第一篇:交通本科毕设外文翻译
河北工程大学土木工程学院
毕业设计外文资料翻译
专
业 学
生 指导教师
河北工程大学土木工程学院
2014年6月4号
未来个人运输在世界大城市中的发展
Schafer, Jacoby, Heywood and Waitz(2009)研究认为一个人平均每天花大约70分钟的时间使用交通工具。这个时间预算在过去各个国家中是相对稳定的。所以,富有的人开始倾向于跑的更快,跑的更远。
而在不久的将来,全世界将会全面提高机动车的机动性。例如:Schafer and Victor(2000)推测,预计到2050年世界公民行驶的整体平均路程将比欧洲在1990年跑的整体平均路程多。从2000年到2050年,美国的平均机动性将提高2.6倍,达到每年58000千米。Schafer and Victor(2000)还预估,到2050年印度的平均机动性将增加到每年6000千米,达到了欧洲1970年早期的水平。总的来说,人们在2000年能行驶230亿公里,到了2050年,有望增加到1050亿公里。
与此同时,城市人口正持续增大。根据World Bank(2002)研究,拥有1000多万居民的大城市的数量有望在下一代翻倍。随着城市的扩大和富裕,车辆所有制以及其使用会快速增加,相反,这将影响车辆的行速,加大道路拥挤和空气污染。
上述趋势使得人们对大城市可持续发展交通展开了广泛地讨论。从广义上讲,城市交通的可持续运动涉及到可操作性以及通过公平高效手段产生的财富问题,同时还要维护身体健康,将自然资源消耗和放射性污染减到最低。通常,广泛使用公共交通和快速轨道交通是可行的。例如:像东京,香港这样的大城市,它们在私人车流行前就投资建设公共交通,以提供广泛的,优质的公共交通系统。在这些城市,直到快速轨道交通的建立,公交远行还一直处于高水平阶段。
然而,个人交通工具已成为现代城市生活的一部分。不管是作为独有的、分享的还是用于飞行的交通工具,它们都给个人和社会带来了很大的便利。因此,Kennedy et al.(2005)指出,对于城市的可持续发展来说,为新一代可持续个人交通工具做规划是至关重要的。同时技术创新和工业生态学观念的应用,让可持续个人交通工具成为了可能。
另外,许多应用智能型运输系统将充分影响未来城市交通运输。这些应用程序包括需求管理(需求感应公共交通、汽车共乘共享、通路管制以及道路使用要求)、旅行计划系统/实时旅游者信息、公共交通信号优先系统。
为了研究大城市中个人交通运输目前及将来的状况,本文选取了世界15大都市,根据地理位置划分可如下所示:
北美洲:芝加哥、纽约 欧洲:伦敦、莫斯科、巴黎 中美洲、南美洲:布宜诺斯艾利斯(阿根廷首都)、墨西哥城、里约热内卢、圣保罗 印度:班加罗尔、加尔各答、新德里、孟买 中国:香港、上海
对于各个大城市来说,一系列影响未来交通的关键指标是已检定的。主要包括人口和财富、私人电动客运车辆、公共交通模式操作、运具选择、旅行速度模式、交通事故。以人口和财富为列,因为人口的大小以及人群的富有程度起到至关重要的作用,因此对选定大城市的人口预期增长和大城市所在国的人均财富预期增长作出相应比较。
结果显示,从2005年到2025年预计出现人口增长最高比例(超过预期30%)的地区有班加罗尔、加尔各答、新德里、孟买和上海,其次为适度增加12%-18%的芝加哥、香港、墨西哥城、、里约热内卢和圣保罗,增长最慢的(低于12%)主要有布宜诺斯艾利斯、伦敦、莫斯科、纽约和巴黎。总体上说,人口增长最快的现象将出现在印度和中国。而从2010年到2014年,预计收入增长最快的是中国,接着是印度、俄罗斯、墨西哥、香港、巴西、英国、阿根廷、法国和美国。
然后,对选定大城市的计划策略进行分析,这些大城市主要有:纽约、伦敦、圣保罗、孟买和上海。同时,目前的结论不需完整描述一个策略。例如:在国家、地区和地方上,城市交通规划会涉及很多政府的结构,并且每个层次都有它自己的策略。所以,策略分析的主要目的是突出已定大城市在未来10到20年内的主要目标、实施重点以及措施计划。其关注点是计划出行方式即该策略如何预想私人车辆、公共车辆以及非机动车辆在未来的作用。
以纽约为列,区域交通规划的目标是从2030年开始,满足城市和地区的交通需求,并提高行驶速度。这个计划策略包括改善交通网络,通过更好的道路管理和拥挤定价来减少交通堵塞。具体措施如下:1)提高关键拥堵路线的承载力2)提供新通勤火车进入曼哈顿3)增加到稠密地区的交通4)改善、增加公共汽车服务5)改善当地通勤火车的服务。
另外,纽约近期推出了自己的战略计划。主要目标包括:例如城市交通事故减少50%;实施快速公交线路措施,以提高全市汽车的行速;到2015年使自行车通行翻一倍;启动全市停车政策来管理空间,以此减少巡航和拥堵;采用完整街道设计模版为重建项目;提供更好的街道面等。
最后,对选定城市的未来运输方式进行了讨论。主要包括个人车辆人均所有权、在城市内部个人车辆行驶的人均距离、用于通勤的个人车辆行驶的人均距离、用于休闲旅游的个人车辆行驶的人均距离、道路死亡人均数量、新的机动网络。基于上述研究,我们预测到2025年各大城市都或多或少会有些改变,主要改变有个人交通工具的所有权、由个人交通工具内在核心决定的人均距离、道路死亡人均数量等。这预测主要包括以下几方面:
1)个人车辆所有权大幅增加的现象将出现在印度的四大城市和上海 2)在任何大城市中,使用内核个人交通工具的数量将不会增加 3)预计用于通勤的个人交通工具的使用也将不会增加
4)用于休闲旅行的个人交通工具数量将增加(并且交通事故增长最快的),这种现象主要出现在上海,其次是印度的四大城市,里约热内卢和圣保罗
总的来说,在未来的15年内,可以预见到在选定大城市的各个地方不会出现大幅度降低对个人交通工具依赖的现象。相反,我们预计在印度、中国、巴西的大城市中,个人交通工具的作用将会不断上升。
上述趋势的出现是由于我们视不同的交通运输方式为独立唯一的选择。然而,越来越多的实施和新机动网络正处于使用中,即综合网络——提供多链接,高技术,门到门的交通运输方式选择。虽然,这些网络有望减少人们对个人交通运输的依赖度,但这种特性的大小和影响仍有待确定。
The Future of Personal Transportation in Megacities of The World On average, a person spends about 70 minutes per day traveling(Schafer, Jacoby, Heywood, and Waitz, 2009).This time budget is relatively constant over time and across countries.Consequently, wealthy people tend to travel faster and over longer distances.In the future there will be an overall increase in mobility throughout the world.For example, Schafer and Victor(2000)projected that by 2050 the average citizen of the world will travel(by all modes)as much overall distance as the average Western European did in 1990.From 2000 to 2050, the mobility of the average American will increase by a factor of 2.6, to 58,000 km/year.Schafer and Victor(2000)forecast that the average Indian will increase his/her travel to 6,000 km/year by 2050, comparable to the level of West Europeans in the early 1970s.In total, in 2000, people traveled 23 billion km, and by 2050 that figure is expected to grow to 105 billion km(Schafer and Victor, 2000).At the same time, urban population continues to expand, and the number of megacities—cities with over 10 million inhabitants—is expected to double within a generation(World Bank, 2002).As cities grow and become richer, vehicle ownership and use tend to increase rapidly.This, in turn, has an influence on travel speed, congestion, and air pollution.The above trends have resulted in wide discussion about sustainable transportation in metropolitan areas.In broad terms, movement to sustainable urban transportation involves accessibility and the generation of wealth by cost-effective and equitable means, while safeguarding health and minimizing the consumption of natural resources and the emission of pollutants(Kennedy, Miller, Shalaby, Maclean, and Coleman, 2005).Frequently, this has been feasible with wide use of public transportation in general, and rapid rail transportation in particular.For example, there are cities such as Tokyo and Hong Kong that invested in public transport to provide extensive, high-quality, public transport systems before private vehicle ownership was high(Barter, Kenworthy, and Laube, 2003).In these cities, bus travel was at a high level until rapid mass transit was built and became affordable.However, personal vehicles are an integral part of modern city life, providing a number of benefits to individuals and society no matter how they are used—as single occupancy vehicles or as shared or shuttle vehicles.Consequently, as pointed out by Kennedy et al.(2005), planning for a new generation of sustainable personal vehicles is critical for the sustainable development of cities.Through technical innovation and the application of concepts of industrial ecology, there are several possible candidates for the sustainable personal vehicles of the future(Kennedy et al., 2005).In addition, it is likely that many applications of intelligent transportation systems will substantially affect future urban transportation.These applications include, for example, demand management(demand-responsive public transportation, car pooling and sharing, access control, road-use charging), trip planning systems/real-time traveler information, and signal priorities for public transport.To study current and future personal transportation in megacities, 15 metropolitan areas worldwide were selected.The selected metropolitan areas were classified by region as follows: North America: Chicago, New York Europe: London, Moscow, Paris Central and South America: Buenos Aires, Mexico City, Rio de Janeiro, Sao Paulo India: Bangalore, Calcutta, Delhi, Mumbai China: Hong Kong, Shanghai For each metropolitan area, a set of key indicators affecting future transportation was examined.It includes population and health, Private motorized passenger vehicles, Public transportation