线运动,结合F-t图像可分析得出:μmg=2N,ma=3N-2N,解得m=0.5kg,μ=0.4。

答案:A

类型

七、用假设法分析物体的受力

7、两个叠在一起的滑块,置于固定的、倾角为θ的斜面上,如下图所示,滑块A、B质量分别为M、m,A与斜面间的动摩擦因数为μ1,B与A之间的动摩擦因数为μ2,已知两滑块都从静止开始以相同的加速度从斜面滑下,滑块B受到的摩擦力()

A、等于零

B、方向沿斜面向上

C、大于等于μ1mgcosθ

D、大于等于μ2mgcosθ

解析:把A、B两滑块作为一个整体,设其下滑加速度为a,由牛顿第二定律:

(M+m)gsinθ-μ1(M+m)gcosθ=(M+m)a 得a =g(gsinθ-μ1cosθ)

由于a<gsinθ,可见B随A一起下滑过程中,必须受到A对它沿斜面向上的摩擦力,设摩擦力为FB(如图所示),由牛顿第二定律:mgsinθ-FB=ma 得FB=mgsinθ-ma=mgsinθ-mg(sinθ-μ1cosθ)=μ1mgcosθ

答案:B、C

总结升华:由于所求的摩擦力是未知力,如果不从加速度大小比较先判定其方向,也可任意假设,若设B受到A对它的摩擦力沿斜面向下,则牛顿第二定律的表达式为:mgsinθ+FB=ma得FB=ma-mgsinθ=mg(sinθ-μ1cosθ)-mgsinθ=-μ1mgcosθ,大小仍为μ1mgcosθ。

式中负号表示FB的方向与规定的正方向相反,即沿斜面向上。举一反三

【变式】如图所示,传送带与水平面夹角θ=37°,并以v=10m/s的速度运行,在传送带的A端轻轻地放一小物体,若已知传送带与物体之间的动摩擦因数μ=0.5,传送带A到B端的距离s=16m,则小物体从A端运动到B端所需的时间可能是(g=10m/s)()

A、1.8s B、2.0s

C、2.1s

D、4.0s

2解析:若传送带顺时针转动,物体受向上的摩擦力,因mgsinθ>μmgcosθ,故物块向下加速运动,a=gsinθ-μgcosθ=2m/s2。由4.0s,所以,D正确。,解得:t=4.0s。即,小物体从A端运动到B端所需的时间为

若传送带逆时针转动,物体开始受向下的摩擦力,向下加速运动,a1=gsinθ+μgcosθ=10m/s,2当速度达到l0m/s时,运动位移,所用的时间为,t1=,以后由于下滑力的作用物块

又受向上的摩擦力,此时它的加速度为a2=2m/s,在此加速度下运动的位移 s2=s-s1=11m,又由得11=10t2+t2,解得t2=1s。所以,小物体从A端运动到B端所需的时间:t总=t1+t2=2s,B正确。

答案:B、D。

22探究园地

3、如图a,质量m=1kg的物体沿倾角θ=37°的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v成正比,比例系数用k表示,物体加速度a与风速v的关系如图b所示。求:(sin37°=0.6,cos37°=0.8,g=10m/s)

2(1)物体与斜面间的动摩擦因数μ;(2)比例系数k。

解析:(1)对初始时刻:mgsinθ-μmgcosθ=ma0 ①

由图读出a0=4m/s代入①式,2解得:μ==0.25;

(2)对末时刻加速度为零:mgsinθ-μN-kvcosθ=0 ②

又N=mgcosθ+kvsinθ

由图得出此时v=5m/s

代入②式解得:k==0.84kg/s

2、如图所示,用力F拉物体A向右加速运动,A与地面的摩擦因数是对于A的加速度,下面表述正确的是:()

A.B.,B与A间的摩擦因数是。

C.

D.

解析:正确选项是C。对于A、B选项我们应该知道它们错在哪里。A选项误把A受到的力算到AB整个上面了。B选项则没有分析正确地面给A的摩擦力,A对地面的压力是。D选项把AB之间的摩擦力方向搞反了。

7、如图所示,AB为一轻杆,AC为一轻绳,物体m的重为G=100N,α=30°,求绳上的张力TAC=?,因此摩擦力是

解析:方法(1):力的作用效果

将A点所受竖直向下的拉力T分解,如图:

TAC=

方法(2):共点力平衡

A点受力如图:

由平衡条件可得∑F=0

(3)正交分解

如图建立坐标系:

∵A点静止

第五篇:必修2→广东版→验证机械能守恒定律典型例题1

蓝天家教网 http:// 伴您快乐成长

验证机械能守恒定律典型例题

例1如图5-47,一个质量为m的小球拴在长l的细线上做成一个单摆,把小球从平衡位置O拉至A,使细线与竖直方向成θ角,然后轻轻释放.若在悬点O′的正下方有一颗钉子P,试讨论,钉子在何处时,(1)可使小球绕钉来回摆动;

(2)可使小球绕钉做圆周运动.

分析小球摆动过程中,只有小球的重力做功.当不考虑细线碰钉时的能量损失时,无论小球绕钉来回摆动,或绕钉做圆周运动,小球的机械能都守恒.

解(1)小球绕钉来回摆动时,只能摆到跟开始位置A等高的地方,因此,钉子P的位置范围只能在过A点的水平线与竖直线OO′的交点上方(图5-48),即钉子离悬点O′的距离h应满足条件0≤h≤lcosθ.

