第一篇:合成氨生产工艺见习报告
合成氨生产工艺见习报告
系
别:专 业:班 级:学 生:学 号:
化 学 化 工 学 院
化 学 11化学
于静 2011021004
合成氨生产工艺流程
一、见习目的和意义
通过见习使我们了解合成氨工艺的生产流程,规划和工艺参数的控制,以 制取氨成品。学会收集各种资料和数据参数,判断工艺过程的实际情况,培养理论联系实际的习惯。同时也是对化工生产知识的实践,培养运用化工专业理论知识,分析和解决实际问题的能力。对化工生产也有一定的了解,为以后的就业打下基础。理论联系实际,是一种全新的领域,不仅加深对合成氨工艺流程的了解,对具体化工设备的感性认识,还培养学习兴趣的勇于创新的精神。
二、见习要求
1.听从老师和企业工作人员的安排指导,有秩序,有礼貌,遵守工厂的相关规定。
2.认真听取工作人员的讲解介绍,有问题及时虚心提问,有意见建议要有礼貌地提出并做好相应的笔记。
三、见习时间
2014-9-20
四、见习单位
牡丹江师范学院-理工楼-实验室
五、产品简介
氨(Ammonia,即阿摩尼亚),或称“氨气”,分子式为NH3,是一种无色气体,有强烈的刺激气味。极易溶于水,常温常压下1体积水可溶解700倍体积氨。氨对地球上的生物相当重要,它是所有食物和肥料的重要成分。氨也是所有药物直接或间接的组成。氨有很广泛的用途,同时它还具有腐蚀性等危险性质。由于氨有广泛的用途,氨是世界上产量最多的无机化合物之一,多于八成的氨被用于制作化肥。由于氨可以提供孤对电子,所以它也是一种路易斯碱。
六、见习内容
1.生产的产品只要以煤为原料是合成氨,其常见过程为:
造气→半水煤气脱硫→压缩→变换→变换气脱硫→压缩机3段→ 脱硫→压缩机4,5工段→铜洗→压缩机6段→氨合成→产品NH3
造气:将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。
净化:原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。
氨合成:将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。氨合成反应式如下:
N2+3H2→2NH3(g)=-92.4kJ/mol 2 生产流程简述
合成氨的典型工艺流程介绍
合成氨的生产过程包括三个主要步骤:原料气的制备、净化和压缩和合成。
(1)原料气制备
将煤和天然气等原料制成含氢和氮的粗原料气。对于固体原料煤和焦炭,通常采用气化的方法制取合成气;渣油可采用非催化部分氧化的方法获得合成气;对气态烃类和石脑油,工业中利用二段蒸汽转化法制取合成气。
(2)净化
对粗原料气进行净化处理,除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程。
① 一氧化碳变换过程
在合成氨生产中,各种方法制取的原料气都含有CO,其体积分数一般为12%~40%。合成氨需要的两种组分是H2和N2,因此需要除去合成气中的CO。变换反应如下:
CO+H2O→H2+CO2 ΔH=-41.2kJ/mol;
由于CO变换过程是强放热过程,必须分段进行以利于回收反应热,并控制变换段出口残余CO含量。第一步是高温变换,使大部分CO转变为CO2和H2;第二步是低温变换,将CO含量降至0.3%左右。因此,CO变换反应既是原料气制造的继续,又是净化的过程,为后续脱碳过程创造条件。
② 脱硫脱碳过程
各种原料制取的粗原料气,都含有一些硫和碳的氧化物,为了防止合成氨生产过程催化剂的中毒,必须在氨合成工序前加以脱除,以天然气为原料的蒸汽转化法,第一道工序是脱硫,用以保护转化催化剂,以重油和煤为原料的部分氧化法,根据一氧化碳变换是否采用耐硫的催化剂而确定脱硫的位置。工业脱硫方法种类很多,通常是采用物理或化学吸收的方法,常用的有低温甲醇洗法、聚乙二醇二甲醚法等。
粗原料气经CO变换以后,变换气中除H2外,还有CO2、CO和CH4等组分,其中以CO2含量最多。CO2既是氨合成催化剂的毒物,又是制造尿素、碳酸氢铵等氮肥的重要原料。因此变换气中CO2的脱除必须兼顾这两方面的要求。
一般采用溶液吸收法脱除CO2。根据吸收剂性能的不同,可分为两大类。一类是物理吸收法,如低温甲醇洗法,聚乙二醇二甲醚法,碳酸丙烯酯法。一类是化学吸收法,如热钾碱法,低热耗本菲尔法,活化MDEA法,MEA法等。
③ 气体精制过程
经CO变换和CO2脱除后的原料气中尚含有少量残余的CO和CO2。为了防止对氨合成催化剂的毒害,规定CO和CO2总含量不得大于10cm3/m3(体积分数)。因此,原料气在进入合成工序前,必须进行原料气的最终净化,即精制过程。
目前在工业生产中,最终净化方法分为深冷分离法和甲烷化法。深冷分离法主要是液氮洗法,是在深度冷冻(<-100℃)条件下用液氮吸收分离少量CO,而且也能脱除甲烷和大部分氩,这样可以获得只含有惰性气体100cm/ m以下的氢氮混合气,深冷净化法通常与空分以及低温甲醇洗结合。甲烷化法是在催化剂存在下使少量CO、CO2与H2反应生成CH4和H2O的一种净化工艺,要求入口原料气中碳的氧化物含量(体积分数)一般应小于0.7%。甲烷化法可以将气体中碳的氧化物(CO+CO2)含量脱除到10cm3/m3以下,但是需要消耗有效成分H2,并且增加了惰性气体CH4的含量。
33(3)氨合成 将纯净的氢、氮混合气压缩到高压,在催化剂的作用下合成氨。氨的合成是提供液氨产品的工序,是整个合成氨生产过程的核心部分。氨合成反应在较高压力和催化剂存在的条件下进行,由于反应后气体中氨含量不高,一般只有10%~20%,故采用未反应氢氮气循环的流程。3 生产工艺流程图
4.工业生产中所涉及到的主要反应式为:
(1)3H2(g)+N2(g)→2NH3(g)(2)CO2+H2O==CO+H2(3)NH4HS+O2→S+NH3·H2O(4)NH3·H2O+HS→NH4HS+H2O(5)NH3·H2O+ CO==NH4HCO3
七、主要设备简介
1.造气炉:以煤为原料加入水蒸气在催化剂、高温、适当温度的条件下合成原料气氢气。2.压缩机:压缩气体,扁于储存和运输。
3.脱硫塔:出去反应过程中产生的硫,提高产品纯度和防止催化剂中毒。4.旋风分离设备:除去生产过程中未反应的颗粒和粉尘。5.换热器:对流体冷却或加热,达到反应或生产需要。6.吸收塔:吸收或脱出生产过程中不需要的物质。
八、见习体会
在见习的过程中,自己学到了许多原先在课本上学不到的东西,这次实习带给我们的不仅仅是经验,它还培养了我们刻苦的精神和谨严当真的风格。此次见习使我们学到了很多书中学不到的东西,它使我们懂得视察生活,敢于探索生活,也为我们多方面去意识和了解生活供给了一个契机。它是生活的一种能源,增进我们知、情、意、行的构成和和谐的发展,赞助自我完美。有些老师不仅教我们实习的内容,还教我们如何学习,如何做人,让我们学到了课本上学不到的知识。
任何理论和知识只有与实习相联合,能力施展出作用。而作为思维可塑性大的我们,不能单纯地依附书本,还必需到实践中测验、锻炼、立异;去造就科学的精力,良好的品格,高贵的情操,文化的行动,健康的心理和解决问题的能力。
为期一天的见习落下了大幕,总的来说这次为期一天的见习是一次有趣且必将影响我今后的学习工作的重要的教训。
保险第一 , 在产业生产中,安全要摆在第一位,是至关重要的!这是每个老师给我们的第一忠告。
现在想想从前的这段难忘时间,其中味道,只有亲自阅历的人才能体会得到。通过学习各种工种,我们了解了很多机加操作的原理和过程,大抵把握了一些操作工艺与方法,还有以前的那些生疏的专业名词现在听来都是那么熟悉亲热!见习给我们带来的那些经验与感触,却是对我们每一个人的工作学习生活来说都是一笔无价之宝的财富。
一起见习的同学也让我受益非浅。真挚的彼此激励加油,相互了解自己没有发现的问题,然后请教老师来解决我们之前所不知道的问题,相互学习,彼此促进。一天的见习更象是一个集体活动,拉近我们彼此的间隔,弥补了曾经存在的距离,群体主义的魅力得到了彻彻底底的展示!大学里连同班同学相处的机会都很少,感激这次见习给了我们这样一个机会。这样的活动值得教育部分的借鉴。
短短的一天时光,我们在实习中充实地渡过了,我们学习的知识虽然不是很多,但通过这次让我们明确了我们需要实际学习控制的技能还很多、很多。假如我们不常常加入这方面的实习,我们这些大学生将来恐怕只能是“夸夸其谈”。社会需要人才,社会需要的是有能力的人才。我们新世纪的大学只有多参加实践,才能保障在未来的社会竞争中有自己的地位。
九、小结 一天的的见习转眼而过,回顾实习生活,我在实习的过程中,既有收获的喜悦,也有一些遗憾。那就是对化工生产的有些工作的认识仅仅停留在表面,看人做,听人讲如何做多,亲身感受做具体处理一些工作少,还未能完全领会其精髓所在,但也使我对化工生产有了深层次的感性和理性认识,对化工工艺流程有了更深了解。因此在今后的学习中,可以根据不同内容,实习和理论学习相结合,灵活采用更有效的方法。在此我还要感谢老师给我们见习的机会,更感谢化学化工学院教研室的领导、教授、老师以及所在工厂的学长对我们的倾囊相授,为我的将来走上化工生产这条路,开启一扇通往成功的大门。
第二篇:合成氨生产工艺合成岗位1
合成工段(包括冷冻)
第一节工艺流程及主要设备
一、本工段任务