modes operated, Modal split, Travel speed by mode, Road fatalities.As population and wealth, Size of the population and wealth of the population play vital roles.Consequently, Figure 1 and Table 1 present the expected growth in population of the examined megacities, and Table 2 presents the expected growth in wealth per capita for the countries in which the megacities are located.The results indicate that the highest proportional increases from 2005 to 2025(more than0%)is predicted for Bangalore, Calcutta, Delhi, Mumbai, and Shanghai, followed by modest increases(12-18%)for Chicago, Hong Kong, Mexico City, Rio de Janeiro, and São Paulo.The lowest increases(less than 12%)are predicted for Buenos Aires, London, Moscow, New York, and Paris.Overall, the highest increase of population will take place in the examined Indian and Chinese metropolitan areas.Table 2 indicates that the highest increase of incomes from 2010 to 2014 is expected for China, followed by India, Russia, Mexico, Hong Kong, Brazil, United Kingdom, Argentina, France, and the United States.Then the chapter studies the Selected urban transportation plans and strategies.The cities involve New York, London, Sao Paulo, Mumbai, Shanghai.Meanwhile, The presented summaries do not necessarily convey a complete description of the strategies.For example, the urban transportation plans of large metropolitan areas typically involve many government structures at national, regional, and local levels(see e.g., Urban Age, 2009), and each level can have its own strategy.Consequently, the presented summaries are designed to highlight the main objectives, focuses, and measures planned by the selected metropolitan areas for the next 10 to 20 years.The emphasis is on the planned modal split(i.e., how the strategies envision the future role of private vehicles, public transportation, and nonmotorized transportation.As New York, the goal of the regional transportation plan(PLANYC, 2007)is to meet the city’s and region’s transportation needs through 2030 and beyond, and to improve travel speed.The plan includes strategies to improve the transit network and reduce growing gridlock on the roads through better road management and congestion pricing.The specific initiatives include the following:(1)to increase the capacity on key congested routes,(2)to provide new commuter rail access to Manhattan,(3)to expand transit access to underserved areas,(4)to improve and expand bus service, and(5)to improve local commuter rail service.In addition, New York City has recently introduced its own strategic plan(NYCDOT, 2008).Its major goals include, for example cutting city traffic fatalities by 50% from the 2007 levels, implementing bus rapid transit lines and measures to increase bus speeds city-wide, doubling bicycle commuting by 2015, initiating city-wide parking policies to manage curb space to reduce cruising and congestion, adopting complete-street design templates for reconstruction projects, launching a Main Street Initiative to develop people-friendly boulevards in key corridors across the city, and delivering better street surfaces.At last, we discuss the future transportation in the examined metropolitan areas.It includes Personal vehicle ownership per capita, Distance driven by personal vehicles per capita within cities’ inner core, Distance driven by personal vehicles per capita for commuting, Distance driven by personal vehicles per capita for leisure trips, Number of road fatalities per capita, New mobility networks.Based on the analysis, projections through 2025 were made for each megacity for changes in ownership of personal vehicles;distance traveled per capita by personal vehicle within inner core, for commuting, and for leisure;and for number of road fatalities per capita.The forecasts include the following: • The largest increases in personal vehicle ownership will occur in the four Indian megacities and Shanghai.• There will be no increase in the use of personal vehicles for inner-core transportation in any of the megacities.• No increases are expected in the use of personal vehicles for commuting.• The largest increases in the use of personal vehicles for leisure traveling(and the largest increases in road fatalities)will take place in Shanghai, followed by the four megacities in India, Rio de Janeiro, and São Paulo.Overall, no substantial decrease in the reliance on personal vehicles is foreseen in the next 15 years anywhere in the examined megacities.To the contrary, an increased role of personal vehicles is forecasted for the megacities in India, China, and Brazil.The above trends are based on treating the different transportation modes as independent and exclusive options.However, there is growing implementation and use of new mobility networks—integrated networks that provide a variety of connected and IT-enhanced transportation options door-to-door.Although such networks are expected to reduce the reliance on personal vehicles, the magnitude and nature of this effect remain to be ascertained.
第二篇:3毕设翻译
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
毕业设计(论文)报告纸
海洋污染公报
关键词:
水框架指令、海洋战略框架Directiv、大型无脊椎动物、指标、生态系统方法、监控
摘要:
水框架指令(WFD)和海洋战略框架指令(MSFD)是欧洲伞法规供水系统。将这些指令的跨后期的原则转化为现实和准确的方法对科学界是一个挑战。由国际海洋考察理事会的底栖生物生态学工作组举办的杂志的目的是,描述学说是如何被翻译的,这是面临的挑战和前进的最佳途径。我们已经解决了以下学说:生态系统为基础的方法,底栖指标的发展,'原始'或可持续的条件的定义,压力和监测方案的开发的检测。我们得出结论:测试和整合不同的办法是在欧盟水框架指令过程中促进,这导致进一步的见解和改进,MSFD可以依靠这种方法。专家参与在整个实施过程中被证明是至关重要的。
1、引言
在欧洲,伞法规解决水系统的生态质量是水框架指令(WFD;2000/60/EC),(针对湖泊,河流,过渡(= estuariesand泻湖)和沿海水域的)和海洋战略框架指令(MSFD;2008/56/EC)的海洋水域。这两个指令背后的生态概念,在原则上很简单,包括与一个区域现状的比较,这将会根据最小预期或可持续的人类使用的面积,并为防止情况恶化,被干预的当前状态将其带回到所需的良好状态(美等人,2008)。对于各种指标的WFD,目标值和基准值设定方法,以评估良好的生态状态(GES)已经被开发出来。对比标定,这一定义被讨论并在过去十年中出版,该过程正在继续(博尔哈等人,2009D;赫林等人)。
最近MSFD的实施工作已经开始,通过定义11定性描述符的标准/指标,用以评估良好环境状况(GENS)。从欧盟水框架指令的过程中,我们了解到,定义和翻译GES,使它变成一套可衡量的环境目标和相关指标并不是一件容易的事(赫林等,2010)。这个过程是由成员国层面为了欧盟水框架指令而做,因此整个过程需要某些地理区域的成员国之间的相互校准。在MSFD里,这个过程是区域化的,因为每个区域海国家不得不为GENS定义每个描述符常用指标(所罗门,2006;Rice等人,2010)。
共 7 页 第 1 页
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
毕业设计(论文)报告纸
这两个指令的概念相似,并借鉴了欧盟水框架指令实施过程中的教训,这将对MSFD产生帮助。,没有一个现有的方法是十全十美的和实现了指令中的原则是基于现有的科学知识,这被科学界广泛承认。因此,国际理事会的组成部分----底栖生物生态学工作组(北控水务)对于海洋考察(ICES)决定编译这个观点的论文,关于大型底栖无脊椎动物的关键问题为目标的编译。
欧盟水框架指令的实施遇到了一些困难,比如评估方法的发展和评估系统的监测方案实施(博尔哈等,2009D)。因此,本文的重点是两指令的基本原则如何被翻译成可执行的方法,关于成为欧盟水框架指令的一部分的方法以及这些方法对MSFD实施的意义。首先,我们认为在这两个指令中使用了“生态系统方法”的原则。第二,我们讨论,因为它们涉及到GES和GEnS的定义,在底栖指标分类、“原始的”、可持续条件的定义以及与生态测量到的压力的重要性的发展。在这种情况下,我们讨论了有关检测不同人为影响类型的问题,人为与使用指标的自然变化的区别,以及如何评价“非土著或外来物种”的压力。第三,我们讨论关于监测方案(精力和质量),它必须提供足够的信息,让GES及GENS获得有信心的评估。对于每一个的原则,北控水务就如何着手未来制定了建议。
