第一篇:解密纳米 纳米技术与我们人类的未来专题
解密纳米 纳米技术与我们人类的未来
纳米技术的进步对未来社会产生深远而积极的影响。-----江泽民
纳米技术是二十一世纪科学发展的重点,会是一次技术革命,还会是一场产业革命!-----钱学森
◆ 从了解纳米技术开始: 纳米 其实是一个长度单位: 米= 毫米 1毫米 = 微米 1 微米= 纳米
也就是说 1纳米 = 米(即1米的十亿分之一)
在纳米的尺度范围内(1--100纳米),通过直接操纵和安排原子和分子来创造物质的能力和技术,称为纳米技术。
通过纳米技术所制成的材料,称为纳米材料。纳米材料具有不同与一般材料的超常规特性。纳米技术将深刻改变我们的生活方式,思维方式,以及我们的衣食住行。现在无论是打开电视,或翻开报纸,随处可见关于纳米科技的报道!
早在1982年美国一位科学家罗雷尔博士发明了扫描隧道显微镜,人类才看到了纳米世界。从那以后世界便诞生了一门新的科学----纳米科技。罗雷尔博士由此荣获1986年诺贝尔奖。
世界历史的发展过程:
毫米-----18世纪中叶瓦特发明和改良蒸汽机 引发了第一次工业产业大革命;
微米------以微电子技术为代表的电气(微电子技术)时代。引发了第二次工业产业革命;
纳米------以扫描隧道显微镜的发明为标志,必将引发第三次工业产业大革命!
二十一世纪必将是纳米技术的时代!!◆ 各国对纳米技术研究与应用的重视程度: 美国:
克林顿总统:“我的预算支持一个比较重要的、新的国家纳米技术倡议,即在原子和分子水平上操纵物质的能力,价值为5亿美元。试想一下这些可能性:材料将10倍于钢而重量只有其数分之一;国会图书馆内所有的信息可以压缩到一块方糖那样尺寸的器件之中;当癌病变只有几个细胞那样大小时就可以探测到。我们的目标可能需要20年或更长的时间才能达到,但这恰恰是为什么联邦政府要再此起重要作用的原因。”
2001年1月21日,克林顿总统宣布了国家纳米技术倡议 并在2001年财财政中增加26亿美元,美国政府认为,今天的纳米技术就如同50年代的晶体管,其科研和产业化将促进美国经济的持续发展。增强国家科技竞争力,节约资源和能源,纳米技术是开发未来微型武器的技术基础,是国防工业的未来
德国: 拟建立或改组6个政府与企业联合的研发中心,并启动国家级研究计划。
法国: 最近将投资8亿法郎建立有6万平米、拥有3500人的微米/纳米技术发明中心。配备最先进的仪器设备,扶植建立创新企业和申请专利。
日本: 80年代初投巨资,91年设施了为期10年、耗资2.25亿美元的纳米技术研究计划。目前,每年2亿美元推动新的研究中心建设和国家级研究计划。
英国:制定了包括机械、光学、电子学等领域的8个项目的纳米技术研究计划。
中国: 目前每年投入5亿在纳米技术研究,每年增加20%-30%投入。有一支精干的研究队伍,中科院有关研究所,北大、清华、中国科技大学、南京大学、复旦大学等。中科院金属所的纳米铜,晶粒30nm,是常规铜的几十万分之一,表现了室温下的超塑延展性。变形50多倍而无裂纹„
安然是我们民族的企业,又是一个以纳米技术为核心的高科技产业,无论是国家、省或者是市,都对我们的企业寄予厚望,并给予了强大的支持,为我们企业的发展起到了推波助澜的作用。安然现已在沈阳、上海、成都、天津、西安建立分公司。公司还将在广州、湖南、北京等设立分公司,计划在国内把安然事业做好、做大、做稳、做强,把安然事业的大本营、根据地建好后,将陆续在俄罗斯、印度、哈萨克斯坦、韩国„„建立分公司,安然承诺永不放弃直销,公司在直销界奋进的目标就是世界直销业前几名!◆ 安然公司有哪些优势?
优势一:具有国际战略意义的高新科技---纳米技术
公司董事长刘润东山东十大财经风云人物之一,获奖理由:高科技造福人类,在无竞争领域稳健布局,为日后做大做强从容蓄势!
获奖实况视频:http://www.xiexiebang.com/u/2765393060 汗蒸房工程原理及盈利详解
欢迎加盟安然汗蒸连锁www.xiexiebang.com qq:1055419796电话:***
第二篇:纳米材料与纳米技术论文
纳米材料与纳米技术
学院:自动化学院
专业年级: 2015级物联网工程 学生姓名:梁建业 学号:3115001473
4班 摘要:纳米技术是当今世界最有前途的决定性技术。文章简要了解纳米材料和纳米技术,介绍它的一些相关的应用及其在国内外的现状,并尝试预测它的发展趋势。与此同时,也共同探讨下其存在的问题。首先,让我们来简单地了解下纳米材料和纳米技术吧!一. 什么是纳米材料?
