稠油污水特性[合集五篇]

时间:2019-05-14 04:25:18下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《稠油污水特性》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《稠油污水特性》。

第一篇:稠油污水特性

稠油污水特性

产生于油气田勘探开发过程中,由于各油气田所处的油藏地质、开采工艺和开采年限等不同,导致了油气田污水的水质水量各不相同。因此,稠油污水的深度处理和达标排放在技术上是一个难题。充分了解稠油污水的有机组成及其可生化性,对选取合适的污水处理工艺流程和获得较优的工艺参数都是非常重要的。

本文针对北方某稠油污水进行了中试研究,通过采用物化-厌氧-好氧串连处理方法,对不同阶段的出水进行气相色谱-质谱法(GC/MS)分析测试,定性分析了稠油污水有机组分,结合以上分析数据简要评估了有机组分在物化、生化处理过程中的降解和演变状况。并研究其可生化性变化,为稠油废水的达标处理提供理论依据。稠油污水的特性

①稠油污水的油水密度差小。稀油的密度在880kg/m3以下,通常约为840kg/m3;而稠油的平均密度为900kg/m3,一些特超稠油的密度在990kg/m3以上;

②稠油污水具有更多杂质,开发过程中往往加入降粘剂,使稠油污水的成分更加复杂;

③稠油污水乳化严重,给稠油污水的破乳增加困难; ④稠油污水具有较大的粘滞性,特别是在水温低时更为显著;

⑤稠油污水的水温高,稀油的输送温度只要在50℃左右即可,但在开发过程中为了降低原油粘度往往要将温度提高到70-80℃;

⑥稠油污水中不仅含有大量的阳离子(如Na+,K+,Ca2+,Mg2+,Ba2+,Sr2+,Fe2+等)和阴离子(如Cl-,SO42-,CO32-,HCO3-等),它们会影响稠油污水的缓冲能力、含盐量和结垢倾向,而且还含有少量不同重金属(如Cr,Cu,Pb、Hg,Ni,Ag和Zn等)的化合物。有些稠油污水中还含有微量放射性化学物质如K40,U238,Th232,Ra226。镭可与钙、钡,锶等离子共沉形成碳酸盐和硫酸盐垢。由于稠油密度高。粘度大、胶质和沥青质含量高,造成原油与水的密度差异小;胶质和沥青具有天然乳化性质,油珠凝聚增加困难,给原油回收也造成困难[1]。稠油污水的处理,是稠油开采工艺的一个组成部分,应该从系统工程角度来处理好稠油污水处理的各个环节。

第二篇:稠油污水深度处理与回用技术探讨

超稠油污水净化处理技术探讨 前言

随着油田开采进入中后期,采出原油含水量高达60 %~90 % ,大量的含油污水直接排放到水环境中,一方面造成严重的环境污染,同时也造成宝贵的水资源和油资源的严重浪费。如何节能、降耗、保护环境,使能量、水资源重复使用,已成为石油工业的共性问题。超稠油分离出的污水水质复杂,一般具有高温(70℃以上)、高含油量(> 10 000 mg/ L)、高悬浮物含量的特性。所含超稠油粘度大、密度与水接近(0.997mg/ L)、流动性差(相变温度拐点> 58 ℃)。该污水稳定性极强,室内放置几个月或更长的时间都不发生变化,其原因是在原油开采和处理过程中加入大量的化学助剂,污水形成了比较稳定的乳化液,很难破乳。另外,污水中油和悬浮物含量高,使普通净化剂对这种稳定的乳化液作用甚微。另因超稠油的粘度大极易给整个处理工艺,尤其是后续过滤工序带来致命的冲击,严重时整个处理工程面临报废的危险。为此,为了达到污水处理的预期目标,必须研制开发具有极强适用性的污水净化装置。本文介绍了新疆油田在稠油污水处理和回用方面的关键技术和成熟经验,采用强酸性树脂软化技术和化学清洗技术实现了稠油污水回用注汽锅炉。六九区污水处理站采用高效水质稳定技术,使处理后的污水达到了GB 8978一1996((污水综合排放标准》的二级标准,稠油污水在处理后符合GB 1576—2008((工业锅炉水质》的要求,大幅度降低了注汽锅炉的运行成本;将60℃以上的稠油污水替代清水回注稀油油藏,热水驱油,改善了驱油效果,同时根据污水温度较高的特点,对注水井井口的保温工艺进行改进,实现了稠油污水热能的综合利用,为油田污水治理和回用提供了借鉴。

引言

油田污水的处理和回用一直是油田科技工作者关注的焦点,特别是随着油田开发的不断深入,部分油田已进入高含水开采期,因而污水处理和回用工作显得更为重要。新疆油田公司重油开发公司经过多年的摸索,摸索出一套将稠油污水处理后用于油田注水和注汽锅炉给水的技术,可充分利用热采稠油含油污水温度高的特点,实现热能的综合利用和水资源的循环使用,对于降低稠油生产成本、保护环境和实现油田的可持续发展具有重要意义。

一、油田污水处理的基本方法概述

油田污水主要包括原油脱出水(又名油田采出水)、钻井污水及站内其它类型的含油污水。油田污水的处理依据油田生产、环境等因素可以有多种方式。当油田需要注水时,油田污水经处理后回注地层,此时要对水中的悬浮物、油等多项指标进行严格控制,防止其对地层产生伤害。如果是作为蒸汽发生器或锅炉的给水,则要严格控制水中的钙、镁等易结垢的离子含量、总矿化度以及水中的油含量等。如果处理后排放,则根据当地环境要求,将污水处理到回注排放标准。我国一些干旱地区,水资源严重缺乏,如何将采油过程中产生的污水变废为宝,处理后用于饮用或灌溉,具有十分重要的现实意义。钻井污水成分也十分复杂,主要包括钻井液、洗井液等。钻井污水的污染物主要包括钻屑、石油、粘度控制剂(如粘土)、加重剂、粘土稳定剂、腐蚀剂、防腐剂、杀菌剂、润滑剂、地层亲和剂、油基解卡剂、消泡剂等,钻井污水中还含有重金属。其它类型污水主要包括油污泥堆放场所的渗滤水、洗涤设备的污水、油田地表径流雨水、生活污水以及事故性泄露和排放引起的污染水体等。由于油田污水种类多,地层差异及钻井工艺不同等原因,各油田污水处理站不仅水质差异大,而且油田污水的水质变化大,这为油田污水的处理带来困难。现状油田污水主要包括油田采出水、钻井污水及其他类型的含油污水,油田水质特点和生产目的不同,处理方式不同。随着环保和油田回注水水质要求的提高,中外油田的污水治理技术已经得到了改进和提高,由原来的隔油一浮选除油一过滤技术,改变为隔油一混凝气浮一生化一过滤技术和物化预处理一水解酸化一生化一过滤技术。综合起来,油田污水的处理基本方法一般有以下三种。