2、使用生态系统方法
运用以生态系统为基础的方法被认为是可持续环境管理的最重要的要求之一,被定义为“一个战略,土地,水和生物资源的综合管理,以公平方式促进保护和可持续利用”(联合国生物多样性公约,1993年12月29日)。一个以生态系统为基础的做法是为了系统策略的评估和管理而产生的,为了联系生态系统到社会经济效益(货物和服务)的科学基础评价,期待他们的资源得到长久的稳定(谢尔曼和杜达,1999年,Rosenberg和麦克劳德2005年,张国荣和麦克劳德,2007)。为了管理人类压力对海洋环境的影响,最近世界各地认为,法律文书解决需要评估一个系统的状态(博尔哈和多尔,2008)。确定系统的健康理念必须考虑结构,功能和海洋生态系统汇集的自然物理,化学,自然地理,地理和气候因素,然后与有关地区的任何人类活动和影响整合这些(进程博尔哈等人,2009年b)。这种方法是在WFD中被使用,其中一些生物元素和支撑理化参数,随着污染物的浓度被选择为评估部分和元素,用于指令的特定目标,根据其灵敏度,耐用性和置信性是必要的。因此,生态平衡不得不在理想的评估方法的需求和实现这一目标的可行性中寻求,因为如实用和经济的限制(即现实世界的约束),这是符合成本效益的实施指示的一个重大挑战。
共 7 页 第 2 页
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
毕业设计(论文)报告纸
此外,一套合适的指标的选择是一件事,所有的指标纳入一个单一的得分指示和水生系统的状态和性能是另一个(奥布里和Elliott,2006。博尔哈等,2008,2009D;福登等人,2008)。简单的方法,如欧盟水框架指令的“一出,全力以赴”的原则(博尔哈,2005),它评价了水体从最坏的额定元素的质量,可能是一个有用的出发点,但最终会被禁止(博尔哈等人,2009D)。用平均方法与不同指标的权重也是不理想的,因为在低温或高温状态的主观的和平均的指标。此外,这也不是一个有用的方法,不同的指标是用来表达不同的人为压力,或当在评估中使用的方法是不可靠的(博尔哈和罗德里格斯,2010年)。我们提议一棵决策树,其中的元素根据他们在评估状态中的信心来权衡(如底栖生物,用对比和对比标定方法),作为对全球分类或在系统中的压力灵敏度更精确的方法(博尔哈等权重,2008)。在MSFD的情况下,这将是一个重大的挑战,因为描述和指标的高数量和指标来评价一个区域或者次区域的GEnS和不同的人类压力的联系。尽管管理者希望有一个关于GES和GEnS的单一的最终得分,最好是报告给政府和公众,在指标和描述水平的评价都有很好的能见度,因为他们在信心和敏感方面的不同。
3、定义良好的生态(WFD)或良好环境状况(MSFD)
GES及GENS在这两个指令的定义要求指标的发展,原始的或可持续条件和生态状况对人体的压力联动的定义。关于这些原则的指标的方法,在本节将突出显示,重点是底栖生物的方法。
指标在论文(Heink和Kowarik,2010)中被广泛定义,指标是科学对政府的应对,需要有系统条件的可靠和准确的信息。对于海洋环境,目前存在着各种各样的底栖指标(迪亚兹等人,2004;博尔哈和多尔,2008)。这些指标的第一个目标是用精确的方法,在健康和退化的水系统中进行区分,以确定是否需要'行动'和'无行动“ 以改善生态环境条件。欧盟水框架指令并在较小程度上MSFD已经带领执行和履行指令的目标(指标,边界,监测)成员国,致使各种各样的评估方法。因此,WFD不得不包括相互校准练习,以确保各种评估方法之间的一致性,在相同的生态区域和型内使用,并在不同质量等级中定义边界(博尔哈等人,2007)。
事实上,规模大和欧盟水框架指令的雄心勃勃促进了水系统保护目标的有效实施,并且极大地扩展了我们的指标应用知识。鉴于这些经验,今后的工作应集中于(1)提高在所知参考区域的自然变化率的知识(2)沟通和理解便利的练的透明度最大化
共 7 页 第 3 页
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
毕业设计(论文)报告纸
(3)需要增加力量攀比的统计的练习增加需要(杜阿尔特,2009)。在相互校准阶段的这些缺点,我可以与在成员国之间现有的研究经验,主要差异,风险程度各机关准备接受,或以良好的生态功能的解释(美等人,2008)。在第二个相互校准轮欧盟水框架指令中,这些问题都被考虑了,这将导致在不同的成员国使用的各项指标的可比性进一步改善。
与此相反,以避免这样的昂贵(虽然有利)相互校准,MSFD需要共同实施11描述的,在区域海平面翻译成目标和指标,(Rice等人,2010)。虽然定义通用的指标是一个进步,发挥最佳和最合适的指标的选择仍是一个重大挑战。对于区域和次区域,指标最优选择将针对不同部位而不同,在不同部位取样工作是不太可能被平衡,并GENS的阈值单一水平不是普遍适用的。在区域尺度上的方法越来越一致可能会导致更健壮(广泛适用的话),很少敏感指标。指标相互校准会在MSFD中被禁止,但仍然会有调查指标的敏感性的需要,以协调GEnS级别的任何指标和规范的基础,用国家经验来监视海上的每个区域。
4、环境评估监测的要求
这两个指令指出,各会员国应发展评估系统的运行状况监测方案,从而允许GES及GENS的信心评估。不同类型的海洋监测的存在,取决于对它的理由或目的(灰色和埃利奥特,2009)。在底栖监测中,采样技术的类型(范文抓斗,箱取样器,潜水员操作的设备,抽样框等),重复次数(3〜20),样品处理(筛孔差异)和采样策略(如随机或固定),主要取决于生境类型(例如潮间带,潮下带),所使用的指标类型,预期的统计功效,该计划的目标和可用预算(穆希卡等人,2007年b;范·霍伊等人,2007;约瑟夫森等,2009;Lavesque等,2009)。在抽样策略的不同(如固定或随机的)有其统计力量和所获得的数据的多样性的后果(凡德尔米尔,1997)。所以很明显,生物多样性的评估及其丰富(所有指标的主要术语)就抽样策略具有不同的出发点。目前,国家和区域监测方法在欧洲范围内各不相同,有些方面需要在MSFD的光下加以协调。
然而,一旦入侵物种已经确立了自己的自然系统,几乎是不可能采取措施消除或减少影响。因此,预防进一步的入侵是指令内至关重要的,由于常高的经济损失与入侵(皮门特尔等人,2000)和对生态系统的关键作用有影响。许多国际论坛同意预防措施,注重预防的品种引进和一个快速响应的外来物种,甚至之前的任何影响在生物学界被检测到。因此,早期预警系统应包括检测,诊断,快速筛查,风险评估,确
共 7 页 第 4 页
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
毕业设计(论文)报告纸
定适当的响应,向主管机关报告和权威回应(见欧洲外来入侵物种;http://eceuropa.eu/ environment/nature/invasivealien/index_en.htm)。每个级别应该与潜在的新的外来物种'报警'名单,监视,监控,分类学专家,工作组和主管部门有联系。这必须根据良好的生态知识研究,以及深入的生态系统专业知识,否则新的入侵将陆续到来,忽视或过晚。因此,科学家不仅需要监测环境的状态,而且要预测未来的变化,并设法减轻或管理它们。
5.、结论
欧盟水框架指令的实施,导致了生态或环境评估的专项科研,伴随着几个指标的制定,以及有关的指导原则达成的讨论。这项活动促进了关于欧盟水框架指令长处和短处的更好理解,这是在文献中广泛讨论的。特别是对于底栖无脊椎动物,积累的知识是广泛的,在很大程度上反映了一个长期的关于底栖研究方法的当务之急,以有效的环境评估。该MSFD定义了与WFD相似的目标,部分是为了避免需要开发新方法,但有些原则是完全不同的,比如在这方面贡献的确定。
由于欧洲的海洋区域和生态系统空间范围的复杂性,用于识别万向指示的范围是有限的,并且对于一些人来说,显著采样/分析努力对于做一个自信的评估来说是必需的。相关的生境类型和空间上可定义压力梯度的成立取样策略的实施,对于可靠的状态评估和管理活动的有效性进行评价来说,是一个不可缺少的先决条件。指标提供以证据为基础的信息,但也有不足之处,考虑到其在生态或环境评估使用,谨慎始终是必需的。因此,专家必须参与各级行政部门(区域欧盟)生态或环境评估的各个阶段,以确保成果的质量和一致性。
所有建议的方法都有优点和缺点,并仍在发展更具成本效益的一揽子措施。讨论和测试方法会导致评估他们对生态或环境状况的选择进一步深入了解和改善。很多方法都适用于某些区域或出于某种目的,但很少(如果有的话)有能力来解决所有的问题。因此,为确保跨区域的类似评估策略,必须采取措施,允许采用相同的原则环境状况的区域范围的评估,即使为了使用不同的评估工具必须给予津贴也是值得的。办法适用的程度取决于对跨区域的方法和其多功能性的复杂性。世界粮食日已经发起并加速这个话题的科研成果,并且MSFD可以从中获利。因此,MSFD和欧盟水框架指令的实施,需要良好的沟通。
共 7 页 第 5 页
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
毕业设计(论文)报告纸
参考文献
Armonies, W., Reise, K., 1998.On the population development of the introduced razor clam Ensis americanus near the island of Sylt(North Sea).HelgolanderMeeresuntersuchungen 52, 291–300.Aubry, A., Elliott, M., 2006.The use of environmental integrative indicators to assessseabed disturbance in estuaries and coasts: application to the Humber Estuary,UK.Marine Pollution Bulletin 53, 175–185.Birchenough, S.N.R., Frid, C.L.J., 2009.Macrobenthic succession following thecessation of sewage sludge disposal.Journal of Sea Research 62, 258–267.Birchenough, S.N.R., Boyd, S.E., Coggan, R.A., Limpenny, D.S., Meadows, W.J., Rees,H.L., 2006.Lights, camera and acoustics: assessing macrobenthic communitiesat a dredged material disposal site off the North East coast of the UK.Journal ofMarine Systems 62, 204–216.Birchenough, S.N.R., Boyd, S.E., Vanstaen, K., Coggan, R.A., Limpenny, D.S., 2010.Mapping an aggregate extraction site off the Eastern English Channel: a methodology in support of monitoring and management.Estuarine Coastal and Shelf Science 87, 420–430.Birchenough, S., Degraer, S., Reiss, H., Borja, A., Braeckman, U., Craeymeersch, J., De Mesel, I., Kerckhof, F., Kröncke, I., Mieszkowska, N., Parra, S., Rabaut, M., Schroeder, A., Van Colen, C., Van Hoey, G., Vincx, M., Wätjen, K., in preparation.Responses of marine benthos to climate change, ICES report.Blanchet, H., Lavesque, N., Ruellet, T., Dauvin, J.C., Sauriau, P.G., Desroy, N., Desclaux, C., Leconte, M., Bachelet, G., Janson, A.L., Bessineton, C., Duhamel, S., Jourde, J., Mayot, S., Simon, S., de Montaudouin, X., 2008.Use of biotic indices in semi-enclosed coastal ecosystems and transitional waters habitats – implications for 2194 G.Van Hoey et al./ Marine Pollution Bulletin 60(2010)2187–2196 the implementation of the European Water Framework Directive.Ecological Indicators 8, 360–372.Borja, A., 2005.The European water framework directive: a challenge for nearshore, coastal and continental shelf research.Continental shelf research 25, 1768– 1783 Borja, A., 2005.The European water framework directive: a challenge for nearshore,coastal and continental shelf research.Continental shelf research 25, 1768–1783.Borja, A., Dauer, D.M., 2008.Assessing the environmental quality status in estuarineand coastal systems: comparing methodologies and indices.EcologicalIndicators 8, 331–337.Borja, A., Rodriguez, J.G., 2010.Problems associated with the ‘one-out, all-out’principle, when using multiple ecosystem components in assessing theecological status of marine waters.Marine Pollution Bulletin 60, 1143–1146.Borja, A., Tunberg, B.G., 2010.Assessing benthic health in stressed subtropical estuaries, eastern Florida, USA using AMBI and M-AMBI.Ecological Indicators.doi: 10.1016/j.ecolind.2010.05.007.Borja, A., Franco, J., Perez, V., 2000.A marine Biotic Index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments.Marine Pollution Bulletin 40, 1100–1114.Borja, A., Muxika, I., Franco, J., 2003.The application of a Marine Biotic Index to