(2)设钉子在位置P′时刚好使小球能绕钉做圆周运动,圆半径R=P′O,设小球在最高点C的速度为vC,并规定最低处O为重力势能的零位置(图5-49),由

A、C两位置时的机械能守恒EA=EC,即

又因为刚好能越过C点做圆运动,此时绳中的张力为零,由重力提供向心力,即

所以钉子P′离悬点O′的距离

如果钉子位置从P′处继续下移,则小球将以更大的速度越过圆周的最高点,此时可由绳子的张力补充在最高点时所需的向心力,仍能绕钉子做圆周运动.所以,在绕钉做圆运动时,钉子离悬点的距离h′应满足条件

说明由本题的解答可知,位置P是小球能绕钉来回摆动的最低位置;位

置P′是小球能绕钉做圆周运动的最高位置.如钉子在PP′之间,则悬线碰钉后,先绕钉做圆运动,然后将在某一位置上转化为斜抛运动.

例2一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多).在圆管中有两个直径与细管内径相同的小球(可视为质点).A球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m2、R与v0应满足的关系式是____.

分析A球运动到最低点时,由外壁对它产生的弹力NA和A球重力m1g的合力作为向心力,即

A球对外壁产生的压力NA′大小等于NA,方向沿半径背离圆心(图 5-50).

要求对圆管的合力为零,B球在最高点时也必须对外壁(不可能是内壁)产生一

个等量的压力NB′.因此,B球在最高点有向外壁挤压的作用,由外壁对它产生的弹力NB和球重m2g的合力作为向心力(图5-51).设B球在最高点的速度为vB,据向心力公式和机械能守恒有

根据题意 NA′=NB′,即要求

例3如图5-52所示,半径为r,质量不计的圆盘盘面与地面相垂直,圆心处有一个垂直盘面的光滑水平固定轴O,在盘的最右边缘固定有一个质量为m的小球A,在O点的正下方离O点r/2处固定一个质量也为m的小球B.放开盘让其自由转动,问:

(1)当A球转到最低点时,两小球的重力势能之和减少了多少?

(2)A球转到最低点时的线速度是多少?

(3)在转动过程中半径OA向左偏离竖直方向的最大角度是多少?

分析两小球势能之和的减少,可选取任意参考平面(零势能位置)进行计算.由于圆盘转动过程中,只有两小球重力做功,根据机械能守恒即可列式算出A球的线速度和半径OA的最大偏角.

解(1)以通过O的水平面为零势能位置,开始时和A球转到最低点时两球重力势能之和分别为

EP2=EPA+EPB=-mgr+0=-mgr.

所以两球重力势能之和减少

(2)由于圆盘转动过程中,只有两球重力做功、机械能守恒,因此,两球重力势能之和的减少一定等于两球动能的增加.设A球转到最低点时,A、B两球的速度分别为vA、vB,则

因A、B两球固定在同一个圆盘上,转动过程中的角速度(设为ω)

得 vA=2vB.

(3)设半径OA向左偏离竖直线的最大角度为θ(图5-53),该位置的机械能和开始时机械能分别为

由机械能守恒定律E1=E3,即

即 2cosθ=1+sinθ.

两边平方得 4(1-sin2θ)=1+sin2θ+2sinθ,5sin2θ+2sinθ-3=0,

下载高中物理机械能守恒定律典型分类例题word格式文档
下载高中物理机械能守恒定律典型分类例题.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    典型例题[最终定稿]

    【典型例题】She had a great ___ for the town where she grew up. A. affection B. affectation C. infection D. affectionate 【试题详解】答案 A 她热爱她长大的那座......

    典型例题

    典型例题 一、填空题 1.教育是社会主义现代化建设的基础,国家保障教育事业优先发展。全社会应当关心和支持教育事业的发展。全社会应当尊重教师。 2.新课程的三维目标是 知识......

    高中物理机械能守恒定律知识点总结(合集5篇)

    高中物理机械能守恒定律知识点总结(一) 一、功 1.公式和单位:,其中是F和l的夹角.功的单位是焦耳,符号是J. 2.功是标量,但有正负.由,可以看出: 当0°≤......

    机械能守恒定律典型例题精析(附答案)(样例5)

    机械能守恒定律一、选择题1.某人用同样的水平力沿光滑水平面和粗糙水平面推动一辆相同的小车,都使它移动相同的距离。两种情况下推力做功分别为W1和W2,小车最终获得的能量分别......

    动能定理机械能守恒定律知识点例题(精)(合集5篇)

    动能定理机械能守恒定律知识点例题(精) 1. 动能、动能定理 2. 机械能守恒定律【要点扫描】 动能 动能定理 -、动能 如果-个物体能对外做功,我们就说这个物体具有能量.物体由于运......

    机械能守恒定律的综合运用(含典型例题和变式练习及详细答案)

    机械能守恒定律的综合运用(含典型例题变式练习题和答案) 一. 教学内容: 机械能守恒定律的综合运用 二. 学习目标: 1、掌握机械能守恒定律的表达式及应用机械能守恒定律解题的一......

    典型面试例题

    1、假如你的一位经常需要合作的同事,和你的工作常常有较大的分歧,影响了工作效率,你怎么与他合作共事?答:首先要认识到,和同事之间,尤其是经常需要合作的同事间,和睦相处形成一......

    典型例题十六

    典型例题十六例16 已知x是不等于1的正数,n是正整数,求证(1xn)(1x)n2n1xn. 分析:从求证的不等式看,左边是两项式的积,且各项均为正,右边有2的因子,因此可考虑使用均值不等式. 证明:∵x......