1、物理法

膜分离法膜分离法是利用特殊膜所具有的选择透过性,对污水中某些微粒或离子性物质进行分离和浓缩的方法。近年来,加大了膜处理技术的研发力度。王农村等采用改性的PVC合金超滤膜法对油田采出水进行了深度处理。处理后水质达到了榆树林油田特低渗透油层要求的回注水水质指标。因此,各种膜处理方法的结合,或与其他方法的相互结合以及复合膜的研发是该方法的发展趋势。吸附法吸附法是利用吸附剂的多孔性和较大的比表面积,将油田污水中的溶解油和其他溶解性有机物吸附在表面,达到油水分离的目的。常用于含油污水的深度处理。其最新研究进展体现在高效、经济吸附剂的开发与应用。磁吸附分离法是其最新研究成果。郑学海等用炼钢厂排放的烟气和气溶胶凝聚物,通过静电除尘后的“红土”状细粉作磁性物质载体处理含油污水,除油率可达80%--90%。浮选法浮选法又称气浮法,应用广泛,一般与絮凝法结合使用。气浮法还具有充氧的功效,能提高微生物的生化降解性能,可作为生化法的预处理技术。目前中外对气浮法的研究多集中在气浮装置的革新、改进以及气浮工艺优化组合方面。水力旋流法水力旋流法是国外20世纪80年代末开始开发和应用的高效除油法,在陆上和海上油田均有应用Dz+la3,是油水分离技术的发展趋势。粗粒化聚结法该方法主要用于重力除油工艺之前,可大幅度提高除油效果。2.2化学法

水解酸化法水解酸化法是在水解菌的作用下,难降解的大分子有机物发生开环裂解或断链,最终转化为易生物降解的小分子有机物,从而提高油田污水的可生化性,减少后续处理负荷。该方法需要和生化法结合使用,形成水解酸化一生化处理工艺。王新刚等采用水解酸化一生物接触氧化法处理高盐含油污水,将污水的可生化性提高了10.2%;当进水盐的质量浓度为12~189/L时,系统对有机物的去除率达到84.54%,除油率达到88.4%。化学氧化法化学氧化法是在催化剂作用下,用化学氧化剂将污水中呈溶解状态的无机物和有机物氧化成微毒或无毒物质,使之稳定化或转化成易与水分离的形态,以提高其可生化性。包括臭氧法、UV/O。氧化法、Uv/H。氧化法和催化氧化法等,一般作为预处理技术或与其他方法联用。超临界水氧化技术因其快速和高效的优点,近年来得到了迅速发展。王亮等[16]在间歇式超临界水氧化反应装置上进行的含油污水的超临界水氧化实验结果表明,该方法是一种高效、快速的有机废弃物处理技术。化学絮凝法化学絮凝法普遍应用于各油田,一般作为预处理技术与气浮法联合使用。常用的絮凝剂有无机絮凝剂、有机絮凝剂(合成类有机高分子和天然改性类有机高分子絮凝剂)和复合絮凝剂。有机高分子絮凝剂具有用量少、效率高、处理速度快和产生污泥量少等优点,因此近年来研究发展迅速,在油田污水处理中研究及运用较多。

2.3生化法 生化法利用微生物的生物化学作用使污水得到净化,包括厌氧生物处理法和好氧生物处理法(即活性污泥法、生物膜法、接触氧化法、纯氧曝气法等)。对含油污水分离和筛选优势菌种的研究是生化法的发展方向。吕荣湖等选用聚乙烯醇和海藻酸钠复配作为包埋固定化载体材料,通过包埋固定化微生物法固定除油菌,结果表明,在25--40℃、处理时间为6h的条件下,乳化油去除率达85%~90%,含油量由20---50mg/L降至5mg/L以下。

二、稠油污水水质分析

稠油污水水质较复杂,是含有多种杂质且水质波动较大的工业废水,具有如下特点:一是稠油平均密度为900 kg/m3以上,其原油颗粒可长期悬浮在水中;其次,超稠油污水温度较高,在开发稠油过程中为降低原油黏度一般将温度提高到60~80℃;乳化较严重,废水易形成水包油型乳状液,污水平均含油一般在500 mg/L。稠油污水含有大量的阴阳离子和有机成分,它们会影响稠油污水的缓冲能力、含盐量和结垢倾向。

稠油采出水不仅被原油污染,成分复杂多变,而且在高温、高压的开采过程中携带了许多悬浮固体、溶解了各种盐类;在采油和脱水处理过程中加入了各种化学药剂,使稠油采出水含有多种杂质成分。新疆油田稠油污水属NaHC0。型、偏碱性、不同区块污水矿化度在2000~6000 mg/L之间、温度60--80℃、有机物和悬浮物含量波动较大。根据稠油废水所含污染物种类和数量,以及热采锅炉用水水质指标,稠油废水处理用于回注和热采锅炉给水,主要应处理废水中油、悬浮物和硬度及其他易引起结垢和腐蚀的成分。超稠油污水经深度处理后回用于热采锅炉是解决稠油、超稠油污水处置问题的有效途径。热采锅炉是在高温、高压条件下运行的,对用水水质有着严格要求,不合格水质会对锅炉产生结垢、积盐、腐蚀三大危害。结垢时炉管表层形成的导热系数很低的垢层严重影响传热效率,造成管壁过热使其强度下降,甚至变形或发生爆管事故,积盐能降低锅炉的热效率,严重则会造成爆管。腐蚀造成炉管壁减薄和苛性脆化,影响安全生产,缩短锅炉使用寿命。所以锅炉入水必须进行处理,达到锅炉安全运行指标时才可以使用。

2稠油污水处理技术

2.1稠油污水处理技术原理

新疆油田公司六九区污水处理站采用“油田污水水质高效净化与稳定技术”处理稠油污水,超稠油污水中的石油类主要以浮油、分散油、乳化油和溶解油4种状态存在Ⅲ,平均浓度达到4 000 mg/L以上,完全具备回收利用的价值。超稠油污水预处理工艺应首先解决石油类的回收问题,相应CODcr也会大幅度降低。因此确定石油类、CODcr为超稠油污水预处理的主要目标污染物,选择合适的温度、水处理剂及其投加量,采用合理工艺,使污水中石油类、cODcr等指标达到下游污水场进水要求,从根本上解决对污水处理设施的冲击。大量的试验研究表明,保持较长的油水分离时间可以回收大部分的浮油与分油;破乳可使污水的乳化油回收率高达90%以上,随温度升高,乳化油回收率有所增加;从原油比重随温度变化情况看,再对出水进行混凝浮选处理,COD、悬浮物等指标大幅度降低。最终通过重力沉降、化学反应、混凝沉降、压力过滤等手段除去油、悬浮物、水中结垢与腐蚀因子,抑制细菌繁殖。

其主要机理:油田产出污水中乳化油破乳、固体颗粒聚并、腐蚀、结垢及细菌繁殖,均与离子有关,采用离子调整技术向水中加入特定的离子调整剂,调整水中有关离子含量,去除或减少水中具有腐蚀、结垢倾向的离子(如Ca

2十、Fe2+、CO。2_、HCO。一等),控制腐蚀、结垢,抑制细菌生长;对于水中的乳化油和固体悬浮微粒。则通过加入高价阳离子,中和其表面电荷,破坏其稳定性,使乳化油乳聚并成游离油而被分离,固体悬浮微粒聚并增大而迅速沉积;处理后的污水略偏碱性(pH=8),在碱性条件下,细菌细胞中酶的活性降低,新陈代谢变慢,细菌逐渐死亡,最后投加絮凝剂使上述吸附了油的各种难溶性微粒、细菌残骸絮凝长大,并在重力作用下迅速沉降。