共 7 页 第 6 页
┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ 装 ┊ ┊ ┊ ┊ ┊ 订 ┊ ┊ ┊ ┊ ┊ 线 ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊ ┊
毕业设计(论文)报告纸
different impact sources affecting soft-bottom benthic communities along European coasts.Marine Pollution Bulletin 46, 835–845.Borja, A., Franco, J., Valencia, V., Bald, J., Muxika, I., Belzunce, M.J., Solaun, O., 2004.Implementation of the European water framework directive from the Basque country(northern Spain): a methodological approach.Marine Pollution Bulletin 48, 209–218.Borja, A., Bricker, S.B., Dauer, D.M., Demetriades, N.T., Ferreira, J.G., Forbes, A.T., Hutchings, P., Jia, X.P., Kenchington, R., Marques, J.C., Zhu, C.B., 2009b.Ecological integrity assessment, ecosystem-based approach, and integrative methodologies: are these concepts equivalent? Marine Pollution Bulletin 58,457–458.Borja, A., Ranasinghe, A., Weisberg, S.B., 2009c.Assessing ecological integrity in marine waters, using multiple indices and ecosystem components: challenges for the future.Marine Pollution Bulletin 59, 1–4.Borja, A., Miles, A., Occhipinti-Ambrogi, A., Berg, T., 2009d.Current status of macroinvertebrate methods used for assessing the quality of European marine waters: implementing the Water Framework Directive.Hydrobiologia 633,181–196.Buhl-Mortensen, L., Aure, J., Oug, O., 2009.The Response of Hyperbenthos and Infauna to Hypoxia in Fjords Along The Skagerrak: Estimating Loss of Biodiversity Due to Eutrophication.In: Moksness., E., Stotterup, E., Dahl, J.(Eds.), Integrated Coastal Zone Management.Wiley-Blackwell Publ, UK, pp.79–96.Carey, J.M., Keough, M.J., 2002.The variability of estimates of variance, and its effect on power analysis in monitoring design.Environmental Monitoring and Assessment 74, 225–241.Chainho, P., Costa, J.L., Chaves, M.L., Dauer, D.M., Costa, M.J., 2007.Influence of seasonal variability in benthic invertebrate community structure on the use of biotic indices to assess the ecological status of a Portuguese estuary.Marine Pollution Bulletin 54, 1586–1597.Clarke, K.R., Somerfield, P.J., Airoldi, L., Warwick, R.M., 2006.Exploring interactions by second-stage community analyses.Journal of Experimental Marine Biology and Ecology 338, 179–192.Daunys, D., Zemlys, P., Olenin, S., Zaiko, A., Ferrarin, C., 2006.Impact of the zebra mussel Dreissena polymorpha invasion on the budget of suspended material in a shallow lagoon ecosystem.Helgoland Marine Research 60, 113–120.Dauvin, J.C., 2007.Paradox of estuarine quality: benthic indicators and indices, consensus or debate for the future.Marine Pollution Bulletin 55, 271–281.Dauvin, J.C., Ruellet, T., 2009.The estuarine quality paradox: is it possible to define an ecological quality status for specific modified and naturally stressedestuarine ecosystems Marine Pollution Bulletin 59, 38–47
共 7 页 第 7 页
第三篇:本科毕设答辩演讲稿
尊敬的各位老师,上午好!
我叫xxx,是xx级xx班的学生,我的论文题目是粘声波正演模拟方法研究,论文是在xx导师的悉心指点下完成的,在这里我向我的导师表示深深的谢意,向各位老师不辞辛苦参加我的论文答辩表示衷心的感谢,下面我将本论文设计的目的和主要内容向各位老师作一汇报,恳请各位老师批评指导。
首先,我想谈谈这个毕业论文设计的目的及意义
在地震勘探中,我们通常把地下介质为看成弹性各向同性介质。但是在实际中,地下介质为非完全弹性各向异性介质,存在吸收衰减现象。因此更趋向于粘弹性。粘弹介质正演模拟方法的研究对于还原地下介质的真实情况具有较强的理论意义和实际意义。由于粘弹性介质的正演模拟计算成本较高,计算繁琐,为了降低计算成本,本文进行了声学近似下的粘声波正演模拟方法研究。下面是关于正演模拟方法的简单分类:
地震波正演模拟方法基于理论基础和表达形式可以分为三种:1>积分方程法(基于惠更斯原理);2>地震波方程数值解法(基于波动方程);3>射线追踪法(基于射线理论)
根据求解方法,地震波方程数值解法可分为有限元法、伪谱法、有限差分法。
有限元法算法比较复杂,计算较慢,而伪谱法不适合物性剧烈变化的复杂模型,相比于这两种方法,有限差分法可以适应剧烈变化的地下介质,算法速度较快。因此,此处选择有限差分法进行数值模拟。
第二部分是国内外的研究现状。
从19世纪四十年代第一次提出粘弹性介质理论,粘性介质理论不断发展,到现在,已经逐步发展成熟。国内的相关研究也逐渐增多。
第三部分为正演模拟的过程。流程图如图所示……
如图所示为粘声波方程,具体的推导过程在论文10-12页有详细的推到步骤。
由于涉及到了网格的选取,网格是用来实现介质模型离散化的一种常用手段,所以此处对网格进行了简单的介绍。由于计算量相同时,交错网格数值模比常规网格更精确,数值计算更稳定,收敛速度更快,压制数值频散更彻底。因此我使用交错网格进行模拟。
如图为推导出的差分系数计算矩阵与交错网格有限差分格式,推导过程详见论文13-16页。
对于震源的选择,此处,我选择的是雷克子波作为加载的震源,来模拟激发地震波。表达式如图所示。为了检测震源是否准确,我选用频率为30hz,做出雷克子波的特征图:
……
由于实际介质更加倾向于半无限空间,所以要进行边界条件的选择,边界条件分为衰减边界条件、吸收边界条件,本文应用的是是PML吸收边界条件,如图所示。然后为了检验边界条件的作用,我用简单的单层介质模型进行了简单的测试,结果如图所示,从图中可以看出,当没有边界条件的时候,在界面处会产生明显的反射波。
有限差分法最大的局限性就是数值频散问题。造成数值频散现象的原因有很多,例如震源精度,采样间隔,波形畸变等因素的影响。可以用这三种方法来压制数值频散。……
然后我用选取不同阶数的正常声波常规网格有限差分算子进行简单的试算,如图所示:……
第四部分为模型的试算,为了探究地震波的传播规律,首先我建立了一个简单的正序三层分布模型,模型的相关参数以及震源位置如图所示,来模拟地震波在地下介质中的传播。……
然后我有建立了两个三层分布模型,一个含高速夹层,一个含低速夹层,震源位置如图所示。
这是他们在同一时刻的波场快照。……
之后,为了探究了粘声波的衰减规律,我建立了一个四层分布模型,模型参数如图所示,右图分别为正常声波跟粘声波沿测线方向的炮记录,为了对比明显,我选取第30道的声波记录跟粘声记录,放到一个表格中进行对比,如图所示,进行局部放大,可以看出粘声波的地震记录在深层的反射波的振幅明与普通声波的相比,有明显的衰减现象,同相轴相对教弱;在深层,粘声波的记录的波形变化比较严重。也就是说,粘性介质考虑到了地层对能量的衰减作用,反射波的能量比完全弹性的介质减弱很多,更加的符合实际的底层情况。
……… 最后,再次谢谢各位老师的聆听,欢迎各位老师批评指正。
第四篇:建筑学本科毕业设计外文翻译
本科毕业设计外文翻译 题目: 德黑兰城市发展
学 院: 专 业: 学 号: 学生姓名: 指导教师:
城市建设学院 建筑学
日 期: 二零一一年六月
First Chapter:Development of the city of Tehran
Ali Madanipour 武汉科技大学本科毕业设计外文翻译
Tehran :the making of a metropolis,First Chapter:Development of the city of Tehran,Ali Madanipour,ISBN:0471957798,Press: New York John Wiley,1998,page five to page eleven。
第一章:德黑兰市的发展
阿里.马丹妮普尔
德黑兰:一个大都市的建造,第一章:德黑兰市的发展,阿里.马丹妮普尔,书号:0471957798,纽约John Wiley出版社,1998,第五页到第十一页。
德黑兰市的发展
全市已长成了一定的规模性和复杂性,以这样的程度,空间管理需要另外的手段来处理城市组织和不断发展的复杂性,并为城市总体规划做准备。
第二次世界大战后,在盟军占领国家的期间,有一个时期的民主化,在冷战时开始的政治紧张局势之后,它们互相斗争对石油的控制权。这个时期已经结束于1953年,结果 武汉科技大学本科毕业设计外文翻译
是由政变产生了伊朗王,那个后来担任了25年的行政君主的人。随着高出生率和农村向城市迁移,德黑兰和其他大城市增长加剧甚至比以前更快地。到1956年,德黑兰的人口上升到150万,到了1966至300万,1976至450万,其规模也从1934年46平方公里到1976年的250平方公里。
从石油行业的收入增长创造的盈余资源,需要流通和经济的吸收。50年代中期,特别是在工业化的驱动下德黑兰许多大城市有了新工作。20世纪60年代的土地改革释放了大量来自农业的农村人口,这是不能吸收的指数人口增长。这种新的劳动力被吸引到城市:到新的产业,到似乎始终蓬勃发展建筑界,去服务不断增长公共部门和官僚机构。德黑兰的角色是国家的行政,经济,文化中心,它坚定而巩固地通往外面的世界。德黑兰战后的城市扩张,是在管制、私营部门的推动,投机性的发展下进行的。房屋一直供不应求,并有大量可用的富余劳动力和资本,因此在德黑兰建筑行业蓬勃发展,土地和财产的价格不断上涨。这个城市成长为一个在某种意义上道路对外脱节的,城镇和乡村一体化的,郊区不断增长的新的定居点。这加强了社会的孤立性,破坏了郊区的花园和绿地,并使城市管理者的感到无能为力。1962年一位副市长在德黑兰表示:“建筑物和居民点已经满足人们所想要的无论何处何种样子”,创造了一个“事实上城镇相互连接的方式不当”的城市(Nafisi, 1964,第426页)。有许多事情迫切需要做,但市政府并没有法律上或经济上有能力处理这进程。