纳米是一个长度单位,1nm=10ˉ9m。纳米材料是指在结构上具有纳米尺度调制特征的材料,纳米尺度一般是指1~100nm。当一种材料的结构进入纳米尺度特征范围时,其某个或某些性能会发生明显的变化。纳米尺度和性能的特异变化是纳米材料必须同时具备的两个基本特征。
按材质,纳米材料可分为纳米金属材料、纳米非金属材料、纳米高分子材料和纳米复合材料。其中纳米非金属材料又可细分为纳米陶瓷材料、纳米氧化物材料和其他非金属纳米材料。
按纳米尺度在空间的表达特征,纳米材料可分为零维纳米材料即纳米颗粒材料、一维纳米材料(如纳米线、棒、丝、管和纤维等)、二维纳米材料(如纳米膜、纳米盘和超晶格等)、纳米结构材料即纳米空间材料(如介孔材料。
按形态,纳米材料可分为纳米颗粒材料、纳米固体材料(也称纳米块体材料)、纳米膜材料以及纳米液体材料(如磁性液体纳米材料和纳米溶胶等)。
按功能,纳米材料可分为纳米生物材料、纳米磁性材料、纳米药物材料、纳米催化材料、纳米智能材料、纳米吸波材料、纳米热敏材料以及纳米环保材料等)。
二.什么是纳米技术?
纳米技术(nanotechnology)是指在0.1~100nm空间尺度上操纵原子和分子,对材料进行加工,制造具有特定功能的产品或对物质及其结构进行研究的一门综合性的高新技术学科。其实通俗的讲就是“use little things to finish the big work”。我们在分子原子这样的微小尺度上加工材料,得到一些新型的功能性的高科技产品,他们往往具有相比于一般材料更优良的性能,具有很高的实用价值和研究价值。而将纳米应用到测量等方面,又可以达到高精度的效果,比如扫描隧道显微镜(STM)、原子显微镜(AFM)的发明等。另外还有:纳米物理学、纳米生物学、纳米化学、纳米电子学、纳米加工技术和纳米计量学等方面的应用。
三. 纳米技术的特异性质及其相关的应用。
1.纳米技术的具有的个性效应。
小尺寸效应是指:随着颗粒尺寸的不断减小,当进入纳米量级的时候,颗粒的光、声、电磁和热力学等物理性质将发生根本性变化的一类现象。比如磁性的纳米颗粒的矫顽力异常之高,而且其有很多应用,磁性车票、磁性钥匙、磁性信用卡等都是应用这一性质;又如纳米二氧化钛陶瓷一改传统陶瓷在室温下可弯曲,塑性形变可达到100%,这就克服了传统陶瓷性非常脆的弱点。
量子尺寸效应是指:随着颗粒的尺寸进入纳米量级,电子能级也随之从连续转变为离散的,也就是量子化的了,而且能级间距也发生了分裂。这时纳米微粒的磁、光、声、热、电等性能有了根本性的转变,例如实验结果表明,纳米银是绝缘体。表面效应是指:伴随着颗粒尺寸的不断减小,颗粒总的表面积大幅度变大,表面原子数急剧上升,与此同时,纳米材料的表面能也急剧变大,这种现象称之为表面效应。由于表面原子活化能大,所以它们具有非常高的活性,很不稳定,就更容易与其他物质结合。我们熟悉的现象:纳米金属微粒在空气中就能够燃烧。
宏观量子隧道效应是指:一些宏观量,例如量子相干器件中的磁通量、纳米颗粒的电导率、超微颗粒的磁化强度等也具有隧道效应的现象。
2.纳米技术的特殊性质。
(一)力学性质
高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。
(二)磁学性质
当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。目前巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。
(三)电学性质
由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研制出由碳纳米管组成的逻辑电路。
(四)热学性质
纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。
(五)光学性质
纳米粒子的粒径远小于光波波长。与入射光有交互作用,光透性可以通过控制粒径和气孔率而加以精确控制,在光感应和光过滤中应用广泛。由于量子尺寸效应,纳米半导体微粒的吸收光谱一般存在蓝移现象,其光吸收率很大,所以可应用于红外线感测器材料。
(六)生物医药材料应用
纳米粒子比红血细胞(6~9nm)小得多,可以在血液中自由运动,如果利用纳米粒子研制成机器人,注入人体血管内,就可以对人体进行全身健康检查和治疗,疏通脑血管中的血栓,清除心脏动脉脂肪沉积物等,还可吞噬病毒,杀死癌细胞。在医药方面,可在纳米材料的尺寸上直接利用原子、分子的排布制造具有特定功能的药品纳米材料粒子将使药物在人体内的输运更加方便。
纳米材料和纳米技术的现状: 一.国内的研究现状:
与国外相比,由于我们自身的某些特殊原因,国内对纳米材料的研究起步晚,确切的应该是20世纪80年代,到现在仅仅三十来年的时间,但在纳米材料其特异性能的诱惑下,在以中科院为龙头的引导下,我国对纳米材料的研究一直保持高速发展,并取得很多重大成果,使我国对纳米材料的研究在总体水平上达到国际先进水平,当然这些成就的取得得益于国家对纳米高端技术的高度重视,近年来纳米材料已经成为社会热点话题,纳米材料的应用研究正如火如荼地进行,我国已经进入了基础研究与应用研究并重的新局面。由于我国纳米材料研究方面已经取得的骄人成果,使我们的研究情况在国际上都占有一定的地位。目前,我国纳米材料研究资助项目,主要以金属和无机非金属材料主,占80%左右,高分子和化学合成材料是另一个重要方向,都有所突破。而纳米结构材料研究集中在纳米晶、纳米粉、纳米薄膜、纳米材料、纳米材料改性、增强增韧、纳米结构和纳米特性研究;纳米功能材料的重点领域为纳米信息材料、纳米环境材料、纳米传感材料、热电光磁环境下的特性研究。信息领域包括纳米信息材料、纳米电子学、纳米器件等,是材料、物理、信息相互交叉、促进的领域。生命领域主要集中资助生物材料及应用,如生物纳米传感、检测等。矿物和岩土介质中纳米颗粒的分布和形成机理及应用研究则是地球科学的主要内容。