2.2稠油污水处理技术特点 采用旋流反应技术,使药剂在反应罐内充分反应,同“高效水质净化与稳定技术”配套使用,处理效率高、处理量大,现场生产稳定;将斜板沉降罐改为下进水、上出水,有利于水与悬浮物的分离;利用改性纤维球亲油憎水的特点和独特的压紧装置,实现了污水的精细过滤,采用一套工艺两套流程实现了污水回注和污水外排达到GB 8978—1996((污水综合排放标准》;混凝沉降段的4座加药反应罐、4座斜板沉降罐,采用单泵一单罐一单罐流程,避免了因偏流产生加药不均而造成的水质不稳定;沉降段2座9000 m3调储罐具有沉降功能,可相互调换使用,使系统具有较强灵活性,保证了来液有缓冲空间的同时对来液水质有一定平衡作用;全站采用集散控制系统进行自动控制,保证了水质稳定合格,减轻了员工的劳动强度。

2.3稠油污水处理效果分析

六九区污水处理站于2001年9月投产后,在经历了多次水质变化的冲击后。仍实现了处理后外排污水水质的稳定。选取六九区污水处理站投产以来,每年10月出水水质全分析数据,处理后污水水质指标与GB 8978—1996《污水综合排放标准》的对比 见表1。

表1表明:六九区污水处理站运行稳定,六九区污水处理站处理后的污水达到了GB 8978—1996((污水综合排放标准》的二级标准,可以达标排放。3稠油污水回用技术六九区污水处理站出水实现了达标排放,但是,在达标排放的同时造成油田水资源的严重浪费。通过对比符合GB 1576--2008{{工业锅炉水质》的要求,如表2所示。

由表2看出:只需要将处理后的稠油污水中的悬浮物除去,再经过软化处理除去其中的金属离子,就能够满足注汽锅炉回用要求。六九区污水处理站将处理合格后的污水通过管道输送到各个注汽站,经过储罐沉降除去水中的悬浮物,再进行软化处理,使稠油污水达到注汽锅炉给水标准后供给注汽锅炉。根据六九区污水特点和近年来树脂行业的发展情况,采用薄壳型强酸性树脂实现了污水软化,达到了注汽锅炉给水要求。研究和试验表明:薄壳型强酸性树脂是适合稠油污水软化的,其长期运行能力除与树脂本身性能有关外,与再生液浓度、运行参数有密 切关系,在国内油田首次实现了利用强酸性树脂回用稠油污水的工业化应用。处理后的稠油污水符合GB 1576~2008((工业锅炉水质》的要求,实现稠油污水的软化成为污水回用注汽锅炉的关键技术,结果见表2。

在大规模工业性试验一年(回用污水160654 m3)后,对炉管进行解剖检验,锅炉出口管线垢层厚度为278~328“1TI。炉解剖结果表明:实际运行情况与理论研究结果相符,炉管结垢与回用初期蒸汽干度过高有关。及时调整蒸汽干度,降低了结垢趋势。在进行可行性研究后,2002年两台注汽锅炉进行了试验。2003年1月在六九区进行了污水回用注汽锅炉大规模工业性试验,回用规模为3000 m3/d,在解决了关键技术问题后,稠油污水回用规模上升到回用量2.5×104 rn3/d,稠油污水回用锅炉获得成功,2008年根据六九区污水处理站的成功经验,在克浅十井区建成一座年处理量55万t的稠油污水处理站。六九区污水处理站处理后的稠油污水在满足回用锅炉需求后,水量还有部分完全利用。2003年,将 60℃以上的稠油污水替代清水回注稀油油藏,热水驱油,大大改善了驱油效果,同时根据污水温度较高的特点,对注水井井口的保温工艺进行改进,使用污水对注水井保温,实现了稠油污水热能的综合利用。结论

近些年来,我国油田加大了环保的投入力度,积极治理老污染源,改进设备工艺、使用新型节能减排环保设施、加大环保工程建设,进行责任区划分和属汽完全可行,解决了超稠油污水外排污染环境、高温热能浪费和锅炉用清水资源紧张的问题,填补了国内在超稠油污水深度处理技术上的空白,达到了国际领先水平。该项目的研究成功对于超稠油污水深度处理批量化顺利实现提供了有力保障,具有积极的社会效益和经济效益,实现了稠油污水的工业化应用,降低了稠油开采成本,减少了对环境的危害,实现了水资源的循环利用和热能的综合利用,取得了可观的经济效益、环境效益和良好的社会效益。

第三篇:稠油开采技术

稠油开采技术

如何降低成本,最大限度地把稠油、超稠油开采出来,是世界石油界面临的共同课题。稠油由于粘度高,给开采、集输和加工带来很大困难,国内外学者做了大量研究工作来降低稠油的粘度。我国稠油开采90%以上依靠蒸汽吞吐或蒸汽驱,采收率能达到30%左右。深化热采稠油油藏井网优化调整和水平井整体开发的技术经济研究,配套全过程油层保护技术、水平井均匀注汽、热化学辅助吞吐、高效井筒降粘举升等工艺技术驱动,保障了热采稠油产量的持续增长。

目前提高稠油油藏产量的思路主要是降低稠油粘度、提高油藏渗透率、增大生产压差,主要成熟技术是注蒸汽热采、火烧油层、热水+化学吞吐、携砂冷采,等等。

1、热采技术

注蒸汽热采的开采机理主要是通过加热降粘改善流变性,高温改善油相渗透率以及热膨胀作用、蒸汽(热水)动力驱油作用、溶解气驱作用。关于稠油的蒸馏、热裂解和混相驱作用,原油和水的蒸汽压随温度升高而升高,当油、水总蒸汽压等于或高于系统压力时,混合物将沸腾,使原油中轻组分分离,即为蒸馏作用。蒸馏作用引起混合液沸腾产生的扰动效应能使死孔隙中的原油向连通孔隙中转移,从而提高驱油效率。高温水蒸气对稠油的重组分有热裂解作用,即产生分子量较小的烃类。在蒸汽驱过程中,从稠油中馏出的烃馏分和热裂解产生的轻烃进入热水前沿温度较低的地带时,又重新冷凝并与油层中原始油混合将其稀释,降低了原始油的密度和粘度,形成了对原始油的混相驱。注蒸汽热采的乳化驱作用同样很有意义,蒸汽驱过程中,蒸汽前沿的蒸馏馏分凝析后与水发生乳化作用,形成水包油或油包水乳化液,这种乳化液比水的粘度高得多。在非均质储层中,这种高粘度的乳状液会降低蒸汽和热水的指进,提高驱油的波及体积。热采井完井时的主要问题是,360℃高温蒸汽会导致套管发生断裂和损坏。为此,采用特超稠油HDCS技术,将胶质、沥青质团状结构分解分散,形成以胶质沥青质为分散相、原油轻质组分为连续相的分散体系。特超稠油HDCS强化采油技术已在胜利油田成功应用。加强注采参数优化研究,针对不同原油性质、不同油层厚度和水平段长度,明晰技术经济政策界限,合理配置降粘剂、CO2和蒸汽用量,可提高应用效果和效益。