合成工段在合成氨生产中是最后一道工序,但在以碳化法生产碳酸氢铵的小氮肥厂里却只是一道中间工序。它的主要任务是在髙温、髙压和有触媒存在的条件下,将由精炼工段来的经过一系列处理的合格的氢氮混合气在合成塔内进行化合反应,合成为氨;气态氨经冷凝、分离得液氨。液氨在氨冷器中气化后,送往碳化系统加工,制取小氮肥厂的最终产品碳酸氢铵。多余的液氨可以作为商品氨出厂。未合成为氨的氢氮混合气继续在合成系统中循环。合成放空气和氨罐弛放气回收利用。
二、工艺流程简述
由精炼工段来的氢氮比约为3:1,含C0+C02<25ppm和少量CI^+Ar(1%左右)的氢氮混合气,经压缩机将其压力提髙至30MPa左右后送至合成系统,经过最终净化并换热升温后进入合成塔,在催化剂的作用下于450〜500℃左右进行氨合成反应。反应后,气体经冷却,冷凝成液氨,再在氨分离器中与没有反应的氢氮气分离,送往液氨贮槽。
在合成塔内,化学反应方程式如下: 3Hz+N2=一^2NH3+Q 贮槽内的液氨经氨冷器蒸发为气氨,送往吸收岗位制成氨水后送至碳化塔内吸收co2得碳酸氢铵、分离液氨后的氢氮气 再循环使用。
图12-1所示是年产5000吨型氨合成工艺所采用的一种流程。
液氨由来 冷却水 液氬去球
图12-1合成工艺流程图1一油分离器,2—氨冷器;3—冷交换器;4一合成塔, 5—软水加热器;6—水冷器丨7—氨分离器
如图,来自压缩机六段出口(七段压缩机则为七段出口)。加压至30MPa左右的精炼气(新鲜气)送至合成系统,在油分离器内与由循环机来的循环气混合;除去气体中的油水和微量C02,然后温度为30〜35'C的混合气进入冷交换器上部的换热器管内,和管外冷气体进行换热,被冷却至10〜20℃后进入氨冷器。气体被进一步冷却至一5〜0℃,至此气体中大部分气氨被冷凝为液氨,微量的水份被进一步除去;这部分气体再回到冷交下部的氨分离器,将气体中的液氨分离,气体则上升至冷交上部的换热器管外进行预热,温度达20℃左右,分主、副线两路进入合成塔进行反应。
现介绍并流扁平单管触媒筐、波纹板换热器内件气体流程。循环气主线气体自合成塔顶入口进塔,沿外筒与内套之间的环隙顺流而下,被内套所散发的热量预热,温度有所提高,进入内套下部的波纹板热交换器,与已反应的高温气体进行热交换,使其进一步预热到反应温度;然后由升气管上升到上集气环,气体在此被分配到各扁平冷管内,再下降到下集气环。在此过程中,气体将触媒层反应热带走,自身温度进一步提髙。然后气体由下集气环进入中心管,和由副线直接进入中心管内的气体汇合上升至中心管顶部,进入触媒层,进行氨合成反应。反应后高温气体从触媒筐底部进入下部的波纹板换热器,与主线来的气体进行热交换后,温度有所降低,由塔底气体出口管引出塔外。
自合成塔底部出来的含氨10〜13%、wo〜18or左右的气体进入软水加热器回收热量后,再经水冷器降低温度,气体中部分气氨冷凝为液氨。然后进入氨分离器将液氨分离,气体则进入循环机提高压力(补偿压力损失)后,再去油分离器与补充的新鲜气混合,重复进行上述循环。
氨分离器和冷交换器底部分离出来的液氨,通过放氨阀减压由放氨管线送往液氨贮槽。贮槽内液氨送至合成与精炼氨冷器内的盘管外面,作冷冻剂降低盘管内合成气和铜液温度,同时自身蒸发为气氨,经总管送往碳化吸收岗位制浓氨水,供碳化洗涤变换气并生产碳酸氢铵;或者送冰机压缩、冷凝为液氨,再供氨冷器循环使用,也可送往氨罐贮存;或送精炼工段补加到铜液中去。
在合成塔前与氨分离器后,分别设有塔前与塔后放空管,可以排放系统内气体,以降低循环气中惰性气含量。补充气进口阀前、设有放空阀、供精炼卸压和置换用。
液氨贮槽或氨冷器排油时,油内混有一定量的液氨,可在煮油器内用蒸汽加热,将液氨蒸发成气氨后回收。
冷软水经变换工段软水加热器回收变换气余热后至合成软水加热器,经回收合成余热后,送锅炉及其它用户。也有厂将部分软水送精炼工段铜液再生器用于加热铜液。
系统的放空气和液氨贮槽的弛放气,送等压吸收岗位,在净氨塔回收氨后,或去锅炉作燃料,或送分离岗位回收其中的氢等,或送造气吹风气回收岗位。净氨塔回收的稀氨水送碳化作无硫氨水。
需要补充的是,在上述流程中,新鲜气经油分离器补入合成系统,可以较好地防止精炼系统铜液带入合成塔。如精炼工段操作比较稳定,无油润滑过关也有将新鲜气补到冷交出口的氨冷器内,并将循环机和油分离器由水冷器后调整到合成塔之前,这样可减少系统压差,提高进入合成塔的气体压力,有利于合成反应。
三、主要设备及作用
(一)合成塔
合成塔是合成系统也是全厂关键的设备之一。它的作用是在一定的温度、一定的压力和有催化剂存在 的条件下,将氢、氮气体在塔内合成为氨。
合成塔的结构形式很多,有双套管型、三套管型、多层冷激型等,这里仅介绍并流扁平单管触媒筐、波纹板换热器型内件合成塔。如图12-2所示。
合成塔主要由外筒、内件和电加热器组成。1.外筒 是一圆筒形高压容器,由多层钢板卷焊而成(也有绕带式等其它形式)。塔体上、下部是锻钢件,比筒体厚,主要是因开孔、装螺丝而不致降低容器的承压强度。
内套
内套上部为触媒筐,下部为热交换器。触媒筐是装触媒的容器,由钢板焊成。筐底部有多孔板,并放有不锈钢丝网,以防止放置在上面的触媒漏下。触媒筐内还装有冷管和上、下集气环,其作用是将合成的反应热不断移出催化床,使气体在催化床中的反应过程能在最适宜的反应温度下进行。即在催化剂活性温度允许的范围内,气体在催化床中的反应温度分布,尽量接近最佳温度曲线,按先高后低的原则分布,随气体中氨含量增加而降低,这样可兼顾反应速度和化学平衡,提高氨合成率。
触媒筐下部是波纹板热交换器。它的作用是保证进塔冷气体经换热后,再进催化床冷管预热后能达到进入催化床的活性温度要求。换热器在结构上还有列管式、螺旋板式等。
热交换器中夹有一根冷气管。从副线来的气体不经热交换器而直接由此进入中心管,用来调节触媒层温度。
3.电加热器
电加热器由两根镍铬合金钢条串联而成,安装于触媒筐的中心管内。主要用于开工升温,触媒还原和操作不正常时补充能量。
(二)软水加热器
软水加热器为套管式结构。内管走高压气,套管间走软水。它的作用是加热软水,回收合成塔出口高温气体热量。
被加热的软水可供精炼系统加热铜液和送锅炉或变换作用。
(三)水冷却器
水冷却器为淋洒式排管结构。它的作用是进一步冷却出塔气体,使部分气氨冷凝并在氨分离器中分离。一般气体经水冷凝后,可以被冷却到40"C以下„
排管上方有淋洒水槽,水自上而下淋洒,与气体逆流间接换热,移走气体中热量,经下部集水池排走。
图12-2合成塔1—电极杆》2—电炉丝小盖13—大盖;内套上盖;5—高压外筒;6—触媒筐冷管;7—钢丝网;8—波纹板换热器;
9一冷气管;10—电炉丝》11—触媒筐; 12—中心管;13—测温套管
图12-3氨分离器 1 一气体进口》2—气 体出口; 3—进气管,4 —档板》
5—液 氨出口
(四)氨分离器
氨分离器是园柱形高压容器,分离装置在容器内。如图12-3所示。它的作用是分离水冷后合成气中的液氨。
(五)循环机 图12-4循环机1_皮带轮;2—主轴;3—十字头f4—活塞杆;5—活塞j6—气缸;7—注油孔;8—循环气入口t9—循环气出口
高压气体在系统中循环,要克服设备、管道的阻力,压力逐渐降低。这部分压力补偿是通过循环机来实现的。因此,循环机的作用就是提高循环气压力,克服系统阻力,使气体保持压力循环。
循环机有立式和卧式两种。图12-4所示为立式双列复动活塞式压缩机,型号为Z24-0.8/290—320,打气量48ms/h。
(六)油分离器
气体经循环机压缩后带有油,故送入油分离器,同时,在此汇合的补充气中含有水分、微量的二氧化碳(几个PPm)及其它杂质,这些有害物质,进入合成塔内能使触媒中毒,必须除去。油分离器就是用来除去循环气中的油分和水分的设备,它的除油水的作用主要是通过碰撞和离心作用实现的。微量的0:02气与循环气中的氨作用,生成碳铵结晶也在此除去。油分离器的构造如图12-5所示。
(七)冷交换器
冷交换器分为上下两部分。上部是换热器,起换热作用,管内热气体从油分离器来,管外冷气体从冷交下部氨分离器来,经冷热交换,降#进入氨冷器气体温度,减轻氨冷器负荷,回收冷量;同时提髙合成塔进口气体温度。下部相当于一只氨分离器,起二级分离作用,以分离氨冷后气体中的液氨。冷交的构造如图12-6所示。
(八)氨冷器
氨冷器的作用是利用液氨蒸发吸热,将循环气进一步冷却,使循环气中的气氨继续冷凝,从而在氨分离器中得到分离,以保证进塔气体中的氨含量合乎工艺要求;同时,液氨在冷凝过程中也将气体中所含有的水蒸汽冷凝、吸收,使气体得到精制。
氨冷器的构造如图12-7所示。图12-5油分离器1_气体进口》2_气体出口;3~填料层(尼龙网)H—中心管;5—嫘旋管《6~祥油口图 12-6冷交换器1—热交换器;2_热交换器列管环形档板—分气盒;4一氧分离器》5—上部中心管>6—下部中心管 氨冷器为一园柱形压力容器。器内装有蛇形高压盘管,气体走管内,液氨在管外。器顶装有液氨雾沫分离器,用于除去蒸发出来氨气中所夹带的液氨雾滴。
(九)液氩贮横液氨贮槽又称氨
罐,为卧式长圆筒形或球形的中压容器。图12-8所示为卧式氨罐。它的主要作用是贮存和计量液氨。
液氨贮槽的最大允许操作压力为1.6MPa„贮槽装有液位计,用于观察和计量槽内液氨量。在贮槽的上部装有安全阀,当贮槽压力超过操作允许压力时能自动跳开而使槽内压力降低。在贮槽上部还有气体排放阀,用来经常排放贮槽内的弛放气(如氢、氮、甲烷等),使贮槽压力维持不大于1.6MPa。
四、冰机岗位的工艺流程及主要设备
(一)冰机岗位的任务在合成氨生产中,氨合成系统需把循环气冷却到o〜一5℃或者更低的温度,铜液再生系统也需把铜液冷却到8〜15℃,这温度是水冷所不能达到的。在生产中是在水冷器之后再设氨冷器,液氨在氨冷器中蒸发汽化吸热,达到降低循环气和铜液温度的目的,这就是冷冻操作。冰机岗位的任务就是将气氨压缩、冷凝,使之液化,然后将液氨送往氨罐或直接送入氨冷器蒸发制冷以满足合成氨生产中冷量的需要(图12-8)。