1966年市政法第一次规定了城规最高委员会的法律体制和土地利用规划公司的综合计划。还有他一系列法律,以支持德黑兰市的新的法律和体制安排,使住房和其他管理工作在城市中发展起来。最重要的一步是策划的德黑兰综合计划于1968年被批准。它是由一个伊朗规划师Fereydun Ghaffari领导下的美国的Victor Gruen和伊朗的Aziz Farmanfarmaian所共同产生的(Ardalan,1986)。该计划确定的城市的问题是:城市密度过高特别是城市中心、主要道路沿线商业活动的膨胀、污染、不完善的基础设施,贫困地区广泛的失业和低收入群体不断地迁移到德黑兰。解决的办法是城市自然社会和经济结构的转型。(Farmanfarmaian and Gruen, 1968).不过该提案大多主张形态上的变化,试图强调一个现代化的理念,强加这个复杂的都市的秩序。设想这个城市的未来可向西形成一个线性多中心的形式,减少密度和市中心的挤塞情况。全市将形成10个地区,其他各区由绿化带隔开,每个地区约50万居民,并设置拥有高楼的商业及工业中心。各个地区(mantagheh)将分为若干区域(nahyeh)和社区(mahalleh)。每个区域人口约1.5到3万,有一所中学和商业中心以及其他必要设施。每个社区有大约5000居民,有一所小学和一个当地的商业中心。这些地区和区域将有相连的交通运输网络,包括高速公路,捷运路线及巴士路线。过境路线的站点会迅速发展为活动度高居住密度高的节点。重建及改善计划中将有60万人离开中心地区(Farmanfarmaian and Gruen, 1968).。
几乎所有这些措施可以追溯到那个拥有时尚规划理念的时代,这主要是受英国新城镇的影响。在Victor Gruen的《我们城市的心脏》(1965)书中,曾设想未来的中心大 武汉科技大学本科毕业设计外文翻译
都市会由10个城市包围,每个国家都有它自己的中心。这很像Ebenezer Howard’s(1960年,第142页)提到的,那个四周被园林城市群包围着的中心城市:“社会的城市”。在德黑兰的规划中,这一概念的直译版被使用。另一个在英国新城镇被使用的概念,比如Redditch和 Runcorn,是把公共交通路线作为城市的骨架的重要性,其停车点是它的重点服务中心。使用邻里中心和小学来限制邻里单元人口,这被广泛应用于这些新市镇,这是一个曾在20世纪20年代在美国发展的想法(Mumford, 1954)。这些思想依然存在,但是,主要是在纸面上。该计划已执行,已在美国城市规划中有根深蒂固的想法,包括了用高速公路网的不断延伸去连接城市的脱节部分;在不同地区的社会管理和物理性质的基础上进行区划;引进容积率的控制发展的密度。
在20世纪70年代进行的其他主要规划工作包括Shahrak Gharb的局部发展新城镇,以及Shahestan依照英国顾问Llewelyn–Davies提出的规划新的城市行政中心,虽然这被当做正在上升的革命浪潮后来从未实施过。
革命和后革命时期可分为三个阶段:革命(1979-1988年),重建(1989-1996年)和改革(1997-2004),每个都展示了德黑兰城市规划中不同的做法。
德黑兰和其他城市经过两年大量实证,1979年有代表性的是一个革命的到来推翻了伊朗君主,由议会共和制和神父统治的不稳定结合所取代。其原因可以追溯到在国王的发展模式导致了许多冲突,现代与传统,经济发展与政治发展,全球市场力量和地方资产阶级力量,外国势力和民族主义,腐败和自满中坚分子与不满的群众。像1906年的革命一样,许多隐藏意见的累积使1979的革命成为可能。在第一次革命,维新已占了上风,而在第二次,传统主义者赢得了领导。然而,无论革命的态度还是他们掌握政权之后的一系列重大问题,包括城市发展都显示出现代化的偏好。从这个意义上讲,该国的这两个爆炸革命事件可以被看作是在动荡中逐步转型所作的努力(Madanipour,1998,2003)。革命是在与伊拉克长期战争(1980-1988)之后,其间停止了经济的发展。在城市发展方面的投资减少,而农村地区和省城受到革命政府的青睐,同时遏制从农村向城市迁移并与大城市公平对待。在此期间主要规划干预是对白天城市中心的私家车活动的限制。同时,战争和新政府的免费或低费用的设施,吸引了更多的人承诺向首都城市移民,到1986年人口达600万。从20世纪50年代城市人口的增长速度已开始减慢,而直到80年代中期首都的增长都更快,但是它的增长率也开始下降(Khatam, 1993)。在革命和战争后,正常化和重建时期开始了,其中大部分持续到上世纪90年代。这期间见证了德黑兰城市规划的若干努力。但是没有一个有效的框架来管理剧烈的城市发展。综合计划在革命后遭到攻击,因为它被认为无法适应变化。1998年,市长批评它主要是形态上的发展规划、植根于前政权的政治框架、并没有足够重视实际操作问题(Dehaghani,1995)。
综合计划的25年寿命在1991年结束。一个伊朗顾问公司(A-Tech)受委托于1985年筹备1986-1996期间的规划。经过多次延迟,在1993年,该计划最终被城市规划高级理事会批准。该计划还注重增长的管理和线性空间战略,利用了城市区域,次区域,地 武汉科技大学本科毕业设计外文翻译
区,小区和邻里尺度。它促进保护、权力下放、多中心发展,有五个卫星新市镇,并发展住宅增加城市密度。该协会建议,城市在5个亚区中被划分成22个区,每个区都拥有自己的服务中心(Shahrdari-e Tehran, 2004)。
1993年的计划不受市政当局欢迎,不同意它的估价和优先次序,认为它不现实、昂贵、无法实施。1996-2001年期间市政当局自己做了一个战略规划,它被认为是德黑兰市政的第一个规划或是德黑兰80。它强调对一个城市提出战略和政策来实现他们的第一个规划,而不是以介绍土地利用规划为目标。它把城市的主要问题确定为能提供服务的资源短缺、城市发展模式和速度、环境污染、缺乏有效的公共交通工具、效率低下和官僚主义。然后市政府对城市的未来远景概述了六个主要特征:一个清洁的城市,建设便于运动的城市公园和绿化带,新的文化和体育设施,改革发展的城市组织,以及对城市空间的改善,包括土地利用和保护的全面和详细的计划的编制规划(Shahrdari-e Tehran, 1996)。
全市实施了1968年的计划中提出的一部分建议,诸如增加南方的绿色开放空间,或是兴建高速公路网;开放城市的大部分地区使之得到新的发展以缓解全城的运作。继承1993年计划的意见,市政府放宽容积率限制,并允许热闹地带有更高的密度。然而,这并非基于规划的考虑,主要是为了使市政当局的财政独立。这在发展产业区广受欢迎,但受到公民的争议。开发者可以通过向市政府缴纳罚款建立更高的建筑物,而不必考虑对周围环境的影响,这个政策俗称“密度销售”。该城市的面貌,特别是在其北部地区,是在短期内改变的,其中包括中通过宽阔的街道和高速公路连接高楼大厦。在较贫穷的南部,一个大型的重建项目Navab穿过密集而破旧的建筑物建造高速公路,建立庞大的上层建筑的各个方面。这个城市的行政边界扩大了两次,一次向外,一次向西,涵盖了700平方公里的22个区市。
这个时期的重建争议随着民主的改革而产生,它重新启动了城市市议会的选举,这首先造成了市长和市政府关系的制度混乱。该会于2001年公布了自己的城市构想作为德黑兰宪章,这总结了大会上安理会成员、非政府组织和市政专家之间原则上同意的问题。该宪章主要采纳了可持续性和民主性原则,被用于开发自然和处理环境、交通、社会、文化、经济问题、城市管理战略、区域性城市,国家和国际角色。
Development of the city of Tehran The city had grown in size and complexity to such an extent thatits spatial managementneeded additional tools, which resulted in the growing complexity of municipalorganization, and in the preparation of a comprehensive plan for the city.After the Second World War, during which the Allied forces occupied the country, there was a period of democratization, followed by political tensions of the start of the cold war, 武汉科技大学本科毕业设计外文翻译
and struggles over the control of oil.This period was ended in 1953 by a coup detat that returned the Shah to power, who then acted as an executive monarch for the next 25 years.With high birth rates and an intensification of rural–urban migration, Tehran— and other large cities—grew even faster than before.By 1956, Tehran’s population rose to 1.5 million, by 1966 to 3 million, and by 1976 to 4.5 million;its size grew from 46 km² in 1934 to 250 km² in 1976(Kariman, 1976;Vezarat-e Barnameh va Budgeh, 1987).Revenues from the oil industry rose, creating surplus resources that needed to be circulated and absorbed in the economy.An industrialization drive from the mid-1950s created many new jobs in big cities, particularly in Tehran.The land reforms of the 1960s released large numbers of rural population from agriculture, which was not able to absorb the exponential demographic growth.This new labour force was attracted to cities: to the new industries, to the construction sector which seemed to be always booming, to services and the constantly growing public sector bureaucracy.Tehran’s role as the administrative, economic, and cultural centre of the country, and its gateway to the outside world, was firmly consolidated.Urban expansion in postwar Tehran was based on under-regulated, private-sector driven, speculative development.Demand for housing always exceeded supply, and a surplus of labor and capital was always available;hence the flourishing construction industry and the rising prices of land and property in Tehran.The city grew in a disjointed manner in all directions along the outgoing roads, integrating the surrounding towns and villages, and growing new suburban settlements.This intensified social segregation, destroyed suburban gardens and green spaces, and left the city managers feeling powerless.A deputy mayor of the city in 1962 commented that in Tehran, ‘‘the buildings and settlements have been developed by whomever has wanted in whatever way and wherever they have wanted’’, creating a city that was ‘‘in fact a number of towns connected to each other in an inappropriate way’’(Nafisi, 1964, p.426).There was a feeling that something urgently needed to be done, but the municipality was not legally or financially capable of dealing with this process.The 1966 Municipality Act provided, for the first time, a legal framework for the formation of the Urban Planning High Council and for the establishment of land-use planning in the form of comprehensive plans.A series of other laws followed, underpinning new legal and institutional arrangements for the Tehran municipality, allowing the Ministry of Housing and others to work together in managing the growth of the city.The most important step taken in planning was the approval of the Tehran Comprehensive Plan in 1968.It was produced by a consortium of Aziz Farmanfarmaian Associates of Iran and Victor Gruen Associates of the 武汉科技大学本科毕业设计外文翻译