2、出砂冷采

1986年,为了降低采油成本,提高稠油开采经济效益,加拿大的一些小石油公司率先开展了稠油出砂冷采的探索性矿场试验。到90年代中期,稠油出砂冷采已成为热点,不注热量、不防砂,采用螺杆泵将原油和砂一起采出。文献指出,螺杆泵连续抽吸避免了稠油网状结构的恢复,稠油形成稳定的流动地带,在油带前缘,油滴被启动而增溶到油带中,因此,油带具有很好的流动能力,表现到生产上就是含水下降。而抽油泵的脉动抽吸,使得地层孔隙中的油流难以形成连续流,水相侵入到油流通道,微观上表现为降低了油滴前后的压差,油滴更难启动,若水相能量充足,油滴就一直不能流动,表现到生产上就是长期高含水。稠油出砂冷采技术对地层原油含有溶解气的各类疏松砂岩稠油油藏具有较广泛的适用性,它通过使油层大量出砂形成蚯蚓洞和形成稳定泡沫油而获得较高的原油产量。形成地层中“蚯蚓 洞”,可提高油层渗透率;形成泡沫油,则给油层提供了内部驱动能量。乐安油田草13块配套大孔径、深穿透、高孔密射孔、高压充填防砂与螺杆泵冷采配套技术,基本解决了粉细砂岩油藏防砂及稠油抽汲难题。

3、加降粘剂

王卓飞发现,乳化液在孔隙介质中的流动过程是一个复杂的随机游走过程,降低界面张力、提高毛管数可改善稠油油藏开发效果。向生产井井底注入表面活性物质,降粘剂在井下与原油相混合后产生乳化或分散作用,原油以小油珠的形式分散在水溶液中,形成比较稳定的水包油型乳状液体系。在流动过程中变原油之间内摩擦力为水之间的内摩擦力,因而流动阻力大大降低,达到了降粘开采的目的 [14]。比较常用的有GL、HRV-

2、PS、碱法造纸黑液、BM-

5、DJH-

1、HG系列降粘剂。鲁克沁油田通过加强化学吞吐油井化学降粘、化学吞吐、蒸汽吞吐、天然气吞吐等技术现场攻关试验、形成超深稠油开发技术路线。

4、电加热

采用电热采油工艺开采稠油、超稠油,在技术上是成熟的。对于远离油田基地的中小规模稠油油藏,由于其面临的主要开发瓶颈主要来自地面稠油的输送加热、降粘、脱水工艺等。因此笔者建议开展地下稠油变稀油技术攻关,将稠油开发转化为稀油开发问题。当然这存在比较突出的成本问题:电热采油工艺单井平均加热功率80kW/h,日耗电费约1000元。

5、注空气开发

R.G.Mooreetal 等研究了重油油藏冷采后采用注空气法(地下燃烧)的潜在应用状况[15]。由于冷采油田在冷采的经济界限内仍遗留大量的原油,而且蚯蚓洞型的通道处于衰竭油藏之中,因此它是注空气的理想候选油藏。蒸汽短时期进入衰竭油藏,会破坏“蚯蚓洞”,从而使受热通道产生较高的渗透率。受热的通道为可流动的原油到达

生产井提供流路后,随即实施油藏点火和注空气,蒸汽/燃烧法的综合应用可在薄油藏及持续注蒸汽无经济效益的油藏得到较高的经济效益。

6、SAGD SAGD是国际上开发超稠油的一项前沿技术。它是向地下连续注入蒸汽加热油层,将原油驱至周围生产井中,然后采出。利用SAGD技术开发超稠油的方式,已成为国际上超稠油开发的一项成熟技术。

在国外,SAGD技术通常针对成对水平井开发,而辽河油田采用的是直井注汽、水平井生产。这种开发方式的优点有三:①将原有的直井替代水平井进行注汽,相当于少打一口注汽水平井,经济且实用;②辽河油田超稠油油藏夹层复杂,油层连续性差,纵向连通不好。国外水平井通常为1000米深,而辽河油田的水平井只有几百米。采用直井注汽,辽河油田原有的井多的特点就成了优势,这口不行就改用另一口。③监测系统是辽河油田应用SAGD技术的又一创新,改变了国外用两口井进行监测的状况。SAGD先导试验开始以来,辽河油田科技工作者经过不懈努力,解决了高干度注汽技术、大排量举升技术、地面集输系统等诸多难题,且均达国际先进水平,满足了SAGD工艺需要。

7、掺稀油开采

掺稀油降粘是开采稠油的一种有效的方法,其优点是不伤害油层,不像掺活性水降粘开采,掺水后的油水混合液要到联合站去脱水,脱下的水还要解决出路问题,增加了原油生产成本。

8、微生物驱油

微生物驱油技术是通过细菌在油藏环境中繁殖、生长、代谢,利用细菌对原油的降解作用,产生的代谢产物使固液界面性质、渗流特性、原油物化性质发生变化,提高洗油效率。微生物作用可降低原油高碳链烃含量,降低原油粘度。美国密苏里大学在2002-2004年开展了浅层重油的微生物采油技术研究;2005年,微生物采油技术列入中国“973”科技项目。胜利油田已获得耐温80℃、耐盐150000mg/L的驱油菌种,对原油的降粘率最高达到95%。开展了4个区块的微生物驱油现场试验,累计增油6万余吨。F16菌组能降低原油粘度,对粘度3000mPa·s(50℃)的原油的降粘率在30%~85%,经F16菌组作用后,原油的非烃组分减少,同时代谢产物中的生物表面活性剂能有效地改善常规稠油的流动性。大港油田孔二北断块应用本源微生物采油,累计增油17866吨。

9、地热辅助采油技术

地热采油是利用地热资源,以深层高温开发流体(油、气、水及其混合物)将大量的热量带入浅油层,降低原油粘度,提高原油流动能力。为了减少热损失,最好不进行油、气、水分离,而且不经过地面,直接注入目的油层。胜利油田稠油热采和注水开发工艺技术非

常成熟,开发实践经验也很丰富,这为利用地热资源进行热水采油提供了便利。另外,与地热辅助采油技术相类似,笔者还初步研究了利用太阳能、风能和重力能辅助采油技术。

10、水热裂解开采稠油新技术

刘永建教授研究开发了水热裂解开采稠油新技术,在实验室内和采油现场取得了一些有意义的研究成果。水热裂解技术通过向油层加入适当的催化剂,使稠油在水热条件下实现部分催化裂解,不可逆地降低重质组分含量或改变其分子结构,降低了稠油的粘度。制备的稠油水热裂解催化剂有较好的催化效果,反应温度更接近于井下的实际温度。这是一个很好的攻关方向。

11、稠油热采地下复合催化降粘技术

中国石化报2007年10月9日报道了稠油热采地下复合催化降粘技术,该技术集表面活性剂降粘、水热裂解催化降粘和氧化催化降粘剂降粘等功能为一体,注入催化剂后原油就地裂解产生小分子的气体,增加了油层压力,延长了放喷时间,提高了产油量,为超稠油的开发提供了有力的技术支撑。

第四篇:城镇污水系统中病毒特性和规律相关研究分析

城镇污水系统中病毒特性和规律相关研究分析

导语:根据新型冠状病毒的生物学特征,研究了病毒在水体中的赋存状态,分析总结了国内外污水处理中病毒的相关研究,认为污水处理厂只要保持正常稳定运行,就能够有效降低污水中病毒的浓度,可阻断肠道病毒和呼吸道病毒通过污水处理厂出水进行传播。对比分析了污水处理消毒过程中的臭氧消毒、氯消毒、紫外线消毒工艺,再生水处理过程的多级屏障作用可以有效去除病毒,结合工艺控制可以保障出水安全。此外,指出了污水处理工艺中可能产生气溶胶风险的位置,给出了相应的防护建议。这对新冠肺炎期间指导城镇污水处理厂安全稳定运行,防止新型冠状病毒进一步传播扩散有着重要参考意义。