二.国外的研究现状:
科学家很早就预言纳米技术将在21世纪科技舞台上扮演重要的角色。日本通产省政府与1990年做出资助两项十年计划的重要决定,分别是量子装置计划和关于原子技术的计划,因此日本也就成为了世界上大规模大投入研究纳米技术的先导国。日本的公司和研究所主要集中研究材料的加工和制造,包括先进的医疗诊断器械和微电子应用方面。纳米技术广泛而细致,包括如纳米颗粒的合成、加工,以及具有纳米结构的材料的制造等。目前,从总体实力上客观评价,在纳米材料合成和组装研究方面美国处于领先地位,欧洲和日本紧随其后;在生物方法以及其实际应用方面,美国和欧洲又要强一点,日本稍逊一点点;纳米分散和涂层方面美国与欧洲相近,日本的研究较晚一些,但日本在纳米装置领域和固体材料方面相当强悍,比美国、欧洲都先进。发展趋势
一.纳米材料的发展趋势
(1)纳米尺度。通过精确地控制尺寸和成分来合成材料单元,制备更轻更强的材料,并具有寿命长、维修费用低等特点;以新原理和新结构在纳米层次上构筑特定性质的生物材料和仿生材料;由于纳米技术能使物质的物理、化学性能发生根本的改变,如纳米陶瓷硬如钢铁,而纳米钢却能像橡胶那样富有弹性等。所以,纳米技术被认为是21世纪材料技术的发展方向。(2)航天和航空。这方面的研究主要包括:研制低能耗、抗辐射、高性能计算机;微型航天器用纳米集成的测试、控制仪器和电子设备;抗热胀、耐磨损的纳米结构涂层材料。(3)国家安全。通过纳米电子器件在信息控制中的应用,使军队在预警、导弹拦截等领域快速反应;用纳米机械设备控制,国家核防卫系统的性能将大大提高;通过纳米材料的应用,可使武器装备的耐腐蚀、吸波性和隐蔽性有很大提高,可用于舰船、潜艇和战斗机等。二.纳米技术的发展趋势(1)微电子和计算机。纳米结构的微处理器的效率将提高100万倍,并实现兆兆比特的存储器(提高1000倍);研制集成纳米传感器系统。(2)环境和能源。发展绿色能源和环境处理技术,减少污染和恢复被破坏的环境;制备孔径1nm的纳孔材料作为催化剂的载体,用以消除水和空气中的污染;成倍提高太阳能电池的能量转换效率。
(3)医学。纳米粒子将使药物在人体内的传输更方便,将来用纳米结构“组装”一种寻找病毒的药物进入人体后,可对艾滋病、癌症、病毒性感冒等进行治疗;在人工器官外涂上纳米粒子可预防移植后的排斥反应;研究与人体友好的人工组织、器官复明和复聪器件等。
(4)生物。在纳米尺度上按照预定的对称性和排列制备具有生物活性的蛋白质、核糖核酸等,在纳米材料和器件中植入生物材料使其兼具生物功能,生物仿生化学药品和生物可降解材料;动植物的基因改善和治疗,测定DNA的基因芯片等。存在的问题: 一.社会危害
纳米材料(包含有纳米颗粒的材料)本身的存在并不是一种危害。只有它的一些方面具有危害性,特别是他们的移动性和增强的反应性。只有某些纳米粒子的某些方面对生物或环境有害,我们才面临一个真的危害。二.健康问题
纳米颗粒进入人体有四种途径:吸入,吞咽,从皮肤吸收或在医疗过程中被有意的注入(或由植入体释放)。一旦进入人体,它们具有高度的可移动性。在一些个例中,它们甚至能穿越血脑屏障。
纳米粒子在器官中的行为仍然是需要研究的一个大课题。基本上,纳米颗粒的行为取决于它们的大小,形状和同周围组织的相互作用活动性。它们可能引起噬菌细胞(吞咽并消灭外来物质的细胞)的“过载”,从而引发防御性的发烧和降低机体免疫力。它们可能因为无法降解或降解缓慢,而在器官里集聚。还有一个顾虑是它们同人体中一些生物过程发生反应的潜在危险。由于极大的表面积,暴露在组织和液体中的纳米粒子会立即吸附他们遇到的大分子。这样会影响到例如酶和其他蛋白的调整机制。三.环境问题
主要担心纳米颗粒可能会造成未知的危害。四.社会风险
纳米技术的使用也存在社会学风险。在仪器的层面,也包括在军事领域使用纳米技术的可能性。(例如,在MIT士兵纳米技术研究所[1]研究的装备士兵的植入体或其他手段,同时还有通过纳米探测器增强的监视手段。
尽管到目前为止,纳米材料与纳米技术仍然是个饱受争议的话题,对人类的危害还是个未知数,但随着科技的发展,我相信这些问题都将会被妥善解决。纳米的应用领域将不断拓展,将会产生革命性的变革。预计不久的将来,纳米科技将深入到各行各业乃至千家万户,并将成为今后二三十年科技发展的主导技术。
[参考文献] [1]白春礼.纳米科技及其发展前景[J].中国工程咨询, 2000,(4):38-41.[2]夏秦海.纳米技术与环境保护[J].环境保护,2001,(3): 44.[3]张立德.纳米材料研究的进展与我国的对策[J].科技导 报,2000,(10):33-34 [4]百度百科
第三篇:我眼中的纳米材料与纳米技术的未来[模版]