United States, under the direction of Fereydun Ghaffari, an Iranian city planner(Ardalan, 1986).The plan identified the city’s problems as high density, especially in the city centre;expansion of commercial activities along the main roads;pollution;inefficient infrastructure;widespread unemployment in the poorer areas, and the continuous migration of low-income groups to Tehran.The solution was to be found in the transformation of the city’s physical, social and economic fabric(Farmanfarmaian and Gruen, 1968).The proposals were, nevertheless, mostly advocating physical change, attempting, in a modernist spirit, to impose a new order onto this complex metropolis.The future of the city was envisaged to be growing westward in a linear polycentric form, reducing the density and congestion of the city centre.The city would be formed of 10 large urban districts, separated from each other by green belts,each with about 500,000 inhabitants, a commercial and an industrial centre with high-rise buildings.Each district(mantagheh)would be subdivided into a number of areas(nahyeh)and neighborhoods(mahalleh).An area, with a population of about 15–30,000, would have a high school and a commercial centre and other necessary facilities.A neighborhood, with its 5000 inhabitants, would have a primary school and a local commercial centre.These districts and areas would be linked by a transportation network, which included motorways, a rapid transit route and a bus route.The stops on the rapid transit route would be developed as the nodes for concentration of activities with a high residential density.A number of redevelopment and improvement schemes in the existing urban areas would relocate 600,000 people out of the central areas(Farmanfarmaian and Gruen, 1968).Almost all these measures can be traced to the fashionable planning ideas of the time, which were largely influenced by the British New Towns.In his book, The Heart of Our Cities, Victor Gruen(1965)had envisaged the metropolis of tomorrow as a central city surrounded by 10 additional cities,each with its own centre.This resembled Ebenezer Howard’s(1960, p.142)‘‘social cities’’, in which a central city was surrounded by a cluster of garden cities.In Tehran’s plan, a linear version of this concept was used.Another linear concept, which was used in the British New Towns of the time such as Redditch and Runcorn, was the importance of public transport routes as the town’s spine, with its stopping points serving as its foci.The use of neighborhood units of limited population, focused on a neighborhood centre and a primary school, was widely used in these New Towns, an idea that had been developed in the 1920s in the United States(Mumford, 1954).These ideas remained, however, largely on paper.Some of the plan’s ideas that were implemented, which were rooted in American city planning, included a network of freeways to connect the disjointed 武汉科技大学本科毕业设计外文翻译
parts of the sprawling metropolis;zoning as the basis for managing the social and physical character of different areas;and the introduction of Floor Area Ratios for controlling development densities.Other major planning exercises, undertaken in the 1970s, included the partial development of a New Town, Shahrak Gharb, and the planning of a new administrative centre for the city—Shahestan—by the British consultants Llewelyn–Davies, although there was never time to implement the latter, as the tides of revolution were rising.Planning through policy development: reconstruction after the revolution and war The revolutionary and post-revolutionary period can be divided into three phases: revolution(1979–1988), reconstruction(1989–1996), and reform(1997–2004), each demonstrating different approaches to urban planning in Tehran.After two years of mass demonstrations in Tehran and other cities, the year 1979 was marked by the advent of a revolution that toppled the monarchy in Iran, to be replaced by a state which uneasily combined the rule of the clergy with parliamentary republicanism.Its causes can be traced in the shortcomings of the Shah’s model of development, which led to clashes between modernization and traditions, between economic development and political underdevelopment, between global market forces and local bourgeoisie, between foreign influence and nationalism, between a corrupt and complacent elite and discontented masses.Like the revolution of 1906, a coalition of many shades of opinion made the revolution of 1979 possible.In the first revolution, the modernizers had the upper hand, while in the second the traditionalists won the leadership.However, the attitudes of both revolutions—and the regimes that followed them—to a number of major issues, including urban development, show a preference for modernization.In this sense, both revolutions can be seen as explosive episodes in the country’s troubled efforts at progressive transformation(Madanipour, 1998, 2003).The revolution was followed by a long war(1980–1988)with Iraq, which halted economic development.Investment in urban development dwindled, while rural areas and provincial towns were favoured by the revolutionary government, both to curb rural–urban migration and to strike a balance with large cities.The key planning intervention in this period was to impose daytime restrictions on the movement of private cars in the city centre.Meanwhile, the war and the promise of free or low-cost facilities by the new government attracted more migrants to the capital city, its population reaching 6 million by 1986.The rate of population growth in the city had started to slow down from the 1950s, while the metropolitan region was growing faster until the mid-1980s, when its growth rate also started to decline(Khatam, 1993).After the revolution and war, a period of normalization and reconstruction started, which 武汉科技大学本科毕业设计外文翻译