水
(二)系统流程简述
冰机岗位流程如图12-9所示。来自精炼,合成氨冷器的气氨进入气氨总管,经气液分离器分离掉由氨冷器夹带来的液氨雾滴、水分等杂质,进入冰机进行压缩。压缩至1.6MPa,再进入油分离器,将油分离后,进入水冷凝器的管间,被管内的水冷却为液氨。冷凝下来的液氨积于容器下部,经排出管线送合成液氨贮槽;或直接送合成与精炼系统的氨冷器,供循环使用。
水冷凝器上侧装有弛放气管,当冰机出口压力过高时,可通
图12-7氨冷器 1 —气氨出口》2—上部连通管t 3—过管上的减压阀使部分气体减压后送碳化吸收岗位®收;或由放空管部除 沫器:4—外壳f 5—液氨入口> 6—循 环气出分放空。口》7—下部连通管f 8—液位计* 9 一蛇形盘气液分离器,油分离器及水冷
管;10—循环气进口
凝器排放出来的油水和液氨混合物,导入煮油器。通过蒸汽加热,使
3—水槽|4一水分布器混合物中液氨气化后回收至气氨总管。油水等杂质器底排出。
图12-10水冷凝器 1一冷凝器外壳f 2—列管;
图12-8液氨贮槽1一液位计>2—安全阀;3—气体排放阀;4—压力计口
目前有些小氮肥厂,由于合成净值的提高,循环气量减小,采用新型保冷材料等原因,使生产需要的冷冻量大大减小,加之高位吸氨的采用等,在碳化流程中,生产过程中的液氨蒸发(气氨供碳化工段)巳能满足冷冻量的要求,做到了少开甚至不开冰机,大大节约了电耗。
气氨来自
图12-9冰机岗位流程图
1一气液分离器;2—冰机;3—油分离器;4一水冷凝器;5—煮油器
(三)主要设备及其作用 1.水冷凝器
为立式园筒形容器,如图12-10所示。器中装有列管,冷却水由器上、中部进入管内,管外为气氨。水冷凝器的主要作用是利用水冷却经压缩后的气氨,使其冷凝为液氨。
图12-11冰机1一皮带轮;2—曲轴;3—连杆;4一活塞t5—齿轮油泵; 6—气缸》7—进气活门;8_排气活门;9一水套管;10—机座(曲轴箱)
冰机是本岗位的主要设备。它的作用是将气氨压缩以使其在常温下能经水冷却而凝为液氨。常用的型号有2AL~15型,冷冻能力313800mJ/h;8AS-12.5型,冷冻能力627600mJ/h等。如图12-11所示为2AL~15型。
第三篇:合成氨(范文)
合成氨生产技术综述
一.合成氨生产技术的发展过程及生产技术现状
1.传统型蒸汽转化制氨工艺阶段
从20世纪20年代世界第一套合成氨装置投产,到20世纪60年代中期,合成氨工业在欧洲、美国、日本等国家和地区已发展到了相当高的水平。美国Kellogg公司首先开发出以天然气为原料、日产1 000 t的大型合成氨技术,其装置在美国投产后每吨氨能耗达到了42.o GJ的先进水平。Keuogg传统合成氨工艺首次在合成氨装置中应用了离心式压缩机,并将装置中工艺系统与动力系统有机结合起来,实现了装置的单系列大型化(无并行装置)和系统能 量自我平衡(即无能量输入),是传统型制氨工艺的最显著特征,成为合成氨工艺的“经典之作”。之后英国ICI、德国uhde、丹麦T0psoe、德国Br肌n公司等合成氨技术专利商也相继开发出与KeⅡogg工艺水平相当、各具特色的工艺技术,其中Topsoe、ICI公司在以轻油为原料的制氨技术方面处于世界领先地位。这是合成氨工业历史上第一次技术变革和飞跃。
2.低能耗制氨工艺阶段
2.1低能耗制氨工艺
具有代表性的低能耗制氨工艺有4种:Kellogg公司的KREP工艺、Braun公司的低能耗深冷净化工艺、uHDE—ICI—AMv工艺、Topsoe工艺。与上述4种代表性低能耗工艺同期开发成功的工艺还包括:①以换热式转化工艺为核心的IcI公司LCA工艺、俄罗斯GIAP公司的Tandem工艺、Kel.1099公司的KRES工艺、Uhde公司的CAR工艺;②基于“一段蒸汽转化+等温变换+PSA”制氢工艺单元和“低温制氮”工艺单元,再加上高效氨合成工艺单元等成熟技术结合而成的德国Linde公司IAC工艺;③以“钌基催化剂”为核心的Kellogg公司的KAPP工艺。低能耗制氨工艺技术主要以节能降耗为目的,立足于改进和发展工艺单元技术,其主要技术进展包括:
①温和转化。一段转化炉采用低水碳比、低出口温度、较高的出口cH4含量操作,将负荷转移至二段转化炉;同时二段转化炉引入过量空气,以提高转化系统能力。②燃气轮机。使用燃气轮机驱动空气压缩机,并与一段转化炉紧密结合。③低热耗脱碳。采用低热耗Be面eld或。一MDEA脱碳,以降低能量消耗。
④深冷净化。Braun公司采用深冷净化,在合成气进入氨合成回路之前脱除其中的cH4和部分Ar,并调节合成气中H2与N2摩尔比为3:1;uhde—IcI—AMV采用深冷净化,在氨合成回路之中回收弛放气中的H2。
⑤效率更高的合成回路。采用新型氨合成塔和低压高活性催化剂,以提高氨合成转化率、降低合成压力、减小回路压降、合理利用能量。Kellogg公司采用卧式径向合成塔和小颗粒、高活性催化剂;uhde公司和T0psoe公司均采用了立式径向流动合成塔 和小颗粒、高活性催化剂。
2.2 以部分氧化工艺为核心的重油或煤气化
(1)重油气化。以部分氧化工艺为核心的重油气化技术,主要有SheⅡ和Texaco两家公司的技术。自1956年开发出第一台渣油气化炉至今,世界上先后建成了140多套装置,用于合成氨、甲醇、纯氢和羰基合成等。由于国外以重油为原料的合成氨装置所占比例很小,且近年来受到石油危机和洁净煤气化技术的挑战,竞争力较差,其技术进展不大。主要 的进展包括:①结构多样化、气化压力提高、设备大型化;②改进气化炉烧嘴,以降低氧/油比、蒸汽/油比,从而降低氧耗、汽耗,改善经济性;③改进雾化喷嘴的结构和材质,以适应石油深加工带来的重油重度加重的问题;④炭黑回收部分开路,以适应石油深 加工带来的重油原料中重金属含量升高的问题。
(2)煤气化。20世纪80年代初到90年代末,煤气化技术再度引起人们重视,对洁净煤气化技术进行了大量的开发研究,取得了重大的进展,开发出众多的煤气化技术,包括:以Texaco公司和Destec公司为代表的水煤浆气化、以sheu公司和德国Prenno公司为代表的粉煤气化、以Lu蛹公司为代表的固定床煤气化等。并率先在IGcc领域进行了示范性大型化商业化装置的运转,Texaco工艺和Lu蛹工艺在合成氨生产中也得以应用,并取得了良好的效果。2.3 传统型制氨装置的节能增产改造 以节能降耗为目的的技术开发成果,在传统型合成氨装置的节能改造和增产改造中也得到了广泛的应用;同时针对传统型合成氨装置,也开发出了许多新的节能和增产技术。在20世纪80年代中期到90年代中期,传统型合成氨装置大多进行了2轮技术改造,基本实现了节能增产的目标,技术水平大大提高,缩小了与低能耗制氨工艺的差距。
(1)第一轮改造。主要采用节能降耗新技术,改造后,传统天然气合成氨装置每吨氨的能耗由41.87 GJ降至35.7 GJ左右,传统轻油合成氨装置每吨氨的能耗下降为37.16 GJ。其采用的技术主要包括:一段转化炉烟气余热回收预热燃烧空气;增设转化炉蒸汽过热烧嘴;脱碳改为低热Benfield;合成气压缩机前加氨冷器;采用casale或Topsoe轴径向内件对合成塔内件进行改造。
(2)第二轮改造。主要采用节能增产新技术,将产量扩充至日产l 200 t以上,传统天然气合成氨装置吨氨能耗进一步降至32.7 GJ,其采用的技术主要包括:空气压缩机、合成气压缩机汽轮转子扩能增效;一段转化炉管更新为大口径薄壁HP50管;一段转化炉对流段空气预热器盘管改造;二段转化炉更换新型烧嘴;高温变换炉和低温变换炉安装内件,成为轴径向炉;增设小低变炉;脱碳在四级闪蒸的基础上进一步改造。
3.装置单系列产量最大化阶段
近10年来,由于低能耗装置吨氨能耗已经降至28 GJ的水平,接近了理论能耗数值(22 GJ),节能降耗的余地已经很小(预计合成氨装置吨氨能耗将难以降低到26 GJ以下),而且即使能够降低,其对装置的经济性也将很小。基于此,为了进一步改善装置的经济性,技术专利商均开始转向以实现单系列合成氨装置产量最大化为首要目标的研究开发。与此同时,在高油价背景下,用煤等劣质原料制氨重新受到重视,以Texaco水煤浆气化和Shell粉煤气化为代表的煤气化技术在改造和新建装置中得到了使用。3.1装置单系列产量最大化
世界级合成氨装置的规模越来越大,以利用较大的产量带来规模经济效益。20世纪80年代投产的世界级合成氨装置的平均产量为1 120 t/d,而最近投产的世界级合成氨装置的产量大多已接近2 000 t/d,且主要按照现有技术进行放大。至今为止,uhde公司已经推出了日产3 300 t合成氨技术,KBR、Topsoe、Lu蛹公司均推出了日产2 000 t合成氨技术。(1)uhde技术
①加氢脱硫原料气在脱硫工段对加氢反应器和脱硫反应器的尺寸没有限制,很容易增加气体流量。必要时可以安装2台脱硫反应器,从而允许装置运行时更换反应器中的氧化锌。②工艺实践证明,离心式压缩机和整体齿轮式离心压缩机适用于产量高达3 000 t/d的装置。
③开发出具有内部绝热冷气出口管的顶烧式一段转化炉,易于应用任何产能的装置,而不需改变其基本结构。2台最大的一段转化炉为甲醇生产合成气装置,分别装有630根和920根管子。3 000 t/d合成氨装置所用的一段转化炉采用最新设计和材料,只用了460根管子。④二段转化炉也可用于产能增加的装置,其特点是通过安装在容器壁的喷嘴增加工艺空气。其优点是通过涡流形式注入空气,可以达到工艺空气与转化气的适当混合。充分的驻留时间允许在燃烧区完全反应,同时避免内件过热和火焰冲击。⑤为满足大型装置一氧化碳变换对催化剂容量的要求,可以设计用于高温和低温一氧化碳变换的反应器。