《纳米材料》课程论文
我眼中的纳米材料与纳米技术的未来
学 院: 专 业: 班 级: 学 号: 姓 名: 指导老师: 日 期:
我眼中的纳米材料与纳米技术的未来
摘要:
21世纪,纳米材料与纳米技术在科技领域将扮演重要角色。纳米技术是当今世界最有前途的决定性技术之一。本文简要地概述了我了解的纳米材料,包括其基本特性以及其在力学、磁学、电学、热学等方面的主要应用,并简单展望了纳米技术的未来。
关键词: 纳米材料;性能;应用;纳米技术;
一、纳米材料
1.1纳米材料
纳米材料是指材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料。由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。
对于纳米材料的研究包括两个方面:
一是系统地研究纳米材料的性能、微结构和光谱学特征,通过和常规材料对比,找出纳米材料特殊的规律,建立描述和表征纳米材料的新概念和新理论;
二是发展新型纳米材料,包括新型纳米材料合成方法的探索和对常规材料的纳米修饰与改性。目前,在纳米材料的应用中所遇到的关键技术问题是:在大规模制备的质量控制中,如何做到均匀化、分散化、稳定化。
1.2、材料分类
纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其他三类产品的基础。(1)纳米陶瓷
利用纳米技术开发的纳米陶瓷材料是利用纳米粉体对现有陶瓷进行改性,通过往陶瓷中加入或生成纳米级颗粒、晶须、晶片纤维等,使晶粒、晶界以及他们之间的结合都达到纳米水平,使材料的强度、韧性和超塑性大幅度提高。它克服了工程陶瓷的许多不足,并对材料的力学、电学、热学、磁光学等性能产生重要影响,为代替工程陶瓷的应用开拓了新领域。随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服
陶瓷材料的脆性,使陶瓷具有像金属似柔韧性和可加工性。英国材料学家Cahn指出,纳米陶瓷是解决陶瓷脆性的战略途径。纳米耐高温陶瓷粉涂层材料是一种通过化学反应而形成耐高温陶瓷涂层的材料(2)纳米粉末
又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。可用于:高密度磁记录材料;吸波隐身材料;磁流体材料;防辐射材料;单晶硅和精密光学器件抛光材料;微芯片导热基片与布线材料;微电子封装材料;光电子材料;先进的电池电极材料;太阳能电池材料;高效催化剂;高效助燃剂;敏感元件;高韧性陶瓷材料(摔不裂的陶瓷,用于陶瓷发动机等);人体修复材料;抗癌制剂等。(3)纳米纤维
指直径为纳米尺度而长度较大的线状材料。可用于:微导线、微光纤(未来量子计算机与光子计算机的重要元件)材料;新型激光或发光二极管材料等。静电纺丝法是制备无机物纳米纤维的一种简单易行的方法。(4)纳米膜
纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。可用于:气体催化(如汽车尾气处理)材料;过滤器材料;高密度磁记录材料;光敏材料;平面显示器材料;超导材料等。(5)纳米块体
纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。主要用途为:超高强度材料;智能金属材料等。
1.3纳米结构
以纳米尺度的物质单元为基础,按一定规律构筑或营造的新体系。它不仅具有纳米物质单元的性能,还存在由结构组合而产生的新的特性。
Gleiter认为纳米材料是其晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量界面,晶界原子达15%一50%。可以利用TEM、X射线、中子衍射和一些其它方法来表征纳米材料及其结构。对于纳米材料晶界的结构有三种不同的理论:
[3](1)Gleiter的完全无序说。这种假说认为纳米晶粒间界具有较为开
放的结构,原子排列具有随机性,原子间距较大,原子密度低,既无长程有序,又无短程有序。(2)Seagel的有序说。有序说认为晶粒间界处含有短程有序的结构单元,晶粒间界处原子保持一定的有序度,通过阶梯式移动实现局部能量的最低状态;(3)叶恒强、吴希俊的有序无序说。该理论认为纳米材料晶界结构受晶粒取向和外场作用等一些因素的限制,在有序和无序之间变化。
二、纳米技术
纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。
纳米技术的发展大致可以划分为3个阶段:
第一阶段(1990年即在召开“Nano 1”以前)主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜),研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。
第二阶段(1990年~1994年)人们关注的热点是设计纳米复合材料: •
纳米微粒与纳米微粒复合(0-0复合),•
纳米微粒与常规块体复合(0-3复合),•
纳米复合薄膜(0-2复合)。
第三阶段(从1994年至今)纳米组装体系研究。它的基本内涵是以纳米颗粒以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。