lasted for most of the 1990s.This period witnessed a number of efforts at urban planning in Tehran.Once again, urban development had intensified without an effective framework to manage it.The comprehensive plan came under attack after the revolution, as it was considered unable to cope with change.In 1998, the Mayor criticized it for being mainly a physical development plan, for being rooted in the political framework of the previous regime, and for not paying enough attention to the problems of implementation(Dehaghani, 1995).The comprehensive plan’s 25-year lifespan came to an end in 1991.A firm of Iranian consultants(A-Tech)was commissioned in 1985 to prepare a plan for the period of 1986–1996.After much delay, it was only in 1993 that the plan was finally approved by the Urban Planning High Council.This plan also focused on growth management and a linear spatial strategy, using the scales of urban region, subregion, district, area and neighbourhood.It promoted conservation, decentralization, polycentric development, development of five satellite new towns, and increasing residential densities in the city.It proposed that the city be divided into 22 districts within five sub-regions, each with its own service centre(Shahrdari-e Tehran, 2004).The 1993 plan was not welcomed by the municipality, which disagreed with its assessments and priorities, finding it unrealistic, expensive, and impossible to implement.The municipality produced its own strategic plan for the period 1996–2001, known as Tehran Municipalty’s First Plan, or Tehran 80.Rather than introducing a land-use plan as its goal, this was the first plan for the city that emphasized a set of strategies and propose d policies to achieve them.It identified the city’s main problems as shortage of resources to deliver its services;the pace and pattern of urban growth;environmental pollution;the absence of effective public transport, and inefficient bureaucracy.The municipality’s vision for the future of the city was then outlined to have six major characteristics: a clean city, ease of movement in the city, the creation of parks and green spaces, the development of new cultural and sports facilities, reform of the municipal organization, and planning for the improvement of urban space, including preparation of comprehensive and detailed plans for land use and conservation(Shahrdari-e Tehran, 1996).The municipality implemented part of the proposals, such as increasing the amount of green open spaces in the south, or constructing new parts of the motorway network, which was proposed by the 1968 plan;opening large parts of the city to new development, and easing movement across the city.Following the advice of the 1993 plan, the municipality relaxed FAR limits and allowed higher densities through bonus zoning.This, however, was not based on planning considerations, but was mainly to bring financial autonomy to the municipality.This proved to be popular with the development industry, but controversial with citizens.Developers could build taller buildings by paying fines to the municipality, in a 武汉科技大学本科毕业设计外文翻译
policy popularly known as ‘‘selling density’’, without having to show their impacts on the surrounding environment.The face of the city, particularly in its northern parts, was transformed in a short period, consisting of medium to high-rise buildings connected through wide streets and motorways.In the poorer south, a major redevelopment project, Navab, cut a motorway through the dense and decayed fabric, building gigantic superstructures on each side.The city’s administrative boundaries were expanded twice, once outward and then westward, to encompass 22 district municipalities in 700 km².This controversial period of reconstruction was followed by a period of democratic reform, which re-launched an elected city council for the city, which at first caused institutional confusion about its relationship with the mayor and the municipality.The council published its own vision of the city as Tehran Charter in 2001, which was the summary of the principles agreed between council members, non-governmental organizations, and urban experts at a congress about the subject.The Charter adopted sustainability and democracy as its key principles, which were used to develop strategies for natural and built environments, transport, social, cultural and economic issues, urban management, and the city’s regional, national and international roles.
第五篇:交通毕业设计外文及翻译
Synchro在交通控制与设计中的应用
在城市的较小的区域内,可以对区域内的所有交叉口进行控制;在城市较大的区域,可以对区域进行分区分级控制。分区的结果往往使面控制成为一个由几条线控制组成的分级集中控制系统,这时,可认为各线控制是面控制中的一个单元;有时分区的结果是成为一个点,线,面控制的综合性分级控制系统。现在对城市道路进行区域协调控制就是将其划分为多级多个信号控制子区,对信号子区进行协调控制,优化管理控制信号子区,然后对整个道路进行区域协调控制,达到整个城市道路优化的目的。
把城市道路划分为多个信号控制子区,也就是进行城市道路干线交叉口交通信号协调控制,把城市划分为多个主路控制,再把主路上各个交叉口进行联动控制,同时,对单个交叉口信号控制优化的同时需要考虑主路上下游各个交叉口的联动控制。主路上的各个交叉口按照设计的信号配时方案进行运行,使车辆进入城市主干道交叉口时,不至经常遇到红灯,称为城市主干道交叉口信号协调控制,称为“绿波”信号控制。
城市单点交叉口作为城市交通网络中的重要组成部分,作为城市道路交通问题的关键点。对城市单点交叉口,评价标准的参考指标:交叉口的通行能力、进口道的饱和度、道路交叉口进口道停车延误、交叉口进口道停车次数、进口道排队长度和汽车的油耗等。交叉口定时信号控制配时方法在不断的改进之中,国内外大部分学者认为从不同的评价指标出发,可以采用不同的种优化算法寻求其它更合理的配时方法。
平面交叉口按交通管制方式可以分为全无控制交叉口、主路优先控制交叉口、信号灯控制交叉口、环形交叉口等几种类型。主路优先控制交叉口,是在次路上设停车让行或减速让行标志,指令次路车辆必须停车或减速让主路车辆优先通行的一种交通管制方式。
交叉口是道路网中通行能力的“瓶颈”和交通事故的“黑点”。国内外城市中的交通堵塞主要发上在交叉口,造成车辆中断,事故增多,延误严重。如日本大城市中的机动车在城市中心的旅行时间约三分之一花在平面交叉口上。同时,交叉口也是交通事故的主要发生源。美国交通事故约有一半发生在交叉口;原联邦德国道路上的交通事故约有百分之三十六发上在交叉口,城市中的交通事故约有百分之六十到百分之八十发生在交叉口及其附近。因此,交叉口这个交通事故“多发源”问题不能不引起人们的高度关注。怎样对城市交叉口实施科学管理就是本
节要讨论的问题。实施管制的方式取决于交叉口的几何特征和交通状况目的是为了保障交叉口的交通安全和和充分发挥交叉口的通行能力。本节主要以十字交叉口为主,讨论全无控制交叉口和主路优先控制交叉口,同时简要介绍现代环形交叉口的基本要点。
单个交叉口的控制策略会对其上游及下游道路交叉口的车流量产生很大的影响,上游和下游交叉口距离越近交通流量越大的情况下,影响会越大。交通信号“点控制”就是把单独的交叉口拿出来进行单独的分析,对其进行单独的信号优化和道路控制策略,而不考虑该交叉口对其上下游交叉口的影响。城市道路交通信号区域协调控制的就是研究在一个城市道路子区内,对各个道路交叉口进行的信号周期时长、交叉口的绿信比以及路口间的相位差进行优化,以减小交叉口的停车延误、提高城市路网的通行能力的交通区域信号协调控制方法。随着城市道路区域信号协调控制理论的发展,研究者发现,可以把一个较大的城市的道路交通区域路网看成一个大的整体,对其进行交通信号协调控制及优化,由于道路路网及机动车流量的复杂性,但是对其优化结果对其通行能力的提高不是很理想。因此,从20世纪70年代,许多研究者开始尝试将庞大、复杂繁琐的道路路网按照一定的原则和方法模型进行划分,划分成若干个信号控制子区,然后再对信号控制子区域内进行协调信号控制,用以提高城市里整个道路路网的协调控制效果。
目前,城市道路交通拥堵问题己经成为全国乃至全世界都普遍关注问题。城市道路及交叉口作为城市交通道路的基本服务设施,主要包括道路交叉口与路段,其服务性能的良好运行直接影响到城市交通的正常运转。
城市道路交叉口是道路系统的重要组成部分,城市道路通过交叉口这个节点把各条道路互相连接构成城市的道路路网,来协调交叉口各个进口方向上的车流量需要;同时在城市道路网络中各种各样的交通流(机动车,非机动车,行人)在此相互交叉通过、分流转向,可见交叉口是城市道路网络最为重要的位置。但交叉口也是交通堵塞和交通事故的多发地点。城市道路运输机动车的效率、道路安全度、交叉口通行能力、道路的服务水平对环境和能源的影响基本上取决于城市道路交叉口的通行能力。
在对城市道路交叉口中控制和优化中最为常见的是信号控制,在信号控制中单点信号交叉口是城市道路控制与优化的基础。对城市道路交叉口进行科学合理的信号控制与优化,是提高城市交叉口的交通安全和通行能力、减少交叉口停车
延误的有效措施,可以缓解城市拥堵的交通问题。
对城市道路交叉口信号进行控制优化的方法模型进行说明,介绍了交通信号灯控制的基本方法,熟悉介绍交通信号管理软件synchro的相关功能和仿真情况,以synchro为工具进行城市道路区域的协调控制,对城市道路区域协调控制模型进行介绍!以呼和浩特城市道路为例,通过对呼和浩特道路现状交通的分析调查,运用交通管理软件synchro进行仿真,通过对仿真结果的分析结合呼和浩特现在的道路状况,得到现状道路所存在的交通问题,通过对问题的分析,提出相应的优化方案,然后运用synchro对优化后的交通情况进行仿真,对比评价仿真结果,提出优化方案。对城市交通信号问题进行优化,挺高城市交通道路的通行能力!完善城市交通的基础设施!