⑥二氧化碳脱除推荐使用BAsF公司的MDEA工艺,在能量和热量平衡方面最符合uhde公司的理念,并且将对大型装置没有限制。
⑦合成气压缩对于当前2 200 t/d装置,制约产能的主要因素是合成气压缩机。uhde公司正在开发一种新型合成气压缩机,这种压缩机适用于未来产能可高达3 000 t/d的装置。⑧氨合成回路设计基础是3层2个合成塔,废热锅炉位于各反应器下游。所有工艺和容器的设计参数都满足大规模装置的要求。
⑨uhde公司在sAFcO合成氨装置中,通过采用“双压氨合成工艺”,巧妙地突破和解决了合成气压缩机和合成回路对装置单系列产能为3 000 t/d的限制,应用于已在2 000 t/d合成氨装置中验证过的工艺过程和设备,率先实现了3 300 t/d合成氨的目标。BAsF公司在比利时采用uhde技术建成了2 060 t/d的合成氨装置。“双压氨合成工艺”在合成气压缩机2个压缩气缸之间设置新鲜合成气的低压氨合成系统,低压缸出口压力为11 MPa,与低压法氨合成相匹配,并在此系统中分离部分产品;之后在低温下进一步压缩至21 MPa,进入氨合成回路进行高压氨合成。这样不仅减少了合成气压缩的量,而且也减小了合成回路的设备尺寸。
减小了合成回路的设备尺寸。(2)Kellogg技术
①Kellogg公司和Bm帅&Root公司合并为KBR公司之后,在特立尼达采用KBR(KAAP)工艺建设了4套2 000 t/d的合成氨装置。
②KAAP工艺以钌基催化剂为核心,由于该催化剂具有低压、高活性的特点,与其他催化剂相比其用量较少;合成回路能够在较低压力下运行,且合成回路的氨转化率高。低压操作可以使用单系列合成气压缩机,并节省装置投资。KAAP催化剂的高活性使大产能成为可能,同时不需要较高的压力和多台合成塔。
③KBR公司也设计了4 000 t/d装置,除了一段转化炉和氨合成塔为并列设置外,其他设备均为单系列。(3)Topsoe技术
Topsoe公司合成氨技术的最新进展包括:改进的转化炉设计;用于二段转化炉的新型管式烧嘴;改进的S一200氨合成塔设计;中压蒸汽冷凝液汽提;改进的触媒结构。这些新技术在拉丁美洲的2个世界级规模的项目中得到应用。Pmfeni项目的特点是2 050 t/d合成氨装置与3250 t/d尿素装置单系列配套生产。该装置构成世界上最大的农用合成氨/尿素联合工厂,其最终产品是粒状尿素。其合成氨装置采用Topsoe公司低能耗合成氨工艺,包括脱硫、一段和二段转化、二步变换、MDEA法二氧化碳脱除、甲烷化、压缩、S一200氨合成回路、氢气回收装置和产品回收。转化炉使用现代转化炉管材,并对侧烧炉设计进行了改进,允许在更高的压力和热流下操作。转化炉设计紧凑,只用了264根管子。通过引入新的管口烧嘴,增加了整套装置的稳定性。改进的催化剂允许减小转化炉尺寸。当原料气中碳氢化合物比例较高时,Topsoe工艺包括1台预转化炉,将碳氢化合物转化为甲烷、碳氧化合物和氢气。如果把来自预转化炉的气体加热到650℃左右,那么一段转化炉的负荷可降低25%以上。这样,为3 000 t/d装置设计一段转化炉就不再困难了。二氧化碳脱除采用BASF公司的MDEA工艺,该部分装置的流体流速非常高,因此需要大型设备,低压容器的直径在6 m左右。氨合成系统以T0psoe s一200径流式氨合成塔为基础,回路压力19.12 MPa,以获得较高的单程氨转化率,氨合成塔的直径只有3 m。如果要求产量达到3 000 t/d,那么可以在s一200合成塔后再增加一个单层径流式S一50合成塔。(4)Lurgi技术
h蛹公司开发出以“自热转化ATR”为核心技术的Megammonia工艺。Megammonia工艺装置包括自热转化(6 MPa,ATR)、高温变换(5.5 MPa,HrI's)、气体净化(5.2 MPa,RNwu)、氨合成(20 MPa,Synth.)等工艺单元。3.2合成氨装置的结构调整
由于石油价格的飞涨和深加工技术的进步,以“天然气、轻油、重油、煤”作为合成氨原料结构、并以天然气为主体的格局有了很大的变化。基于装置经济性考虑,“轻油”和“重油”型合成氨装置已经不具备市场竞争能力,绝大多数装置目前已经停车或进行以结构调整为核心内容的技术改造。其结构调整包括原料结构、产品结构调整。由于煤的储量约为天然气与石油储量总和的10倍,以煤为原料制氨等煤化工及其相关技术的开发再度成为世界技术开发的热点,煤有可能在未来的合成氨装置原料份额中再次占举足轻重的地位,形成与天然气共为原料主体的格局。
原料结构调整主要是“油改气”(利用部分氧化工艺将原料改为天然气)和“油改煤”(利用煤气化工艺将原料改为煤或石油焦)。原料结构调整方案中主要考虑的是资源条件及其地理位置,以经济效益(包括装置投资、操作费用、生产成本)为标准进行确定。天然气是合成氨装置最理想的原料,且改造时改动量最小、投资最省,应以优先考虑;但如果不具备以天然气为原料的基本条件(资源和地理位置),则以“原料劣质化”为主,进行“煤代油”或“渣油劣质化”的技改。为了尽可能地增大投资效益,可以适当扩大气化部分的规模,通过“配气方案”实现氮肥一C,化工及其衍生物产品的联合生产,以实现产品结构的调整。这样不仅联合生产装置投资较低,而且能够实现合成气的有效合理利用,操作费用和生产成本将会大幅度降低,经济上将更加具有竞争力。目前上述结构调整工程已经开始实施,由于资源条件及其地理位置的原因,对轻油型合成氨装置进行了“油改煤”的技术改造,而重油型合成氨装置则进行了“油改气”技术改造,并取得了预期效果,有力地推动了天然气部分氧化工艺技术和煤气化工艺技术的进步。
4.现状
中国的氨气大多数产自煤气化,世界氨气主要由天然气生产.目前我国是世界上合成氨量最大的国家,拥有大型氮肥装置共计三十四套,有十七套以天燃气为原料,六套以轻油为原料,九套以重油为原料,还有两套以煤为原料。这三十四套大型氨肥装置每年可以生产大约一千万吨氨肥,其下游产品主要包括了硝酸磷肥和尿素。除此之外,我国还有五十五套中型合成氨装置,包括三十四套以煤和焦油为原料的装置,九套以渣油为原料和十二套以气为原料的装置。这五十五套中型合成氨装置年生产能力约为五百万吨,下游产品主要是尿素和硝酸铵,我国还有一百一十二套经过改造生产尿素,原料以煤,焦炭为主的氨合成装置。其中以煤,焦炭为原料的占 96%,以气为原料的仅占 4%。我国引进大型合成氨装置的总生产能力为1000万t/a,只占我国合成氨总能力的1/4左右,因此可以说我国氮肥工业主要是依靠自力更生建设起来的。在此过程中,研究开发了许多工艺技术,促进了氮肥生产的发展和技术水平的提高,包括:合成气制备、CO变换、脱硫脱碳、气体精制和氨合成技术。除上海吴泾化工厂为国产化装置外,其他均系从国外引进,按照专利技术分:以天然气和轻油为原料的有Kellogg传统工艺(10套)、Kellogg-TEC工艺(2套)、Topsoe工艺(3套),及20世纪90年代引进的节能型AMV工艺(2套)、Braun工艺(4套)、KBR工艺(1套);以渣油为原料的Texaco工艺(6套)和Shell工艺(3套);以煤为原料的Lurgi工艺(1套)和Texaco工艺(1套),荟萃了当今世界上主要的合成氨工艺技术。20世纪七八十年代引进的天然气合成氨装置均已对其进行了以节能降耗和扩能增产为目的的两轮与国外装置类似的技术改造,合成氨能耗由4187GJ/t降至3349GJ/t,生产能力提高了15%~22%;轻油型合成氨装置也进行了类似的增产节能技改,将能耗降至372GJ/t,生产能力提高了15%左右。20世纪80年代引进的渣油型合成氨装置也进行过增产10%的改造,主要改造内容是气化装置增设第3系列,空分工艺改为分子筛流程,目前已经具备了实现1100万t/a合成氨的条件。20世纪90年代,在高油价和石油深加工技术进步的双重压力下,为了改善装置的经济性,多套装置开始进行以原料结构和产品结构调整为核心内容的技术改造,原料结构调整包括轻油型装置的油改煤(采用Shell或Texaco煤气化工艺,以煤替代轻油)、渣油型装置的油改气(采用天然气部分氧化工艺,以天然气替代渣油)或渣油劣质化(使用脱油沥青替代渣油);产品结构调整包括转产或联产氢气、甲醇等。
中国科技大学及中国科学院大连化学物理研究所等科研机构在NsR催化技术领域催化剂性能和结构方面作了初步研究。目前,日本丰田汽车公司和美国福特(Ford)汽车公司在NsR催化技术领域的研究成果显著,前者占据了日本国内市场,正在开拓欧美市场;后者正向工业化迈进。瑞典、德国、意大利和英国的科研机构在催化剂性能、反应机理等方面做了许多卓有成效的工作。
二.比较不同原料生产合成氨的生产过程
不同的生产原料采用不同的生产工艺,比如以煤和天燃气为原料的氨合成,通常是采用原料气制备将原料制成含氢和氮的粗原料气。对以煤和焦炭等固体原料的氨合成,通常采用气化的方法制取合成气;对于以渣油为原料的氨合成一般采用非催化部分氧化的方法;对气态烃类和石脑油,工业中一般采用二段蒸汽转化法。合成氨原料气制备完成后一般要进行净化处理,净化处理的主要目的是除去氢气和氮气以外的杂质,主要包括变换过程、脱硫脱碳过程以及气体精制过程;