2019年12月,武汉暴发了一种以肺炎为特征的新型呼吸系统疾病,经分离鉴定,确认病原为一种新型冠状病毒,疫情发展迅速。2020年2月1日我国研究人员在新冠肺炎确诊患者的粪便中检测出新型冠状病毒(COVID-19)核酸阳性,2月13日中国疾控中心在患者排泄物中检测到了活体病毒。这一重大发现引起了污水处理行业的极大关注,生态环境部紧急发布了《关于做好新型冠状病毒感染的肺炎疫情医疗污水和城镇污水监管工作的通知》,明确要求各地必须加强医疗污水和城镇污水的监管工作,避免新型冠状病毒通过污水传播扩散。

01

病毒在污水中的赋存状态

1.1

污水中的病毒

根据流行病学研究,人和动物的排泄物中往往含有大量的病毒颗粒,这些病毒颗粒可能通过污水排放、化粪池系统渗滤液和农业区径流进入水环境。国内外科研工作者针对污水处理过程中致病菌的研究较多,对病毒的研究相对较少,而病毒的发生、存活和衰变与致病菌有很大不同[1]。目前在生活污水中已经发现了150多种肠道病毒[2],当人类通过受污染的水或食物接触到这些病毒时,理论上就存在一定的被感染风险。绝大多数关于城市水循环中病毒赋存状态的研究主要集中在肠道病毒上,而包膜病毒在结构上不同于肠病毒,因此一般认为包膜病毒在水中表现出的特性也有所不同。近年来,污水中的病毒宏基因组显示了人类病毒的多样性,这其中就包括一些包膜病毒[3]。

目前人类已知的五种冠状病毒粒子(MERS-CoV,HKU1-CoV,HCoVNL63,HCoV-OC43,HCoV-229E)在人体排泄物中都已经被检测到,综合国内外研究结论,可以认为冠状病毒不太可能对城市水循环卫生系统构成重大威胁[4]。

病毒感染人类需要同时具备4个必要条件:

a.病毒的存在;b.一定量的病毒浓度;c.易感染人员接触病毒;d.病毒与易感染体表面受体结合。目前尚未见到污水厂进水中检测出新冠病毒的报道,排泄物存在病毒不能简单推断为市政综合污水一定会感染人,污水的净化处理仍然是人类控制疫情传播不可替代的有效手段之一,但是从业人员的暴露风险确实增大。

关于COVID-19在污水系统中生命周期特征、规律的研究还较为有限,但COVID-19作为病毒的一种,其在污水中表现出的特征应该与其他病毒,尤其是冠状病毒有一定的相似性。因此,综合分析已有研究成果对于指导本次疫情期间污水厂安全稳定运行,防止新型冠状病毒传播扩散有着重要参考价值。

1.2

污水中的病毒浓度

污水中的病毒浓度取决于受感染人数和受感染个人传播病毒的速度。大多数污水中病毒数据是关于肠道病毒和qPCR法测量的,污水厂进水中基因组浓度高达108~109拷贝/L,受限于细胞培养技术和病毒提取方法,污水中病毒粒子数量的报道很少,只能由人体粪便或尿液样本中的病毒量大致推测。比如,Noroviru病毒在人类粪便样本中的基因组浓度可以达到1010拷贝/L[5-6],而在非疫情期间,该数值为109拷贝/L[7]。JCPyV病毒和BKPyV病毒在人类尿液中的基因组浓度为1010拷贝/L,在污水中的浓度为108拷贝/L[8]。SARS病毒在患者腹泻排泄物中的基因组浓度为1010拷贝/L,而患者尿液中的基因组浓度为2.5×107拷贝/L[9]。综合分析已有研究信息,疫情期间人类排泄物中病毒浓度可能提高1个数量级,而污水中病毒浓度比排泄物中约低1~2个数量级。

1.3

病毒在污水中的存活时间

病毒离开宿主细胞后能够存活一定时间,具体存活时间的长短跟病毒种类和环境条件有关,包括温度、有机物和微生物,其中温度是病毒存活的关键影响因素。病毒在污水中一般会吸附在泥砂、粘土、矿物等悬浮固体表面,这些物质可以为病毒提供保护,使病毒具有一定的逆境抗性从而延长其存活时间[10]。但同时如果这些固体沉淀下来,也可以成为去除病毒的一种机制[11]。需要注意的是,当病毒颗粒以聚集状态存在时,可以提高其在不利环境因素下的存活几率,这也同时提醒污水厂要高度重视污水处理工程中的污泥无害化处理环节。

病毒在生物体外表现出一系列对环境因素的敏感性,其中T90值(即在水环境中达到90%失活的时间)从几分钟到几年不等。污水管网水力停留时间一般少于半天,因此污水处理厂进水中有可能存在病毒。通常认为带有脂膜的病毒在水环境中很容易丧失感染性,但并不是所有的包膜病毒都能迅速失去传染性。病毒失活率受温度和基质影响较大,温度和盐度越高,病毒的失活率也越高[12-13]。在两项有关水中人类冠状病毒的研究中发现,温度对病毒的活性有显著影响,室温条件下的病毒样本的失活率比4℃条件下高出一个数量级[14]。研究表明,病毒存活率随着温度的升高而降低,这主要是由病毒外壳蛋白变性和环境中降解蛋白质的胞外酶活性增加引起的[10]。

污水的成分(有机氮组分、细菌病毒)和处理过程对病毒的生存影响较大,经过灭菌的污水中病毒的失活速率大于未灭菌的污水,污水中悬浮物和有机物提高了病毒在水环境中的生存能力。但是污水中的某些物质也能导致病毒加速失活,如冠状病毒在巴氏消毒的污水的T90远低于蒸馏水培养基[12]。

冠状病毒在未经过滤的初级污水中的存活时间比在过滤的初级污水中更长[14]。一项关于冠状病毒在水中存活时间的研究表明,TGEV和MHV两种冠状病毒在水(试剂纯)、地表水和巴氏杀菌的污水中可以长期存活,但传染性都很低,而且温度越高病毒的活性越低[11]。另外有研究表明冠状病毒在水环境中的传播要比肠道病毒少,因为冠状病毒在废水中会更快地失活,病毒粒子可在2~3天内减少99.9%,这与SARS-CoV存活数据相当[14-15]。可见,污水组分对病毒失活的影响是复杂的,并且不同的病毒和环境样本之间的关系存在显著差异,但污水处理过程对病毒去除作用无疑是正向的。

02

污水处理对病毒的去除作用

一旦病毒从宿主细胞中释放出来,它们就会暴露在各种物理、化学和生物等环境因素中,如同生物大分子一样存在,在这些环境因素中,物理、化学和生物因素均起到了重要的作用,随着市政污水处理厂处理流程的推进,病毒数量呈显著的降低趋势,最终出水中病毒的分布呈现对数正态关系[16]。表1列举了一些市政污水处理系统的进水和出水中病毒的分布情况[17-20]。