三、纳米材料的基本性能
2.1力学性质
高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强 度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。2.2热学性质
纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。2.3电学性质
由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研制出由碳纳米管组成的逻辑电路。2.4磁学性质
当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。目前巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。
三、纳米材料的主要应用
借助于纳米材料的各种特殊性质,科学家们在各个研究领域都取得了性的突破,这同时也促进了纳米材料应用的越来越广泛化。
3.1特殊性能材料的生产
材料科学领域无疑会是纳米材料的重要应用领域。高熔点材料的烧结纳米材料的小尺寸效应(即体积效应)使得其在低温下烧结就可获得质地优异的烧结体(如SiC、WC、BC等),且不用添加剂仍能保持其良好的性能。另一方面,由于纳米材料具有烧结温度低、流动性大、渗透力强、烧结收缩大等烧结特性,所以它又可作为烧结过程的活化剂使用,以加快烧结过程、缩短烧结时间、降低烧结温度。例如普通钨粉需在3 000℃高温时烧结,而当掺入0.1%~0.5%的纳米镍粉后,烧结成形温度可降低到1 200℃~1 311℃。复合材料的烧结 由于不同材料的熔点和相变温度各不相同,所以把它们烧结成复合材料是比较困难的。纳米材料的小尺寸效应和表面效应,不仅使其熔点降低,且相变温度也降低了,从而在低温下就能进行固相反应,得到烧结性能好的复合材料。纳米陶瓷材料的制备 通常的陶瓷是借助于高温高压使各种颗粒融合在一起制成的。由于纳米材料粒径非常小、熔点低、相变温度低,故在低温低压下就可用它们作原料生产出质地致密、性能优异的纳米陶瓷。纳米陶瓷具有塑性强、硬度高、耐高温、耐腐蚀、耐磨的性能,它还具有高磁化率、高矫顽力、低饱和磁矩、低磁耗以及光吸收效应,这些都将成为材料开拓应用的一个崭新领域,并将会对高技术和新材料的开发产生重要作 3.2生物医学中的纳米技术应用
从蛋白质、DNA、RNA到病毒,都在1-100nm的尺度范围,从而纳米结构也是生命现象中基本的东西。细胞中的细胞器和其它的结构单元都是执行某种功能的“纳米机械”,细胞就象一个个“纳米车间”,植物中的光合作用等都是“纳米工厂”的典型例子。遗传基因序列的自组装排列做到了原子级的结构精确,神经系统的信息传递和反馈等都是纳米科技的完美典范。生物合成和生物过程已成为启发和制造新的纳米结构的源泉,研究人员正效法生物特性来实现技术上的纳米级控制和操纵。纳米微粒的尺寸常常比生物体内的细胞、红血球还要小,这就为医学研究提供了新的契机。目前已得到较好应用的实例有:利用纳米SiO2微粒实现细胞分离的技术,纳米微粒,特别是纳米金(Au)粒子的细胞内部染色,表面包覆磁性纳米微粒的新型药物或抗体进行局部定向治疗等。
正在研制的生物芯片包括细胞芯片、蛋白质芯片(生物分子芯片)和基因芯片(即DNA芯片)等,都具有集成、并行和快速检测的优点,已成为纳米生物工程的前沿科技。将直接应用于临床诊断,药物开发和人类遗传诊断。植入人体后可使人们随时随地都可享受医疗,而且可在动态检测中发现疾病的先兆信息,使早期诊断和预防成为可能。纳米生物材料也可以分为两类,一类是适合于生物体内的纳米材料,如各式纳米传感器,用于疾病的早期诊断、监测和治疗。各式纳米机械系统可以快速地辨别病区所在,并定向地将药物注入病区而不伤害正常的组织或清除心脑血管中的血栓、脂肪沉积物,甚至可以用其吞噬病毒,杀死癌细胞。另一类是利用生物分子的活性而研制的纳米材料,它们可以不被用于生物体,而被用于其它纳米技术或微制造。
3.3纳米生物计算机开发
生物计算机的主要原材料之一是生物工程技术产生的蛋白质分子,并以此作为生物芯片。在这种芯片中,信息以波的形式传播,其运算速度要比当今最新一代计算机快10倍以至几万倍,能量消耗仅相当于普通计算机的几亿分之一,存贮信息的空间仅占百亿分之一。由于蛋白质分子能自我组合,再生新的微型电路,从而使得生物计算机具有生物体的一些特点,如能发挥生物本身的调节机能、自动修复芯片上发生的故障,还能使其模仿人脑的机制等。世界上第一台生物计算机是由美国于1994年11月首次研制成功的。
科学家们预言,实用的生物分子计算机将于今后几年问世,它将对未来世界产生重大影响。制造这类计算机离不开纳米技术。生物纳米计算机和纳米机器人的结合体则是另一类更高层次上的可以进行人机对话的装置,它一旦研制成功,有可能在1秒钟完成数十亿次操作,届时人类的劳动方式将产生彻底的变革。
目前纳米科学技术正处在重大突破的前夜,它已取得一系列成果,使全世界为之震动,并引起关心未来发展的全世界科学家的思索。人们正注视着纳米科学技术领域不断涌现出的奇异现象和新进展,这一领域前景十分诱人。它与其它学科相互渗透和交叉,可以形成许多新的学科或学科群,其有关发展将对经济建设、国防实力、科技发展乃至整个社会文明进步产生巨大影