净化:首先包括进行一氧化碳变换,因为在合成氨的过程中不论采用哪种方式都会产生一氧化碳,这是合成氨中多余的成分.一氧化碳的变换:过程中要放出大量的热,因此对一氧化碳的清除必须分段进行。首先是通过高温变换将一氧化碳转变成二氧化碳和氢气,然后再通过低温变换将一氧化碳含量降低至 0.3%左右;
脱硫脱碳:因为各种原料制取的粗原料气,都含有一些硫和碳的氧化物,这些硫和碳的氧化物如果不清除就可能在合成氨生产过程中造成催化剂的中毒,因此在氨合成工序前必须对其进行脱除处理。首先是脱硫处理,脱硫的方法很多,最常用的是采用化学和物理吸收法,可以采用低温甲醇洗法,也可以采用聚乙二醇二甲醚法等。因为在一氧化碳的变换中会残留一些二氧化碳、一氧化碳等成分,粗原料气经 CO 变换以后,变换气中除 H2 外,还有 CO2、CO 和 CH4 等组分,这些成分尤其是二氧化碳会影响着氨合成催化剂,因此要注意对这些气体的排除。排除二氧化碳可以采用溶液吸收法脱除;
气体精制过程,精制过程是指在原料气在进入合成工序前,清除残留的二氧化碳和一氧化碳气体,进行原料气的最终净化,主要方法有甲烷化和液氮洗等。
1.以焦炭(无烟煤)为原料的流程
以焦炭为原料的吨氨能耗为88GJ,比理论能耗高4倍多。碳化工艺流程将加压水洗改用氨水脱除CO2得到的碳酸氢铵经结晶,分离后作 为产品。所以,流程的特点是气体净化与氨加工结合起来。三催化剂净化流程采用脱硫、低温变换及甲烷化三种催化剂来净化气体,以替 代传统的铜氨液洗涤工艺。
2.以天然气为原料的流程
天然气先要经过钴钼加氢催化剂将有机硫化物转化成无机硫,再用脱硫剂将硫含量脱除到0.1ppm以下,这样不仅保护了转化催化剂的正常使用,也为易受硫毒害的低温变换催化剂应用提供了条件
3.以重油为原料的流程
以重油作为制氨原料时,采用部分氧化法造气。从气化炉出来的原料气先清除炭黑,经CO耐硫变换,低温甲醇洗和氮洗,再压缩和合成而得氨。
4.以渣油为原料
采用非催化部分氧化的方法
第四篇:合成氨实习报告
篇一:合成氨生产实习报告 第一章 中海石油天野化工公司概况
天野化工股份有限公司隶属中海石油化学股份有限公司,厂区占地60公顷,总资产26.3亿元,固定员工1514人。位于呼和浩特市南郊9公里,东邻中油呼和浩特石化分公司,南邻物西水泥厂、金桥热电厂。
公司有年产30万吨合成氨、52万吨尿素和20万吨甲醇装置。年产6万吨聚醛项目已启动,并在2010年9月投产。原设计合成氨装置空分采用林德精馏工艺,气化采用shell渣油部分氧化法,原料气净化采用lvrgi两步法低温甲醇洗和液氮洗工艺,合成采用凯洛格卧式合成塔,全部工艺设计由日本东洋公司承担完成,1996年11月投产投产。2005年3月天野化工对合成氨装置实施了原料路线由渣油向天然气的改造,至今运行平稳,改造比较成功。公司经机构改革后目前设有9个职能部门,11个生产车间和6个辅助单位,现有员工总数1500多人,一线生产人员915人,化工人员实行四班三倒工作制。第二章 合成氨的工艺流程 2.1合成氨概述
合成氨工业诞生于本世纪初,目前大型氨厂的产量占世界合成氨总产量的80%以上。氨是重要的无机化工产品之一,在国民经济中占有重要地位。世界每年合成氨产量已达到1亿吨以上,其中约有80%的氨用来生产化学肥料,20%作为其它化工产品的原料。
目前工业氨合成普遍采用的直接合成法。反应过程中为提高氢气和氮气合成转化率,将氨产品从合成反应后的气体中分离出来,未反应气和新鲜氢氮气混合重新参与合成反应。合成氨反应式:n2+3h2≈2nh3。2.2原料气的制备 2.2.1制氢气
以天然气为原料与氧气、蒸汽通过共环式烧嘴雾化后在气化炉内约1350℃、6.0mpa高温、高压下进行部分氧化反应,制取以co+h2=95.5%为主要成分的原料气,并同时进行热量回收,副产10mpa、315℃饱和蒸汽和进行原料气降温和洗涤,以脱除原料气中所含碳黑和部分有害气体。甲烷部分氧化反应为:
ch4+2o2=co2+2h2o+q ;ch4+h2o=2co+3h2-q ;ch4+co2=2co+2h2-q。2.2.2制氮气
以空气为原料,先将空气液化,然后利用各组分沸点的不同将其分离,将空气液化,必须将空气温度降到临界温度-140.7℃以下才能实现。在标准状态下氧气的沸点-183℃,氮气的沸点-193℃,相差进13℃故采用精馏方法将氧、氮分离成纯组分。2.3原料气的净化 2.3.1脱硫工段
得到的原料气通过低温甲醇洗将其中的硫化物脱除干净。甲醇在低温高压的情况下,有良好的物理吸收特性来吸收气体中的h2s与co2。各种气体在甲醇中的溶解度差异较大,h2s与co2的溶解度远大于其它几种气体的溶解度。在脱除h2s、co2的过程中,溶液吸收的各种组分是通过逐步减压闪蒸以及附加的热再生、氮气气提来除去的。其中有效气体 co、h2、ch4占较大比例,经重新压缩后返回原料气系统。2.3.2变换工段 利用co转化成c02的反应,除掉对氨合成催化剂有毒的co气体,使出变换工艺气中co含量降到3.2%,进一步为合成氨制取氢气。一氧化碳变换反应是一个放热反应:co+h2o→co2+h2△h298=一45kj/mol 2.3.3脱碳工段
氮洗工段基本原理包括吸附原理、混合制冷原理及液氮洗涤原理:
分子筛对极性分子的吸附力远远大于非极性分子,因此,从400#来的气体中,c02、ch30h因其极性大于h2,就被分子筛选择性的吸附。而h2为非极性分子,因此分子筛对h2的吸附就比较困难。
将一种气体在足够高的压力下与另一种气体混合也能制冷,这是因为在系统总压力不变的情况下,气体在混合物中分压是降低的,要确切做到这一点,互相混合气体的主要组分沸点至少平均相差33℃,最好相差57℃。
液氮洗涤近于多组份精馏,又不同于多组份的精馏,它是利用氢与co、ar、ch4的沸点相差较大,将co、ch4、ar从气相中溶解到液氮中,从而达到脱除co、ch4、ar等杂质的目的。2.4氨的合成 2.4.1氨的性质
氨在标准状态下是无色气体,具有刺激性气味。会灼伤皮肤、眼睛,刺激呼吸器官粘膜。空气中氨质量分数在0.5%-1.0%时,就能使人在几分钟内窒息。相对分子质量 17.031,氨气极易溶于水,熔点-77.7℃,沸点-33.5℃,相对密度(水=1)0.82(-79℃),相对密度(空气=1)0.6。
2.4.2氨合成的原理
氨的合成是在高温高压和催化剂存在下进行的,其反应是放热和摩尔数减少的可逆反应:n2+3h2≒2nh3。提高平衡含量的途径为降低温度、提高压力保持h2/n2在2.8-3.1之间,经过在合成塔中的反应生成气氨,从而进入氨冷器进行降温冷凝。2.4.3氨合成的工艺步骤 1.气体的压缩
2.气体的预热和合成 3.氨的分离
合成塔出口气体氨含量一般为10~20%因此将氨分离出来。4.气体的循环
氢氮混合气经过氨合成塔以后,只有一小部分合成为氨。分离氨以后,剩余的氢氮气,除为降低惰性气体含量而少量放空以外,大部分与新鲜原料气汇合后,重新返回合成塔,在进行氨的合成,从而构成了循环法生产流程。5.惰性气体的排除
氨合成循环系统惰性气体通过三个途径带出:(1)一小部分从系统中漏损;
(2)一小部分溶解在液氨中被带走;
(3)大部分采用放空的方法,即间断或连续地从系统中排放。放空的位置应该在氨已大部分分离之后,而又在新鲜气加入之前。6.反应前的回收利用
回收利用反应热的方法主要有以下几种:(1)预热反应前的前氢氮混合气。在塔内设置换热器,用反应的高温气体预热反应前氢氮混合气达到催化剂的活性温度。
(2)预热反应前的氢氮混合气和副产蒸气。既在塔内设置换热器预热反应前的氢氮混合气,又利用余热副产蒸气。(3)预热反应前的氢氮混合气和预热高压锅炉给水。反应后的高温气体先通过塔内的换热器预热反应前氢氮混合气,后通过塔外换热器预热高压锅炉给水。2.4.4冷冻系统
1.氨合成塔只能将一部分氮氢气合成为氨,为了使它与未反应的气体分离,一般采用降温冷凝的方法。若想使分离的更加完全,合成回路气体温度降得更低必须有专门的冷冻系统。2.冷冻系统配有组合式氨冷器、冰机,氨经过氨冷器中的三段闪蒸罐进行分级制冷,从组合式氨冷器三段闪蒸罐中闪蒸出不同压力与温度的气氨进入冰机进行分段压缩,压缩后经冷凝生成液氨进入氨受槽供给冷冻系统循环使用。3.冷冻系统就是提纯与冷冻的结合,液氨经高压分离器送至低压排放槽时压力下降可以将液氨中的一些惰气闪蒸出来作为燃料使用,从冷冻系统净化出的液氨分为冷、热产品,热氨送至尿素装置使用,冷氨提供给净化岗位氨冷器使用。第三章 合成氨的主要设备 3.1 氨合成塔
3.1.1 氨合成塔的构造
合成塔是进行合成反应的一种设备。它的结构、材料和形成随反应物和反应条件不同而不同。是耐高温高压的圆筒形金属设备,可分为内部换热式和多层中间换热式和多层中间激冷式。目前较常用的氨合成塔是内部换热式,上半部为催化剂筐,下半部为换热器,中有分气盒。进塔冷气(含氨量很少)与经催化反应后的热气(含氨量较多)在换热器内换热。冷气经分气盒至催化剂层内配置的冷管,较冷的气体通过管内,带走催化剂层内的反应热而本身则被预热至适当温度,然后进入催化剂层进行合成。下部换热器有列管式、螺旋板式等多种。3.1.2 氨合成塔的原理
以并流套管合成塔中的并流三套管式合成塔为例简绍其主要结构和特性:此塔为并流双管式合成塔的改进型,即在后者的内冷管内衬一根薄壁内衬管,两者在一端满焊,使内冷管和内衬管间形成一不流动的“滞气层”,起隔热作用,使冷气流经内衬管时温升较小,三套管顶部触媒层温差大,从而增强了冷却效果,使三套管取走的热量与合成反应生产的反应热量相适应。
第四章 合成氨的三废处理