2.1

污水常规处理

研究表明,常规活性污泥法处理市政污水过程中病毒的去除率为0.65lg~2.85lg

[21]。一些病毒经过超细格栅就可实现0.1lg~1.0lg的去除率,经过生物段处理病毒浓度可进一步降低1.4lg~1.7lg[17]。有研究表明,砂滤通常可以去除10%~98%的病毒,如果在砂滤之前加入混凝工艺,病毒的去除率可提高到3lg[22]。

活性污泥可以去除很大一部分病毒,这个过程主要发生在生物池和二沉池中,生物池中的活性污泥有较大的比表面积,生物池中的病毒粒子可以吸附活性污泥的表面,最后和活性污泥一起进入二沉池,通过固液分离富集到二沉池底部污泥中,吸附在剩余污泥上的病毒逐渐失去活性。不同规模和处理工艺的污水处理过程可使感染性肠病毒减少约0~2lg,使感染性腺病毒减少2lg~3lg。一项针对5座市政污水处理厂的调查发现,污水处理厂从进水到消毒后的病毒浓度降低幅度可以达到1.9lg~5.0lg[23]。另外也有研究表明,较长水力停留时间和较低MLSS可以提高病毒的去除效果[24]。由于活性污泥的吸附作用也是物理过程,对病毒没有杀灭作用,后续的消毒工艺对于减少出水中病毒的数量至关重要。

MBR法是活性污泥法和膜过滤的集成。MBR法去除病毒的原理可归因于四种机制,即病毒附着在混合固体颗粒上拦截、病毒粒子被膜截留、病毒粒子被膜上附着层截留以及活性污泥细菌对病毒的捕食和酶分解失活[25]。仅从安全和消毒效果角度看MBR工艺优势明显,经过膜截留后降低了水的浊度,可以大幅度提升消毒效果,降低了出水暴露风险。据报道,在单一MBR法(出水未做进一步消毒处理)去除污水中的病毒效率在3.0lg~6.0lg之间[1]。MBR工艺的运行参数也会影响病毒的去除率。有报道表明,较长水力停留时间和较短的污泥泥龄可以提高病毒的去除效果[26],分析认为可能与污泥吸附病毒并快速排除有关。

不同处理工艺生物池混合液中病毒含量以及病毒在液相和固相中的分布未见相关研究,但是,由于存在剩余污泥的排放过程,MBR工艺不会无限浓缩富集病毒,水处理系统很快就可以达到稳态。另外,从活性污泥的吸附作用以及病毒在污泥中宜于存活来看,固相浓度理论上应该高于液相,由于相同进水条件下不同工艺生物池污泥总量基本相同,在完全混合的状态下,只要控制好气体和污泥处理环节,不同工艺病毒暴露风险应该差别不大。尽管如此,即使MBR工艺滤液中仍然可以检测到病毒的存在[1],为了保证出水病毒的去除率,疫情期间需要高度重视污水消毒工作,建议采用紫外消毒的污水处理厂,补充次氯酸钠消毒。

2.2

消毒处理

2.2.1

臭氧消毒

与氯相比,臭氧消毒效率更高,但是需要更高的运行成本。杀灭病毒时臭氧初始剂量一般为3~10

mg/L,接触时间约为10

min。有研究表明,臭氧和紫外线协同杀灭SARS

CoV的速度比有效氯快数百倍,而且可杀死对氯消毒剂有高度抵抗力的微生物[27]。水中臭氧含量为27.73mg/L,作用4min可完全灭活SARS病毒;臭氧含量为17.82mg/L作用4min和4.86mg/L作用10min,均可使SARS病毒的灭活率达100%[28]。这些参数可以为使用臭氧消毒的污水厂提供参考。

2.2.2

氯消毒

化学消毒剂如氯、二氧化氯、次氯酸钠和氯胺对病毒蛋白质外壳的损伤较大,足够高剂量的化学消毒剂还可以破坏病毒的核酸。王新为等考察了次氯酸钠和二氧化氯对医院污水的消毒效果,结果发现,SARS

CoV在污水中对含氯消毒剂的抵抗力比大肠杆菌低,当污水中游离余氯量保持在0.5

mg/L氯或2.19

mg/L二氧化氯以上时可以保证完全灭活污水中的SARS

CoV[29]。

一般市政污水深度处理消毒氯的使用剂量为5~20mg

/L,接触时间为30~60min。当氯的投加量﹥10

mg/L,接触时间为60

min时可以杀灭水体中的全部轮状病毒[8]。氯剂量为16和8

mg/L,接触时间为30

min,可分别杀灭污水中1.2lg和0.35lg的肠病毒。增加氯剂量或延长接触时间,即提高CT值可以有效提高病毒的杀灭效果。二氧化氯、次氯酸钠和氯胺也是替代的消毒剂,高浓度的次氯酸钠溶液可用于去除设备和管道上附着的污泥[30]。含有效氯为200、400、600

mg

/L的次氯酸钠溶液分别在20、20、10

min

对腺病毒灭活效果﹥4lg,600

mg

/L的次氯酸钠作用20

min

灭活效果达到100%[31]。也有研究表明二氧化氯去除病毒的效果比氯更好,而氯胺杀灭病毒的效果较差。需要指出的是用含氯消毒剂消毒时各种水中氮形态和有机物的含量对消毒效果有比较大的影响[32]。

2.2.3

紫外线消毒

紫外线主要破坏病毒的核酸,也会对病毒的蛋白质外壳产生一定破坏。徐丽梅研究了紫外线对Polioviru病毒的杀灭作用,低剂量的紫外光线能透过病毒蛋白质外壳导致病毒RNA的损伤[33]。波长为254

nm的紫外线照射5

min时,病毒数量明显减少,254

nm紫外线照射30

min时,感染细胞内检测不到病毒粒子。波长为254

nm的紫外线比365

nm的紫外线照射灭活腺病毒气溶胶的效果更显著,254

nm紫外线和65

℃热力对一些病毒有不同程度的灭活作用,紫外线照射可作为室内空间整体消毒的一种方法。不同病毒需要的紫外线消毒剂量见表2。

Ansaldi等人研究了紫外线对SARS

CoV、甲型流感病毒与呼吸道合胞病毒的灭活效果。紫外线(40

mW/cm2)下,分别作用2

min即可破坏病毒的核酸,使病毒失去全部活性[34]。

2.3

膜过滤

膜过滤工艺处理可以进一步减少水中病毒的数量,膜过滤法去除病毒是一个单纯的物理过程,即利用膜孔隙通道截留水中的病毒粒子。由于大多数病毒颗粒(10~300

nm)通常比微滤膜的孔径(100~1000

nm)小,因此过滤起始阶段病毒去除率较低,微滤膜的去除效果不到1

lg,但随着膜上污染物的积累过滤效率有所增加,即使膜上污染物在水力反冲洗时微滤膜仍能保持较高的病毒去除率。另外根据报道混凝-微滤系统可以减少4lg的病毒,长期过滤过程中膜的不可逆污染会改善混凝-微滤系统中病毒的去除,即使没有混凝预处理,膜也可以有效过滤病毒颗粒[35]。