3.4新的国防科技革命 纳米技术将对国防军事领域带来革命性的影响。例如:纳米电子器件将用于虚拟训练系统和战场上的实时联系;对化学、生物、核武器的纳米探测系统;新型纳米材料可以提高常规武器的打击与防护能力;由纳米微机械系统制造的小型机器人可以完成特殊的侦察和打击任务;纳米卫星可用一枚小型运载火箭发射千百颗,按不同轨道组成卫星网,监视地球上的每一个角落,使战场更加透明。而纳米材料在隐身技术上的应用尤其引人注目。在雷达隐身技术中,超高频(SHF,GHz)段电磁波吸波材料的制备是关键。纳米材料正被作为新一代隐身材料加以研制。由于纳米材料的界面组元所占比例大,纳米颗粒表面原子比例高,不饱和键和悬挂键增多。大量悬挂键的存在使界面极化,吸收频带展宽。高的比表面积造成多重散射。纳米材料的量子尺寸效应使得电子的能级分裂,分裂的能级间距正处于微波的能量范围,为纳米材料创造了新的吸波通道。纳米材料中的原子、电子在微波场的辐照下,运动加剧,增加电磁能转化为热能的效率,从而提高对电磁波的吸收性能。美国研制的“超黑粉”纳米吸波材料对雷达波的吸收率达99%,法国最近研制的CoNi纳米颗粒被覆绝缘层的纳米复合材料,在2-7GHz范围内,其m¢和m¢¢几乎均大于6。最近国外正致力于研究可覆盖厘米波、毫米波、红外、可见光等波段的纳米复合材料,并提出了单个吸收粒子匹配设计机理,这样可以充分发挥单位质量损耗层的作用。纳米材料在具备良好的吸波功能的同时,普遍兼备了薄、轻、宽、强等特点。纳米材料中的硼化物、碳化物,铁氧体,包括纳米纤维及纳米碳管在隐身材料方面的应用都将大有作为
3.5其他领域
除此之外,纳米材料还在诸如海水净化、航空航天、环境能源、微电子学等其他领域也有着逐渐广泛的应用,纳米材料在这些领域都在逐渐发挥着光和热。
四、纳米技术的未来
20世纪80年代开始的纳米技术在90年代获得了突破性进展,其与医学的结合形成了新兴边缘学科———纳米医疗,即在分子水平上利用分子工具和已掌握的关于人体的知识,从事的疾病诊断、医学、预防、保健和改善健康状况等。在认识生命的分子基础上,人们可以设计制造大量的具有奇特功效的纳米装置,它们能够发挥类似于组织和器官的功能;它可以达人体的各处甚至出入细胞,在人体的微观世界里完成畸变的基因修复、扼杀初发的癌细胞、捕捉侵入人体的细菌和病毒、探测机体内化学或生物化学成分的变化、适时地释放药物和人体所需的微量物质、及时改善人的健康状况等特殊使命。纳米技术在医学领域中的普遍应用将使21世纪的医学产生一个质的飞跃。
经过几十年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。
纳米技术目前从整体上看虽然仍然处于实验研究和小规模生产阶段,但从 历史的角度看:上世纪70年代重视微米 科技的国家如今都已成为发达国家。当今重视发展纳米技术的国家很可能在21世纪成为先进国家。纳米技术对我们既是严峻的挑战,又是难得的机遇。必须加倍重视纳米技术和纳米基础理论的研究,为我国在21世纪实现经济腾飞奠定坚实的基础。整个人类社会将因纳米技术的发展和商业化而产生根本性的变革。
五、参考文献
[1]孙红庆.科技天地—计划与市场探索[M],2001/05 [2]肖建中.材料科学导论[M].北京:中国电力出版社,2001,4 3~5 0.[3] GleiterH.,Prog.Mater.Sci.,1989;33:223 [4] EppersonJ.,SiegelR·,Mater·Res.Soe·Symp·Proe.,1989;132:15 [5] LI D.X·,PingD·H·,YeH.Q.et al·,PH-IL·Mag·Lett·,1993 [6]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2002:112~121.[7]吴天诚,杜仲良,高绪珊.纳米纤维[M].北京:化学工业出版社,2003:1~1 0.[8]李玲,向航.功能材料与纳米技术[M].北京:化学工业出版社,2003:42~4 7.[9]张立德.超微粉体制备与应用技术[M].北京:中国石化出版社,2001:82~132.[10]Wang J,Tian B,Rogers K R.Thick-film electrochemical immunosensor based on stripping potentiometric detection of a metal ion label.Analytical Chemistry,1998,70(9):1682-1685 [11]Niwa O,Xu Y,Halsall H B,et al.Small-volume voltammetric detection of 4-aminophenol with interdigitated array electrodes and its application to electrochemical enzyme immunoassay.Analytical Chemistry,1993,65(11):1559-1563 [12] Zhong Lin Wang,Jinhui Song.Piezolectric Nanogenerators Based on Zinc Oxide Nanowire Arrays[J].Science, 2006, 312(5771): 242-246.