合成氨工业的主要污染物有污水:含氨污水,含硫污水;废气:含硫化氢气体,造气吹风气,一氧化碳气体,二氧化碳气体;固体废物:煤灰,煤渣,铜液渣。1.造气炉渣经处理后送“三废”流化混燃炉燃烧; 2.锅炉废渣外卖作为建材原料; 3.变换、合成、甲醇触媒外卖; 4.废活性炭送锅炉燃烧。第五章 实习心得体会
在这短短的时间里,通过认真听老师讲解及跟同学们的交流、沟通。虽然我没有下去车间操作,但还是可以学到很多在学校学不到的东西,也认识到了自己很多的不足。在实习过程中,我发现了自己看问题的角度,思考问题的方式也逐渐开拓。在这次实习过程中,让我感受充实,感受成长。
作为一名大学生,我想学习的目的不在于通过结业考试,而是为了获取知识,能够适应社会的需要,通过学习保证能够完成将来的工作,为社会做出贡献。我们踏入社会融入单位公司工作还是有很大落差,能够以进入天野化工公司实习来当成缓冲,对我而言是一件幸事,通过实习工作了解到工作的实际需要,使得学习的目的性更明确,得到的效果也相应的更好。我们这次实习,主要是在制气、脱硫、变换、脱碳、合成氨等几个工作段进行实习,在车间师傅和带队老师的详细讲解和悉心指导下,我们重点了解各个工段的生产流程。初步了解了工厂各个工段的工艺指标和管理制度,了解生产中的技术革新措施,并注意新技术发展趋势,接受安全与劳动纪律教育,增强安全生产集体观念;学习工人和工程技术人员对生产的高度责任感以及理论联系实际、解决实际问题的经验。这次生产实习也给我们学习工艺的同学一种启发:在以后的学习工作学习中更应该多思考,多想现有的技术还有什么可以改进的地方,而不是被书本上的理论知识所束缚。虽然书本上的知识都是经典,但流程工艺是可以更新的。结合实际生产情况建设更高效、更经济、更实用的化工是我们追求的目标。致谢 短短几天时间,我们收获良多。在此感谢我们化工学院的领导老师们的精心安排,感谢中海石油天野化工股份有限公司的热情招待,感谢车间的工程师技术员的耐心指导,感谢我们同组人员的相互帮助。这为本次实习的顺利进行提供了强有力的支持。篇二:合成氨化工厂实习报告
毕业实习报告
实习单位:石家庄双联化工有限责任公司 1.实习单位介绍:
石家庄双联化工有限责任公司始建于1965年(原名:石家庄市联碱厂、石家庄联碱化工有限责任公司),是河北省第一批小氮肥企业和第一家纯碱生产厂,2003年经石家庄市政府批准,进行了产权制度改革,组建了石家庄联碱化工有限责任公司。2006年更名为石家庄双联化工有限责任公司。双联化工集团占地548万平方米,是以纯碱为主业并拥有5个子公司,集基础化工、精细化工、热电联产、集中供热为一体的综合性化工公司。是河北省100强优势企业和重点保护企业行列,石家庄市工业50强企业,曾荣获全国五一劳动奖状。
目前公司现有合成氨生产能力12万吨,联产甲醇1.5万吨,纯碱生产能力30万吨,氯化铵生产能力33万吨,高浓度系列复合肥50万吨。此外,公司在石家庄市鹿泉高新技术园区内已建成完善的集中供热网络,2004年1月份已正式送汽,供汽能力为75t/h。
截止2006年,公司拥有总资产6.05亿元,固定资产原值为4.43亿元,净资产为2.4亿元,负债为36480万元,实现销售收入72358万元。公司现有员工1827人,大学以上学历占公司员工的14%,具有中、高级管理、技术职称的员工占公司员工20%。公司拥有一支团结奋进,文化水平较高,专业技术较强的职工队伍。
2.实习概况:实习时间安排在2011-2012学年第二学期的第一周到第四周(2月29日-3月20日),实习单位为石家庄双联化工有限责任公司。首先要进行实习动员,学习实习大纲和实习计划,明确实习目的与要求、方法和步骤,做好准备。到达实习地点后,在指导老师的指导下,熟悉工作环境和相关工作,按学校以及实习单位的要求完成有关实习任务。然后学习公司安全、消防知识以及合成氨各流程的工艺知识。接着分别在造气、脱硫、精制、合成和变换5个车间轮流实习,实习期间做好实习记录,记载每天的实习内容、心得体会和存在的问题,完成实习作业,要求不仅对该车间及其相关车间的工作有“面”上的认识,同时在某一点上深入学习,积极与工人师傅交流,切实了解实习单位具体的生产实践与相关管理和销售环节,全面培养从事相关领域工作的能力。实习结束后,及时完成个人实习总结和实习报告,将本科学生实习手册上交学院,作为毕业实习考核的依据。3.实习具体内容:
氨的合成是人类从自然界制取含氮化合物的最重要方法,氨则是进一步合成含氮化合物的最重要原料,而含氮化合物在人们生活和工农业生产中都是必不可少的。实习期间主要学习合成氨造气、净化、合成3段工艺。1)安全与消防知识教育
合成氨工厂生产存在高温、高压、易燃、易爆、有毒、有害,必须严格执行安全生产要求,确保实现期间的人身和生产安全。因此由工厂的安全工程师为我们做工厂劳动保护、安全技术、防火、防爆、防毒等内容的安全生产教育。
a)注意着装,不能穿裙子,不能披散长发,不能穿高跟鞋。b)严禁接触阀门、仪表、按钮。c)工厂区禁止吸烟。
d)进入工厂区必须佩戴安全帽,不能脱离组织,不要妨碍正常生产操作。e)出现事故迅速撤离至下风处。2)造气车间工艺
造气工段的任务以白煤做原料以空气和水为汽化剂,在高温的条件下进行汽化反应,制取合格的半水煤气(co + h2)/n2为3.1-3.2。
造气工艺采用间歇式固定层汽化法制取半煤气。原料煤为白煤,汽化剂为空气和水,在高温条件下进行汽化反应,制取合格的半水煤气。原料煤由造气炉顶加入,在造气炉内形成燃料层。来自鼓风机的空气,送入煤气发生炉底部,经与燃料层燃烧后生成吹风气由炉顶引出,经旋风除尘器除去灰尘后,进入废热回收系统,与锅炉管间的水换热,水受热蒸发产生的低压蒸汽经汽包送入蒸汽管路。吹风气被冷却降温后,出废热锅炉,由烟囱放空,此阶段为吹风阶段;蒸汽与加氮空气一起自炉底送入,经与灼热的燃烧层反应后,生成的半水煤气由炉顶引出。经旋风除尘器、余热锅炉、洗气塔送入气柜,此为上吹制气阶段;蒸汽与加氮空气自炉顶加入,经与灼热的燃烧层反应后,生成半水煤气由炉顶引出,因下行煤气通过灰渣层降低了温度,所以不再进入废热锅炉而直接送往洗气塔,最后送入气柜,此为下吹制气阶段;再经二次上吹阶段,流程与上吹流程相同;最后经空气吹净阶段,流程与吹风阶段相同,但气体不放空,经洗气塔后回收入气柜。最后生产出(co + h2)/n2为3.1-3.2的半水煤气进入气柜。
每个制气循环包括5个阶段:
(1)吹风阶段:来自鼓风机的加压空气,送入炉的底部,与燃烧层燃烧并放出大量的热量储存在碳层内。生成的吹风气经除尘器除去灰尘后,经总管送至三废混燃炉。(2)上吹制气阶段:蒸汽及加氮空气自炉底送入,经与灼热的燃烧层反应后,气化层上移,炉温下降,生成的半水煤气由造气炉顶部引出,经除尘器除去灰尘,进入联合废锅,回收气体中的显热后进入洗涤塔除尘、冷却,由洗涤塔顶部引出送入气柜。反应方程式:c+h2o=co+h2(3)下吹制气阶段:在上吹制气进行一段时间后,气化层上移炉内下部温度降低,操作条件恶化,为维持正常操作,需将蒸汽、空气由上向下吹进行制气,煤气由炉底引出,经下行煤气除尘器除尘,废热锅炉回收显热后再经洗涤塔除尘,冷却后送入气柜。
(4)二次上吹阶段:同上吹制气阶段,但不加入空气,其目的在于置换炉下部管道中残余的煤气,防止爆炸现象发生。
(5)空气吹净阶段:其操作程序同上吹制气阶段,但不用蒸汽而改用空气,以回收系统中的煤气至气柜。
以上五个阶段的操作程序为一个循环过程,由dcs程序控制。反应方程式如下:
c + o2+q 2c + o 2co+q 2co + o2co2+q 2 co2 + c2co-q c + h2oco+h2-q c + 2h2oco2+2h2-q c0 + h2oco2+h2+qc + 2hch4+q 3)净化车间工艺
由原料制成的半水煤气中含有能导致催化剂中毒的组分,主要是含硫化合物和碳的氧化物,需要经历脱硫和脱碳的净化过程。净化车间的工艺流程为:
a)旋风除尘:旋风除尘器是除尘装置的一类。除沉机理是使含尘气流作旋转运动,借助于离心力降尘粒从气流中分离并捕集于器壁,再借助重力作用使尘粒落入灰斗。
b)脱硫岗位:栲胶脱硫法,是以纯碱为吸收剂,以栲胶为载氧体,以navo2为氧化剂,在吸收塔内原料气与脱硫液逆流接触硫化氢与溶液中纯碱作用被吸收,在反应槽内硫氢根被高价金属离子氧化生成单质硫,在喷射再生槽内空气将酚态物氧化为醌态,按顺序连续进行从而完成气体脱硫净化。反应过程如下: h2s+na2co2====nahs+nahco2 nahs+nahco2+2navo2=====s↓+na2v2o2+na2co2+h2o 2hq+1/2 o2====2q+h2o c)变换岗位:原料气中的co,在一定温度与压力条件下,借助催化剂的催化作用,于水蒸气进行变换反应,生成co2和h2。合理利用反应热充分回 收余热,降低能耗。co+h2o→co2+h2+q d)变脱岗位:采用湿式氧化法用氨水溶液来脱除变换气中的h2s,以满足篇三:合成氨实习报告
企业认识实习报告
一、实习时间 :2013.9.24 ——2013.9.27
二、实习地点:晋开化工有限公司
三、实习目的
通过教师和工程技术人员、工人师傅现场讲解,全面而详细的了解相关生产 工艺过程。在实习的过程中,学会从技术人员和工人那里获得直接的和间接地 生产实践经验,积累相关的生产知识。学习本专业方面的生产时间实践知识,为专业课学习打下坚实的基础,同时也能够为毕业后走向工作岗位积累有用的 经验。通过同工人、工程技术人员、生产机管理人员的接触和了解、增加对社 会的认识,提高其社会适应能力。四、公司概况