本论文通过对城市道路交叉口交通信号的控制的说明,介绍了交通信号灯控制的基本方法,引出了城市道路交通信号区域控制,通过对城市交通信号区域控制的介绍,提出了对城市道路交通信号区域进行分级控制优化的方法模型。
本论文通过对交通信号仿真优化软件synchro6.0各个功能的介绍,软件优化模型及各评价指标的计算方法与模型的相关介绍。基于呼和浩特市新城区,以新城区新华大街为主干道进行城市道路主干道交通信号控制与优化仿真。通过对新华大街与锡林郭勒北路,新华大街与迎宾北路,新华大街与呼伦贝尔北路各个交叉口交通信号配时方案,道路属性,交通量等进行调查,通过对调查数据进行处理研究,运用交通信号控制仿真软件synchro6.0进行交通现状的仿真,然后再对新华大街主干道信号配时方案进行优化,对优化结果进行仿真,进行评价然后进行优化前后的仿真对比。说明道路主干道控制优化的优点。由于本次设计时间较短,加上本人在这方面的学习研究还有待提高,所以本论文只能简单地介绍相关的设计方法和模型,对于更加复杂交错的交叉口还有待进一步的学习和研究。
总体来说,Synchro系统对信号交叉口的配时方案及优化程序主要针对交叉口信号周期时长、相位方案和交叉口绿信比等进行总体综合优化。该系统能充分考虑到该区域道路的各项性质(交叉口范围内的公交站点、公共交通的影响,交叉口范围内的路边停车、自行车和行人等各种外在因素对交叉口通行能力和服务水平的影响,其适用能力强,是一种专业针对信号交叉口使用较为简便的信号控制优化配时软件。
道路交叉口停车计算与交叉口延误的计算方法相同。在交叉口进口道产生停
车延误的车辆数与排队车辆数相同,如上图中的Q。同时Synchro系统认为10s以内延误的车辆没有完全停车,对这些车辆,Synchro通过计算每个车辆每次在进口道延误的时间,对延误在10s以内的车辆按照定好的相应比例确定停车数。
由于新华大街各个交叉口相距很近,使得交叉口与交叉口之间的车容量较小,而且各个交叉口之间的信号灯周期时长不同,不能进行关联管理,亦使得新华大街不能进行绿波交通控制。对各个交叉口信号周期进行优化后,可以显著提高交叉口的服务水平,且可以对新华大街主干道进行联动控制,大大的减小了新华大街主干道上的延误
在这段时间里,我通过对交通信号管理与仿真软件 synchro的不断熟悉与运用,逐渐深入的了解到了交叉口交通信号对城市道路交通的重要性!交通信号对于缓解现在各个城市道路拥挤的重要性,在这段时间里,我通过对呼和浩特新城区新华大街主干道道路情况和各个交叉口的交通情况的调查与统计,发现可以运用交通信号管理软件synchro对各个交叉口进行优化仿真,可以使新华大街主干道进行“线控制“,进而提高新华大街主干道各个交叉口的通行能力。
Synchro in traffic control and the design application
In city of smaller area, within the area can be controlled all the intersection;In the city of large region, can region partition of hierarchical control.The division of the results often make level control into one by the few line of control the grading of centralized control system, at this moment, you may think that makes the control is the surface control a unit;Sometimes the division of the results is to become a point, line, face the comprehensive control of hierarchical control system.Now on the city road for regional coordination control is dividing the multilevel more signal control branch area, the son of signal area for coordinated control, optimizing the management control signal branch area, and then to the road for regional coordination control to achieve the purpose of the whole city road optimization.The urban road is divided into more signal control branch area, also is the city road junction lines to the traffic signal coordination control, the city is divided into more massive control, and each intersection on running for linkage control, at the same time, to a single intersection signal control optimization and at the same time to consider all the linkage of the massive upstream and downstream intersection control.Each intersection running according to design signal timing formula for operation, make the vehicle into the city intersection, not often meet with red light, called city intersection signal coordination control, known as the ”green wave“ signal control.City single point as a city intersection traffic network in the important part of urban road traffic problems as the key point.City intersection of single point, evaluation standard reference index: crossing capacity, the import of saturation, the way the intersections, intersection delay import way parking import stops, import way way queue length and the car fuel consumption, etc.Timing signal intersection control timing method in continuous improvement in, most scholars think both at home and abroad from different evaluation index set out, can adopt different kinds of optimization algorithm for other, more reasonable timing method.According to the plane intersection traffic control way without control can be divided into the intersection, massive priority control signal intersection control, intersection, ring intersection of several types.Massive priority intersection control, is on the way in time set the right-of-way or slow down the right-of-way parking sign, instruction time road vehicles must stop or slow down to the right-of-way vehicles running a traffic control method.Intersection of road network traffic capacity is in the ”bottleneck“ and traffic accidents ”black spots“.The traffic jam main cities at home and abroad to the hair in the intersection, causing traffic disruption, more accidents, delay serious.Such as Japan cities in motor vehicle in the city center of about a third of the travel time spent on plane intersection.At the same time, the intersection of the traffic accident is the main sources.The United States about half the traffic accident happened in the intersection;The federal Germany on the road traffic accident about thirty-six percent to the hair in the intersection, city in the traffic accident happened about sixty percent to eighty percent in the intersection and its nearby.Therefore, the intersection traffic accident ”was“ not aroused people's concern.How to carry out the scientific management of city intersection of this section is to talk
about the problem.Implementation of the control mode depends on the geometrical characteristics of the intersection and traffic conditions the purpose is to ensure the intersection of traffic safety and and give full play to the crossing capacity.This section mainly intersections is given priority to, to discuss all to no control intersection and massive priority intersection control, and briefly introduced the basic points of modern ring intersection.The single intersection control strategy of the upstream and downstream will road intersection traffic produce very big effect, intersection upstream and downstream the closer the greater the traffic flow, the greater the effect will be.The traffic signal ”point control" is to separate out the intersection of the separate analysis, and carry on the single signal optimization and road control strategy, and don't consider the intersection of the upstream and downstream the influence of the intersection.The urban road traffic signal control is the study of the regional coordination in a city way way zone, to each road intersections of signal period of how long, how intersection green than and between the letter at phase difference is optimized, to minimize the intersection delay parking, improve the urban road network capacity traffic signal control method coordination area.Along with the urban road area signal coordination control the development of the theory, the researchers found that, can be to a larger city road traffic area network as a great whole, the traffic signal coordination control and optimization, as a result of road network and the complexity of the flow of motor vehicles, but for the optimization results to the travel of the ability is not very ideal.Therefore, since the 1970 s, many researchers began to try to be huge, complex tedious road network according to certain principles and methods model division, divided into several signal control branch area, and then again to signal control subdomain coordinate signal control, to improve the way of city road network coordination control effect.At present, the urban road traffic congestion problem has been become the attention and to the world.City road and intersection traffic as a city of basic services, mainly including road intersection and sections, the service performance in good operating directly affect the normal operation of city traffic.City road crossing the road system is an important component of the urban road through the intersection nodes to the various factors of city road connect each other of road network, to coordinate each intersection on the direction of imported cars need;At the same time in the city road network all kinds of traffic flow(motor vehicle, the motor vehicle, pedestrians)in the cross each other through the shunt turned, visible intersection of city road network is the most important position.But the intersection is traffic and traffic accidents of the multiple sites.City road transport vehicle efficiency, road safety degree, intersection traffic capacity, the service level of the road to the environment and the influence of the energy basically depends on the urban road crossing capacity.In the urban road intersections control and optimization of the most common is the signal of control, signal control of a single point signal intersection control and optimization of city road is based.City road intersection of scientific reasonable signal control and optimization, is to improve the city traffic safety and the intersection traffic capacity, reduce the effective measures to stop intersection delay, can ease congestion