超滤膜孔径大小约为2~50

nm,能彻底滤除水中的细菌、铁锈、胶体等有害物质,而且可以物理消除大多数病毒,并且随着膜表面形成滤饼层加厚可以进一步提高病毒的去除效率[36]。此外,通过调整跨膜压力(TMP)也可以实现更高的病毒去除率。带微量负电荷的超滤膜比带中性电荷的超滤膜更有利于病毒的清除[36]。

反渗透膜可以看作一种离子级的过滤器,可以过滤掉几乎所有冠状病毒和其他绝大多数病毒,这一点已经在2003年SARS期间在国内再生水厂运行结果得到充分证明。各种市政污水深度处理工艺对病毒的去除能力不同,总结见表3。

但是,需要注意的是膜组件的断丝率是影响病毒去除率的关键因素,疫情期间应切实加强膜完整性检测。

2.4

市政污水处理厂出水中的病毒

从公共健康角度来看,可以认为污水厂进、出水中可能带有病毒,所以,上述病毒感染人的四个条件中满足了第一个条件,但这只是说明污水处理厂出水有病毒存在的可能性,美国进行的大量与污水回用有关的流行病研究表明,再生水利用是安全的。2003年SARS暴发高峰期间,天津市卫生防病中心对市内各污水处理厂进、出水进行了检测,也均未发现SARS病毒。原因可能是污水处理厂正常运行时出水中病毒浓度和活性已经很低,达不到病毒的检出条件,少数病毒随着污水处理厂出水排放到地表水中,环境中的化学物质氧化、阳光中的紫外线等也会迅速使病毒失去活性[4]。

综合以上研究结论可知,现有城镇污水处理厂只要保持正常稳定运行,即可有效去除、杀灭污水的COVID-19,因此污水处理厂不会成为新冠肺炎的传染源。

2.5

污泥处理对病毒的去除作用

污水处理过程中单纯的沉淀和过滤过程仅是将病毒转移和富集到污泥中,因此,污泥中病毒的灭活也是不可忽视的,在污泥处置时要充分考虑到相关病毒学安全性问题。而污泥的稳定化和无害化处理如脱水、堆肥、热处理和中温厌氧消化均可有效杀灭病毒,其中热处理是迄今为止病毒失活效率最高的污泥处置方法。需要指出的是,活性污泥吸附的病毒仍然具有感染风险,处置过程中操作人员需要采取更为有效的防护手段。另外,已经有证据表明,剩余污泥中的水分在处置过程中可能形成气溶胶,由于气溶胶中的病毒附着于其他物质而处于结合状态,可免受生物学(酶作用)和理化(温度、pH

和紫外线等)因素的灭活作用,从而可以长期保持其感染性,这些气溶胶如果不加处理可能产生一定风险[39]。

2.6

污水处理过程中的气溶胶

气溶胶是指悬浮在气体介质中由固态或液态颗粒组成的气态分散系统,在自然环境中普遍存在,气溶胶颗粒粒径一般在1~5μm。污水中气泡在外力作用下从污水中快速逸出产生爆裂,散落出许多大量细微固液颗粒即形成气溶胶,这个过程将会同时携带污水中的微生物,变成生物气溶胶。病毒比细菌更容易被气溶胶携带,有研究发现包膜病毒比非包膜病毒更容易附着在颗粒上。

目前,对污水处理中气溶胶携带病毒的研究较少,且主要针对肠道病毒的研究。研究表明,水力跌落大、湍动剧烈的污水处理单元形成气溶胶就越多。污水提升、格栅间、除渣、曝气池、污泥浓缩池和污泥脱水机房等预处理过程气溶胶浓度高于其他处理区域。不同处理工艺气溶胶风险的影响因素较多,传统市政污水处理工艺池体表面积大,工艺相对复杂,潜在产生气溶胶的点位相对较多;MBR工艺虽然曝气量大,但由于工艺相对较易封闭,在控制气溶胶风险上有一定优势[38]。也有监测发现,预处理过程气溶胶的浓度与处理厂的规模相关,规模越大,气溶胶浓度越高。对于近几年兴起的地下或半地下污水处理厂而言,由于其相对封闭、湿度较大,更加需要严格控制气溶胶的产生,切实做好全厂气流的组织和调控,各区域操作空间换气量一定要小于除臭排气量,封闭池体远离抽气口的一端应该适当打开,使操作空间和池体密闭空间真正形成气体的有序负压流动,避免形成空气流通死区。如果简单封闭池体、加大地下操作空间的换气次数,反而可能会增大气溶胶在操作空间的扩散风险。另外,研究表明生物除臭反应器在处理臭味气体的同时还可以有效削减微生物气溶胶[39]。

研究表明,污水系统工作人员更容易感染肠道病毒引起的疾病[40]。2003年SARS期间,WHO认为感染SARS的危险职业包括污水处理厂工人和食品及动物管理者。目前COVID-19气溶胶传播途径尚待明确[41],出于安全考虑,污水处理操作人员要加强个人防护工作,佩戴手套、面罩或护目镜和防护服,尽量避免接触容易产生气溶胶的区域。疫情期间排水管渠维护和清疏作业应以机械、水力为主,非特殊情况下不建议组织下井作业。对于清理出来的固体废物必须及时用密闭运输车辆运送到符合规定的场所最终处置。污水处理厂应立足于“以人为本”,坚持“底线思维”,充分利用在线仪表的优势,尽量减少人工化验检测频次,保障从业人员安全,保障污水处理厂的正常运行。

03

总结和展望

①受感染者的排泄物中可能存在活性COVID-19,但并不意味着病毒的主要传播途径发生变化,消化道(粪-口)传播在全部传播中的作用和意义仍需进一步研究。

②病毒感染人类需要同时具备四个条件,不能从排泄物中检测到活体病毒,就简单推断出污水处理厂也会成为COVID-19病毒的传染源。

③污水处理过程能够有效降低病毒浓度,降低幅度可以达到1.9lg~5.0lg。污水处理厂只要保持正常稳定运行,即可彻底阻断肠道病毒和呼吸道病毒。

④污水处理过程必须高度重视消毒处理,消毒效果排序:臭氧消毒>二氧化氯消毒>液氯消毒>次氯酸盐消毒。

⑤必须高度重视污泥处理过程。污泥处理中脱水、堆肥、石灰处理对病毒均有杀灭作用,杀灭效果有差异。

⑥再生水处理过程可以有效去除病毒,结合工艺控制可以保障出水安全。

⑦为避免气溶胶暴露风险,加强防护,减少人工取样和检测频次,加强除臭处理,地下污水处理厂重视气流和系统调控。

⑧污水处理厂要充分利用在线仪表优势,保障从业人员安全的同时保障污水处理厂的正常运行。

⑨目前污水处理过程中的病毒的相关研究还有很多空白,近期建议可以围绕生物池混合液中病毒在液相和固相中的分布比例以及病毒扩散、吸附规律等开展。

第五篇:文献综述-稠油高粘特性的机理性研究-庄项宽

文献综述

1.前言

当今,世界稀油资源紧缺,稠油将成为石油资源的重要接替。而我国原油以稠油油藏为主。稠油中沥青质、胶质含量过高是导致稠油粘度高的原因,给稠油开采和输送造成了相当大的影响,研究稠油针对不同稠油油品选择合理的降粘方法将变得至关重要,因此研究稠油高粘特性的机理具有很重大的意义[1]。