[13] Xudong Wang, Jinhui Song, Jin Liu, Zhong Lin Wang.Direct-Current Nanogenerator Driven by Ultrasonic Waves, Science, 2007, 316(5821): 102-105.[14]吴润,谢长生.粉状纳米材料的表面研究进展与展望[J].材料导报.2000,14(10):43~46.[15]徐滨士.纳米表面工程[M].北京:化学工业出版社,2004:15~57.[16]卞志昕.小尺寸的大机遇——从美国纳米科技现状看未来[J]新材料产业,2005,10 [17]于辉,翟庆洲,蔡建岩.纳米材料近年来的研发与应用进展[J]湿法冶金,2005,02 [18]陈怡.谈谈纳米材料的发展前景与应用[J]科技信息,2007,10 [19]刘红.2006年世界前沿技术发展态势[J]国际技术经济研究,2007,02
第四篇:“纳米材料与纳米技术”课程论文
课程名称:纳米材料与纳米技术
论文题目:纳米材料与技术的发展现状与趋势
学院:材料与能源学院
姓名:夏国东
学好:3110006707
纳米材料与技术的反转现状与趋势
21世纪前20年,是发展纳米技术的关键时期。由于纳米材料特殊的性能,将纳米科技和纳米材料应用到工业生产的各个领域都能带来产品性能上的改变,或在性能上有较大程度的提高。利用纳米科技对传统工业,特别是重工业进行改造,将会带来新的机遇,其中存在很大的拓展空间,这已是国外大企业的技术秘密。英特尔、IBM、SONY、夏普、东芝、丰田、三菱、日立、富士等具有国际影响的大型企业集团纷纷投入巨资开发自己的纳米技术,并到得了令世人瞩目的研究成果。纳米技术在经历了从无到有的发展之后,已经初步形成了规模化的产业。欧盟、日本、俄罗斯、澳大利亚、加拿大、中国、韩国、以色列、新西兰等国在纳米材料领域的投资较大。日本国会提出要把发展纳米技术作为今后数十年日本的立国之本,政府机构和大公司是其研究资金的主要来源,中小企业的作用很小。
中国在上世纪80年代,将纳米材料科学列入国家“863计划”、和国家自然基金项目,投资上亿元用于有关纳米材料和技术的研究项目。但我国的纳米技术水平与欧美等国的差距很大。目前我国有50 多个大学20多家研究机构和300多所企业从事纳米研究,已经建立了10多条纳米技术生产线,以纳米技术注册的公司100多个,主要生产超细纳米粉末、生物化学纳米粉末等初级产品。
目前纳米材料与技术在各方面的应用越来越广泛,小到日常使用的刀具,大到航空航天,都遍布纳米材料的身影。
1、纳米技术在建筑涂料中的应用
涂料是建筑物的内衣(内墙涂料)和外衣(外墙涂料),国内传统的涂料普遍存在悬浮稳定性差、不耐老化、耐洗刷性差、光洁度不高等缺陷。纳米复合涂料就是将纳米粉体用于涂料中所得到的一类具有耐老化、抗辐射、剥离强度高或具有某些特殊功能的涂料。在建材(特别是建筑涂料)方面的应用已经显示出了它的独特魅力。
2、纳米技术在混凝土材料中的应用
随着社会工业化的深入发展和我国基础建设的广泛开展,水泥混凝土作为一种传统的建材,其产量和用量都在不断地增加,高性能混凝土已成为水泥基复合材料领域中的研究热点。同时,许多特殊领域要求水泥混凝土具有一定的功能性,如希望其具有吸声、防冻、高强且高韧性等功能。纳米材料由于具有小尺寸效应、量子效应、表面及界面效应等优异特性,因而能够在结构或功能上赋予其所添加体系许多不同于传统材料的性能。利用纳米技术开发新型的混凝土可大幅度提高混凝土的强度、施工性能和耐久性能。
3、纳米技术在陶瓷材料中的应用
二十世纪90年代初,日本Nihara首次报道了以纳米尺寸SiC颗粒为第二相的纳米复相陶瓷具有很高的力学性能,并具有很多独特的性能。含有20%纳米钴粉的金属陶瓷是火箭喷气口的耐高温材料。氧化物纳米材料在这方面都优于同质传统陶瓷材料,在陶瓷基中添加其他纳米微粒的效果也正在研究。利用纳米粒子特殊的光电磁特性制成太阳能陶瓷、远红外陶瓷等,用于建筑物饰面,可开发太阳能,调节环境温度,促进人们身体健康。纳米技术在陶瓷上的应用潜力不可估量。
4、在国防科技上的应用
纳米技术将对国防军事领域带来革命性的影响。例如:纳米电子器件将用于虚拟训练系统和战场上的实时联系;对化学、生物、核武器的纳米探测系统;新型纳米材料可以提高常规武器的打击与防护能力;由纳米微机械系统制造的小型机器人可以完成特殊的侦察和打击任务;纳米卫星可用一枚小型运载火箭发射千百颗,按不同轨道组成卫星网,监视地球上的每一个角落,使战场更加透明。而纳米材料在隐身技术上的应用尤其引人注目。在雷达隐身技术中,超高频段电磁波吸波材料的制备是关键。纳米材料正被作为新一代隐身材料加以研制。
5、纳米医学和生物学
从蛋白质、DNA、RNA到病毒,都在1-100nm的尺度范围,从而纳米结构也是生命现象中基本的东西。细胞中的细胞器和其它的结构单元都是执行某种功能的“纳米机械”,细胞就象一个个“纳米车间”,植物中的光合作用等都是“纳米工厂”的典型例子。纳米微粒的尺寸常常比生物体内的细胞、红血球还要小,这就为医学研究提供了新的契机。