河南晋开化工投资控股集团有限责任公司(以下简称“晋开集团”)的前身是 开封晋开化工有限责任公司,成立于2004年5月28日,是中国500强企业山 西晋煤集团在山西省境外设立的第一家煤化工子公司。2008年5月28日,以 开封晋开化工有限责任公司为母公司组建河南晋开投资控股集团,公司变更为 现名。
晋开集团总部位于七朝古都开封,地理位置优越。公司注册资本36791万
元,其中晋煤集团控股85.35%。公司本部现有在职员工3235人,占地3318亩(不包括子公司)。公司主要产品有合成氨、尿素、硝酸铵、多孔硝铵、硝酸 磷肥、甲醇、稀硝酸、浓硝酸、硝酸钠、亚硝酸钠、氨水、液体二氧化碳等,产品注册商标为“三中”及“晋开”,在化肥化工行业享有良好的声誉。经过八年来的不断奋斗、拼搏和探索,晋开集团形成了具有自身特色 的核心价值观和企业文化,制定了可持续发展的战略规划和愿景目标,提出了 “发展是解决一切问题的金钥匙”的发展宗旨,以“十年百亿,百年晋开,河 南第一,中部最强”为发展目标,以“回报股东,造福员工,贡献社会,共创 和谐”为发展目的,按照晋煤集团和开封市委市政府的正确部署,晋开集团积 极进行资源整合,强化企业管理,通过“技术改造、战略并购、新建项目”三 路并举,走出了一条规模化发展和效益型增长的新路子,跃上了发展的新平台。公司产能规模和盈利能力不断提升,总氨生产能力由成立之初的12万吨/ 年增长至目前的200万吨/年,具备了年生产经营总额40亿元的规模。“十二? 五”期间,公司总氨产量将达到260~300万吨/年,生产经营规模突破100亿 元/年,利税15~20亿元/年。截至2013年2月底,公司总资产110亿元,较 成立之初增长了47倍。公司现拥有6家分公司,6家子公司,形成了一个以化 肥化工为主,在贸易、机械加工、建筑、劳务、包装、餐饮服务等领域多元发 展的跨地区、跨行业、跨所有制的大型现代煤化工企业集团。
公司通过了中质协的质量、环境和职业健康安全管理三项体系认证,先后获得“中国氮肥行业50强”、“河南省资源综合利用企业”、“河南省企 业100强”、“河南省化肥化工行业综合实力十强”、“开封市工业强市先进 单位”、“晋煤集团模范单位”等荣誉;被确定为河南省“重点服务企业”、开封市“重点培育企业”;公司党委荣获河南省“五好基层党组织”和晋煤集 团“优秀基层党委”光荣称号;公司董事长樊进军光荣当选十二届全国人大代 表,荣获“全国石油和化学工业劳动模范”、“开封市五一劳动奖章”、“工 业强市特殊贡献奖”等荣誉称号。
实习准备工作:
召开实习动员大会,由老师给我们讲解有关实习期间的各项注意事项。包
括安全、知识、纪律等方面的内容。布置了相关的任务,让我们课下查资料了 解与化肥生产有关的知识,以便在实习期间能有目的的去了解各种设备、工艺 流程等。通过自己查资料,我了解了与氨的合成有关的知识,加深了对每个步 骤的认识,学到了以前不知道的东西。也提高了我们查阅资料以及对信息的筛 选的能力。
进入工厂之前由工厂的技术员为我们做了工厂劳动保护、安全技术、防 火、防爆、防毒等内容的安全生产知识讲座。
此化工厂的生产为高温、高压、易燃易爆的高危企业。化肥生产中的氨
气、co属有毒气体,h2易燃易爆,液氨有毒,若不做好有效地安全防范工作,很容易发生事故。进入工厂以后必须遵守以下规定: 1.禁止触摸设备、按钮 2.规定时间内参观 3.禁止抽烟、喝酒 4.戴好安全帽
5.严格遵守规定,不单独行动 6.不能穿越禁道
7.不能携带易燃易爆品 8.不乱扔垃圾保护环境 9.上班时间禁止睡觉
10.安全装置不齐全的设备不准使用 11.停机检修的设备未经检查不准使用 12.移动式电动工具必须安装触电保护器
13.如遇火灾拨打厂内报警电话,禁止拨打119 14.禁止进入危险区域,从管道底下穿过
实习安排:全班人分为三组,分别参观造气、合成、尿素制造。参观完后 轮换。最后一天参观我们在化工厂见到的大型设备的维修过程,能够清楚的见 到内部的结构。通过参观设备的维修过程,能够更加直观的了解其工作原理。
五、化工产品的生产原理
原料煤利用蒸汽和空气为气化剂,在煤气发生炉内产生半水煤气。经一次
脱硫、变换、二次脱硫、脱碳、精脱硫、甲醇、烃化等工艺将气体净化。除去 杂质后,将氮氢气体送入合成塔内,在高温高压,有催化剂存在的条件下合成 氨。脱碳解吸出来的二氧化碳经净化和压缩后,与氨一起送入尿素合成塔在适 当的温度和压力下,合成尿素。经蒸发、造粒后包装销售。
总的工艺流程如下:其中,氨的合成共有三个阶段,造气、净化、合成。晋开公司采用的是 以煤为原料造气。c+h2o=co+h2 工艺流程如下:
工艺流程说明:
采用间歇式固定常压气化法,即在煤气发生炉内,以无烟煤块或者焦炭为原 料,并保持一定的炭层,在高压下,交替的吹入空气和蒸汽,使煤气化,以制 取合格的半水煤气。经过除尘、热量回用降温后送入汽柜。自上一次开始送风 至下一次送分为止,称为一个工作循环,每个循环分吹风、上吹、下吹、二次 上吹和吹净五个部分。
工艺流程:吹风阶段,回收阶段,上次制气,下次制气,二次上吹
吹风阶段:空气→煤气发生炉→除尘器蒸汽过滤器→废热锅炉→烟囱放空
回收阶段:空气→煤气发生炉→除尘器蒸汽过滤器→废热锅炉→洗气塔→气柜 上吹制气阶段:蒸汽顶进→煤气发生炉→废热锅炉→洗气塔→气柜
二次上吹阶段:蒸汽→煤气发生炉→除尘器蒸汽过滤器→废热锅炉→洗气塔→ 气柜
半水煤气成分(工艺指标): co2: ≤8% o2:≤0.5% co+h2:≥68% 合成循环气h2/n2 2.4-3.1 气体温度:煤气炉顶出口温度≤380℃ 煤气炉底出口温度150-280℃ 气体入口煤气温度≤45℃
氢氮比的调节是造气工序的一重要操作 半水煤气质量→氢氮比是否稳定
根据氨的合成反应,氢氮比控制在3:1左右,一般按照循环空气中氢含量的高低进行调节
主要用到的设备包括:煤气发生炉、蒸汽缓冲器、空气鼓风机、集尘器、洗气塔、除尘器、废热锅炉、各种管道等。
煤气发生炉构造及原理
固体燃料由进料口加入
空气、水蒸气由下部进气口进入
炉体内壁为直立的圆筒,下部由钢板焊成的 水夹套,夹套上部衬耐火材料,用以保护外 壳钢板和减少热量损失,炉顶内壁用耐火砖 砌成拱形。
底部为除灰机构,在炉底轨道上置有大齿 轮,大齿轮上部盖有灰盘,灰盘中间设有炉 箅,当灰盘旋转时,灰渣由灰梨刮入灰仓,定期排除
罗茨鼓风机结构及原理
机
壳内有两 个特殊形
状的转子,常为腰形或三星形,两转子之间转子与机壳之间的缝隙很小,使转子能自由的转动而无过多泄漏。两转子的旋转方向相反,可使气体从一侧吸入,从另一侧排出。净化阶段
净化车间工艺指标: 1、665气柜高度:3000-8000m3 大风天气:3000-6000m3
2、半脱出口h2s含量:80-150mg/m3
3、脱硫溶液悬浮硫含量:<=1g/l
4、压缩一段进口温度:冬季<=30oc 夏季<=40oc
5、交换炉入口h2s含量:80-150mg/m3(根据生产需求调整)o6、交换炉热点温度:200-400c
7、变脱后h2s含量:<=10mg/m3
8、净化气中co2含量:<=1.3%
9、精脱出口h2s含量<=0.1ppm 除去杂质的过程包括脱硫、脱碳、变换三个过程,以得到纯净的原料气,以便进入到下一个加工工艺中。
煤中的硫在造气过程中大多以h2s的形式进入气相,它不仅会腐蚀工艺管
道和设备,而且会使变换催化剂和合成催化剂中毒,因此脱硫工段的主要目的就是利用dds脱硫剂脱出气体中的硫。气柜中的半水煤气经过静电除焦、罗茨风机增压冷却降温后进入半水煤气脱硫塔,脱除硫化氢后经过二次除焦、清洗降温送往压缩机一段入口。脱硫液再生后循环使用。
脱硫工艺流程如下: 静电除焦器构造及原理
静电除焦塔主要由塔体和电器两部分,其塔体结构如图所示
第五篇:实习报告合成氨仿真
南京工业大学
合成氨仿真实习报告书
学 院: 班级、学号: 姓名(签名):
2011年11 月 实习目的
仿真实习是认识实习实习计划的组成部分,通过实习使学生了解化工生产一般特点、规律和工艺参数的控制,获得化工生产实践知识,培养运用化工专业理论知识,分析和解决实际问题的能力,为今后毕业论文(设计)和所从事的化工实际工作打下良好的实践基础。实习要求
1.实习装置为合成氨生产仿真装置。要求了解并熟悉生产过程及控制,包括: 1)生产方法和原理,原料、催化剂及产品特性;
2)生产工艺流程(流程中设备、主副管线,过程操作和控制); 3)各工序工艺条件及控制:主要设备操作温度、压力和组成; 4)主要设备型式、结构;
5)主要设备及管线上的控制仪表及调节方法。2.搜集信息途径
1)听讲座(拟安排工艺及设备、仿真装置及操作等讲座);
2)现场实习:熟悉工艺流程、设备、及仿真软件操作,熟悉仿真模型; 3)阅读实习指导书、流程图、设备图及其它文献资料。实习内容
仿真实习的主要内容是:以河南化肥厂为原型的大型合成氨全流程仿真模型和以宁夏化工厂为原型的合成氨大工段DCS控制系统仿真软件。两者均以天然气为原料的合成氨工艺,通过仿真实习了解合成氨工艺原理与流程,掌握合成氨生产中的主要参数和DCS控制系统的操作。
3.1 合成氨装置转化工段
1、概述
转化工段包括下列主要部分: 原料气脱硫、原料气的一段蒸汽转化、转化气的二段转化、高变、低变、给水、炉水和蒸汽系统。
2、原料气脱硫
天然气中含有少量硫化物,这些硫化物可以使多种催化剂中毒而不同程度地使其失去活性,硫化氢能腐蚀设备管道。因此,必须尽可能地除去原料气中的各种硫化物。