2.稠油

稠油是指在油层温度下粘度大于100 mPa·s的脱气原油,但通常都在1 Pa·s 以上。稠油由于粘度高,流动阻力大,不易开采,其突出的特点是含沥青质、胶质较高[2]。目前国内外在稠油开采过程中常用的降粘方法有:加热法、掺稀油法、稠油改质降粘及化学药剂降粘法[3]。

3.稠油高粘特性的机理

稠油与含蜡原油组成上的不同在于稠油体系中蜡含量极低, 而胶质、沥青质含量较高。稠油中的蜡即使全部析出, 也不至于形成以蜡晶为主体的原油结构, 且稠油即使在较高温度下的粘度也相当大[4]。因此引起稠油高粘度的实质并非含蜡原油中存在的结构, 而是其本身分子(特别是沥青质、胶质分子)在体系各种力相互作用下所形成的复杂大分子结构[3]。

首先, 稠油体系是一种胶体系统已得到公认,其中沥青质是分散相, 胶质作为胶溶剂, 油分为分散介质。稠油中所含的超分子结构是稠油即使在较高温度下粘度也相当高的根本原因[5]。稠油各组分的内部微观结构直接影响到分子间和稠油微粒间的相互作用力, 也就影响到稠油的粘度, 即结构决定粘度性质。

其次, 稠油体系中的这些超分子结构并不是紧密堆积的, 低层次的结构在某种分子间力作用下可发生相互连接、聚集, 进一步形成松散的较高层次的超分子结构, 在此过程中把大量的液态油包裹其中。

再次, 根据Pfeiffer 和Saal 提出的后来被广泛引用的沥青胶体结构模型

分析, 沥青质超分子结构处在胶束中心, 其表面或内部吸附有可溶质, 可溶质中分子量最大、芳香性最强的分子质点最靠近胶束中心, 其周围又吸附一些芳香性较低的轻质组分, 即沿胶束核心向外其芳香度和分子极性连续递减至最小。其中, 比较靠近沥青质超分子胶束核心的吸附层可称为溶剂化层, 溶剂化层的存在可增大分散相的体积[7]。在溶剂化层的外面还存在芳香度和极性逐渐减小的分散介质, 使沥青质胶粒具有较大的空间延展度。在流体受力剪切过程中, 它们虽然和胶粒不能看成一个整体, 但由于其与胶粒之间的较强吸附作用也会引起粘度的增加[8]。最后, 虽然稠油体系中的蜡含量很低, 一般在10 %以下, 但低温下蜡晶的析出也会造成稠油粘度的增高, 使稠油低温下具有一定的非牛顿性。

[6]4.结语

目前工业上采用的稠油降黏技术大多已经比较成熟,但各种降黏方法都有其局限性,主要原因是对稠油的致黏机理没有进行系统的研究,因此,深入的探讨稠油的致黏机理和影响因素进而从理论上指导解决高黏问题显得极为重要[9]。借助先进的分析仪器从微观上深入探索稠油中杂原子和金属元素的赋存状态以及非烃化合物的分布情况与稠油黏度的关系,并与量子化学和结构化学相结合通过研究分子之间的相互作用力(氢键、偶极距、π-π键)和微观结构特征来分析稠油的致黏因素,加大对稠油中胶质和沥青质分子结构和性质以及它们胶体界面性质的研究,进而揭示稠油的致黏规律,是未来的主要研究方向[10]。文章通过对稠油致黏因素理论研究成果的分析,有助于加深对影响稠油高黏因素的系统认识,并为稠油开采和重油加工技术的研究提供理论借鉴作用。

参考文献

[1] 王晓宇 and 宋天民,稠油降粘方法研究现状, 河北化工, 2009, 11): 27-29 [2] E.Rogel, C.Ovalles and M.Moir, Asphaltene Chemical Characterization as a Function of Solubility: Effects on Stability and Aggregation, Energy & Fuels, 2012, 26(5): 2655-2662 [3] 尉小明, 刘喜林, 王卫东, et al.,稠油降粘方法概述, 精细石油化工, 2002, 05): 45-48 [4] D.Shukla, C.P.Schneider and B.L.Trout, Molecular level insight into intra-solvent interaction effects on protein stability and aggregation, Advanced Drug Delivery Reviews, 2011, 63(13): 1074-1085 [5] 张凤英,油溶性稠油降粘剂的研制与评价, 2006,[6] 周灿, 吴承君, 任双双, et al.,稠油降粘的方法的概述, 内蒙古石油化工, 2007, 04): 128-129 [7] 程亮, 杨林, 邹长军, et al.,影响稠油粘度的化学组成灰熵分析, 吉林化工学院学报, 2006, 02): 19-23+26 [8] 张春明, 赵红静, 肖乾华, et al.,稠油粘度预测新模型, 长江大学学报(自科版), 2005, 07): 39-41 [9] 赵凯, 丁汝杰 and 于欣,稠油致黏因素研究现状, 广东化工, 2012, 12): 5-6 [10] 贾学军,高粘度稠油开采方法的现状与研究进展, 石油天然气学报, 2008, 02): 529-531+537

下载稠油污水特性[合集五篇]word格式文档
下载稠油污水特性[合集五篇].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    稠油开采添加剂(中英文)

    TECHNICAL BULLETIN P/7. 技术公报 P/7. PRODUCTION AND TRANSPORTATION OF LOW GRAVITY ASPHALTIC CRUDES BAKER PETROLITE PAW4 低比重含沥青的原油的生产和运输,贝克PETRO......

    稠油作业区1月份HSE工作总结

    月度HSE工作总结 单位: 稠油区安全组 2011 年 1 月 第一部分 本月HSE工作总结 一、月度安全工作开展情况(包括工业、交通、监督检查、劳保、职业卫生、教育培训等) 本月,安全......

    稠油污泥处理技术进展

    稠油污泥处理技术进展 一、国内外含油污泥主要处理技术现状综述 对含油污泥进行无害化处理、清洁生产并回收其中资源的综合处理,一直是国内外环境保护和石油工业的重点工作之......

    稠油多元化吞吐技术简介

    稠油多元化吞吐技术简介 一、概述 曙光油田超稠油原油粘度高,开发过程中一直存在着生产周期短、周期产量低、井筒举升阻力大等问题,严重影响油井产能的发挥。分析其原因主要......

    稠油污水处理进展与研究

    稠油污水处理进展与研究 李柳逸 (长江大学,湖北省,430100) 摘要 辽河油田采用蒸汽吞吐的方式开采稠油,这些数量巨大的稠油污水的合理处置是摆在油公司面前的一个非常严峻的经济和......

    浅析风城稠油输送泵的选型

    浅析风城稠油输送泵的选型 本文针对在新疆油田稠油输送的现状,稠油输送的特性,提出螺杆泵在稠油输送中应用的理由。关键词:经济;高效 中图分类号:TE345 文献标识码:A文章编号:1......

    声音特性

    声音的特征 一、知识概述 1、了解声音的特征。 2、知道乐音的三个基本特征及其决定因素。 3、认识噪声,了解噪声的来源和危害,知道减弱噪声的途径。 二、重难点知识讲解 1、声......

    房地产特性

    第二节房地产经纪的特性(掌握)一、经纪的特性(掌握) 经纪作为一种特殊的商贸活动,具有区别于其他商贸活动的自身特性,主要表现为三个方面: (一)活动主体的专业性 经纪活动主体......