经过几十年对纳米技术的研究探索,现在科学家已经能够在实验室操纵单个原子,纳米技术有了飞跃式的发展。纳米技术的应用研究正在半导体芯片、癌症诊断、光学新材料和生物分子追踪4大领域高速发展。可以预测:不久的将来纳米金属氧化物半导体场效应管、平面显示用发光纳米粒子与纳米复合物、纳米光子晶体将应运而生;用于集成电路的单电子晶体管、记忆及逻辑元件、分子化学组装计算机将投入应用;分子、原子簇的控制和自组装、量子逻辑器件、分子电子器件、纳米机器人、集成生物化学传感器等将被研究制造出来。
新产物的出现总是伴随着优点与缺点,纳米材料的发展也不是一帆风顺的,随着人们对纳米材料的认识不断加深,一些存在的问题也不断被发掘出来。
1、职业暴露人群,包括纳米技术的研发人员和工人的健康安全问题。根据现有的毒理学研究,纳米粉尘和颗粒有可能通过呼吸和皮肤接触进入人体。这就给长期暴露在纳米材料氛围中的一线工人和研发人员的健康带来潜在威胁。此外,纳米材料还有一个特点就是易燃易爆。万一因为操作不当等带来火灾或者爆炸,后果不堪设想。因此,如何切实保护在纳米材料生产场所中暴露人员的健康,以及实验室和工作场所纳米材料的管理、纳米材料运输过程中的安全措施以及一旦发生危险的危机处理问题等应该成为劳动保护法和工业环境法研究和关注的对象。
2、消费者的权益问题。随着纳米技术的产业化程度的提高,目前,在化妆品和食品中纳米技术的应用越来越多。市场上的化妆品和体育用品有许多是纳米材料产品,比如说防晒霜和口红。食品包装中的聚合物基纳米复合材料(PNMC)的应用、作为食品机械的润滑剂、纳米磁致冷工质和食品机械原材料中橡胶和塑料的改性等等都用到纳米材料。毫无疑问这些材料具有独特的优点。但是在安全上也具有不确定性。但目前进行标识的纳米材料还微乎其微。从知情同意的伦理原则出发,消费者和相关人员有权知道自己所接触的材料的内容及其风险程度。
3、环境保护问题。研究证明,不仅在纳米技术的工作场所的环境问题关系到相关人员的健康,而且废弃的纳米材料进入空气、土壤、水体等环境后,可以产生一系列环境过程,最终对人和整个生物链产生负面影响。由于纳米材料具有强烈的吸附能力。在扩散、迁移过程中,还能吸附大气、土壤中存在的一些常见化学污染物如多环芳烃、农药、重金属离子等。因此,环境法应该研究纳米材料的环境问题,尤其必须加强废弃纳米材料的管理。
4、隐私权的保护问题。随着纳米器件的微型化,纳米技术在医学、社会治安和国防方面具有广泛的作用,但同时也构成对个人隐私的威胁。比如,通过将纳米设备嵌入对象物(身体或者物件)中,可以监视和跟踪目标,搜集个人信息和行为习惯。而可以储存一个人的全部基因和疾病信息的纳米芯片有可能成为被利用的工具,在劳资关系方面,成为企业用人歧视的理由或者成为保险公司限制患者自由的砝码。面对高新技术的应用如何保护个人的隐私权,是摆在我们法律工作者面前的一个重要问题
在技术和经济全球化的今天,纳米技术的许多前沿问题亦如能源问题、环境问题以及生物技术的问题一样,不是基于一个国家的力量所能解决的。一旦国家之间与纳米技术相关的法律框架存在不同,就不可避免地会导致国际间合作研究的障碍,以及全球纳米技术风险与利益分配不公等问题,因此,有必要在一定的国际法体系下就纳米技术发展中的某些基本的标准、原理达成一致意见,实现各国相关法律体系的协调。在此基础上,制定全球性的指导纳米技术发展的基本原则框架,促进成员国和公众对于纳米技术的关注,真正推动纳米技术风险的“善治”。而如果没有一个全球治理的框架协议,将导致纳米技术发展中的恶意竞争,从而最终阻碍纳米技术的健康发展。
纳米材料作为一种新型高科技材料,毫无疑问会引起一系列强烈的变革,中国对与纳米材料的研究与重视程度仍然落后于西方国家,在未来,如何在纳米材料领域更进一步不单是前人的责任更是我们大学生的责任,只有不断的自强不息,才能让祖国在未来高科技时代中不落于人后!
关 键 词:纳米材料,纳米科技,进展,应用,前景,问题
摘 要: 纳米材料是21世纪的新型发展领域,在各个方面都有重大的应用,带来很多技术改革和创新,但是也存在一些不用忽视的问题,未来的发展需要靠我们的努力。
参考文献:国家新材料行业生产力促进中心、国家新材料产业发展战略咨询委员会和北京麦肯资讯有限公司联合编辑出版的《中国新材料发展报告》
倪星元 姚兰芳 沈军 周斌 编著 《纳米材料制备技术》 化学工业出版社 张立德,牟季美,纳米材料和纳米结构,科学出版社,2001
第五篇:纳米材料与纳米技术课程论文要求
“纳米材料与纳米技术”课程论文要求
根据本课程的教学内容,结合参考文献,对纳米材料与纳米技术进行综述。具体要求如下:
1.封面:广东工业大学课程论文,课程名称,论文题目,姓名、学院、学号
(10分)2.正文4000-6000字
(15分)
3.A4纸单面打印,正确排版(5号字,小标题,页码,行距,等等)
(15分)4.正文内容:要求用自己的语言,按自己的逻辑对纳米材料与纳米技术现状、应用、发展趋势、存在问题等进行论述,要有自己的分析和见解
(50分)
5.摘要、关键词及3篇以上参考文献,不可或缺;参考文献写作格式:1)作者,作者,作者等.论文名称.刊物名称,年(期):起止页.,2)作者,作者,作者等.著作名称.出版社,出版地址,出版年月.(10分)
6.严禁在网上直接下载,一经发现,取消该课程成绩。