加氢转化主要指在加入氢气的条件下使原料气中有机硫转化为无机硫。加氢转化不能达到直接脱硫的目的,但经转化后就大大的利于硫的脱除。在有机硫转化的同时,也能使烯烃类加氢转化为烷氢类从而可减少下一工序蒸汽转化催化剂析炭的可能性。
在采用钴钼催化剂的条件下,主要进行如下反应: R-SH+H2=RH+H2S R-S-R’+2H2=RH+R’H+H2S C4H4S+4H2=C4H10+H2S RC=CR’+H2=RCH2-CH2R’
氧化锌是一种内表面积颇大,硫容较高的接触反应型脱硫剂。除噻吩及其衍生物外,脱除硫化氢及各种有机硫化物的能力极高,可将出口气中硫含量降至0.1PPm以下。
氧化锌脱硫反应:ZnO+H2S=ZnS+H2O 原料天然气在原料气预热器(141-C)中被低压蒸汽预热后,进入活性碳脱硫槽(101-DA、102-DA一用一备),进行初脱硫后,经压缩机(102-J)加压。在一段炉对流段低温段加热到230℃左右与103-J段来的氢混合后进入Co-Mo加氢和氧化锌脱硫槽(108-D)终脱硫后,天然气中的总硫≤0.1ppm。
3、原料气的一段蒸汽转化
经脱硫后的原料气的总硫含量降至0.1PPm以下,与水蒸汽混合后进行转化反应:
CH4 + H2O = CO + 3H2
CnH2n+ nH2O = nCO +(2n+1)H2
由于转化反应是吸热反应,在高温条件下有利于反应平衡及反应速度。在实际生产中,转化反应分别是一段炉和二段炉中完成。在一段炉中,烃类和水蒸气的混合气在反应管内镍催化剂的作用下进行转化反应,管外有燃料气燃烧供给反应所需热量,出一段炉转化气温度控制在800℃左右。
脱硫后的原料气与中压蒸汽混和后,经对流段高温段加热后,进入一段炉(101-B)的336根触媒反应管进行蒸汽转化,管外由顶部的144个烧嘴提供反应热,经一段转化后,气体中残余甲烷在10%左右。、转化气的二段转化
为了进一步转化,需要更高的温度。在二段炉中加入预热后的空气,利用H2和O2的燃烧反应,产生高热,促使CH4进一步转化。
一段转化气进入二段炉(103-D),在二段炉中同时送入工艺空气,工艺空气来自空气压缩机(101-J)加入少量中压蒸汽并经对流段高温段预热,转化气中的H2和空气中的氧燃烧产生的热量供给转化气中的甲烷在二段炉触媒床中进一步转化,出二段炉的工艺气残余甲烷含量0.3%左右,经并联的两台第一废热锅炉回收热量,再经第二废热锅炉进一步回收余热后,送去变换。
5、CO变换
经蒸汽转化后的工艺气含有12~15%的CO,变换工序的任务是使CO在有催化剂存在的条件下与水蒸汽反应:
CO + H2O = CO2 + H2
这样即能把一氧化碳变为易于清除的二氧化碳,同时又可制得合成需要的原料氢。变换反应是一个可逆、放热、反应前后气体体积不变的化学反应。
整个变换过程是由高温变换和低温变换组成。高温变换所用的催化剂是以Fe3O4为活性组分的,它的活性温度在300℃以上(一般在350~430℃)。在此温度下,可以取得较高的反应速度,但不能达到较低的CO浓度。为了进一步取得较低的CO浓度,还要以铜为活性组分的催化剂作用下,进行低温变换。它的变换温度一般在200~250℃,这样的低温下,就能使CO的变换进行的比较彻底,可以使CO浓度降至0.3%以下。
由第二废热锅炉来的转化气约含有12-14%的CO,进入高变炉(104-DA),在高变触媒的作用下将部分CO转化成CO2,经高温变换后CO含量降到3%左右,然后经第三废热锅炉(103-C)回收部分热能,经换热器(104-C)进入低变炉(104-DB)在低变触媒的作用下将其余CO转化为CO2,出低变炉的工艺气中CO含量约为0.3%左右。
6、给水、炉水、蒸汽系统
合成氨装置开车时,将从界外引入3.8MPa、327℃的中压蒸汽约50T/H。辅助锅炉和废热锅炉所用的脱盐水从水处理车间引入,用并联的低变出口气加热器(106-C)和甲烷化出口气加热器(134-C)预热到100℃左右,进入除氧器(101-U)脱氧段,在脱氧段用低压蒸汽脱除水中溶解氧后,然后在储水段加入二甲基硐肟除去残余溶解氧。最终溶解氧含量小于7PPb。
除氧水加入氨水调节PH至8.5-9.2,经锅炉给水泵104-J/JA/JB经并联的合成气加热器(123-C),甲烷化气加热器(114-C)及一段炉对流段低温段锅炉给水预热盘管加热到295℃左右进入汽包(101-F),同时在汽包中加入磷酸盐溶液,汽包底部水经101-CA/CB、102-C、103-C一段炉对流段低温段废热锅炉及辅助锅炉加热部分汽化后进入汽包,经汽包分离出的饱和蒸汽在一段炉对流段过热后送至103-JAT,经103-JAT抽出3.8MPa、327℃中压蒸汽,供各中压蒸汽用户使用。103-JAT停运时,高压蒸汽经减压,全部进入中压蒸汽管网,中压蒸汽一部分供工艺使用、一部分供凝汽透平使用,其余供背压透平使用,并产生低压蒸汽,供111-C、101-U使用,其余为伴热使用在这个工段中,缩合/脱水反应是在三个串联的反应器中进行的,接着是一台分层器,用来把有机物从液流中分离出来。
3.2 合成氨装置净化工段
1、脱碳
经变换工序后的工艺气,CO2含量一般在17%左右。本装置采用改良苯菲尔法脱除工艺气中的二氧化碳,吸收剂为碳酸钾溶液,溶液的吸收和再生可以用如下反应方程式表示:
K2CO3 + CO2 + H2O = 2KHCO3 + 热量
这是一个可逆过程,脱碳溶液中K2CO3吸收了CO2生成KHCO3,KHCO3又在加热、减压的条件下放出CO2,重新变成K2CO3。前一个过程是吸收过程,后一个过程是再生过程。经过吸收塔的脱碳气体要求CO2小于0.1%;经过再生塔的CO2气体要求纯度大于98.5%。
从变换工序来变换气温度60℃,压力2.799MPa进入CO2吸收塔(101-E)下部,在吸收塔中经塔板逆流向上与塔顶加入的贫液(40℃)接触,脱去工艺气中所含二氧化碳,再经塔顶洗涤段后出CO2吸收塔,出吸收塔净化气在管路上由喷射器喷入变换气分离器(102-F)来的工艺冷凝液进一步洗涤,经净化气分离器(121-F)分离出喷入的工艺冷凝液,温度44℃,压力2.764MPa的气体去甲烷化工序,液体与变换冷凝液汇合去工艺冷凝液处理装置。
从CO2吸收塔塔底出来的富液(74℃)先经溶液换热器(109-CB)加热,再经溶液换热器(109-CA)进一步升温至105℃后,进入CO2汽提塔(102-E)顶部,102-E为筛板塔,共10块塔板,在CO2汽提塔中靠变换气煮沸器(105-CA.B)蒸汽煮沸器(111-C)提供的热量蒸发出大量水蒸汽,由下向上逐板汽提出溶液中的CO2,气体经过CO2汽提塔冷凝器(110-C),再经CO2汽提塔回流液槽(103-F)分离出液体后,CO2气体送尿素装置。
从CO2汽提塔底部出来的热贫液先经溶液换热器(109-CA)与富液换热降温后进贫液泵,经贫液泵(107-JA/JB/JC)升压后的贫液再经溶液换热器(109-CB)降温,并经贫液冷却器(108-C)进一步冷却至40℃左右进CO2吸收塔上塔。
从CO2汽提塔回流液槽底部出来的冷凝液,先经回流液泵(108-J)升压,一部分去冷凝液处理装置,另一部分去CO2吸收塔顶部洗涤净化气中夹带出的溶液,洗涤后的冷凝液回CO2汽提塔顶部进入系统。
2、甲烷化
碳氧化物(CO、CO2)是合成触媒的毒物,在工业生产中要求入合成工序的氢氮气中的CO、CO2含量小于10PPm。在催化剂作用下将CO、CO2加氢反应生成对合成触媒无害甲烷。
在镍触媒存在的条件下,进行如下化学反应: CO + 3H2 = CH4 + H2O + 206.16kJ/mol CO2 + 4H2 = CH4 + 2H2O + 165.08kJ/mol 6
甲烷化反应是可逆强放热反应,温升很大,每反应1%CO,温升72℃左右;每反应1%CO2,温升60℃左右。因此,要严格控制低变出口CO含量及脱碳出口CO2含量再规定指标范围内,严防甲烷化触媒超温。
甲烷化装置的原料气来自脱碳装置,该原料气(44℃、2.76Mpa)先后经合成气一脱碳气换热器(136-C)预热至117.49℃、高变气—脱碳气换热器(104-C)加热到316℃,进入甲烷化炉(106-D),炉内装有18m3、J-105型镍催化剂,气体自上部进入106-D,气体中的CO和CO2与H2反应生成CH4和H2O。甲烷化炉(106-D)的出口温度为363℃,依次经锅炉给水预热器(114-C),甲烷化气脱盐水预热器(134-C)和水冷器(115-C),温度降至40℃,甲烷化后的气体中CO和CO2含量降至10ppm以下,进入104-F进行气液分离。
3、冷凝液回收系统
自低变104-D来的工艺气(260℃)经102-F底部冷凝液萃冷后,再经105-C,106-C换热至60℃,进入102-F,其中工艺气中所带的水分沉积下来,脱水后的工艺气进入CO2吸收塔101-E脱除CO2。102-F的水一部分进入103-F,一部分经换热器C66401换热后进入E66401,由管网来的327℃的蒸汽进入E66401的底部,塔顶产生的气体进入蒸汽系统,底部液体经C66401,C66402换热后排出。
3.3 合成氨装置合成工段
氨的合成是整个合成氨流程中的核心部分。前工序制得的合格氮氢气在高温高压及铁催化剂作用下合成为氨。由于在反应过程中只有少部分氮氢气合成为氨,因此反应后的气体混合物分离氨后,经加压又送回合成塔,构成合成回路。氨合成的化学反应式如下:
1/2 N2 + 3/2H2 = NH3 + 热量
这是一个放热和体积减少的可逆反应。
本装置的合成塔采用了三段间接换热式径向合成塔,这样合成塔触媒层的温度分布就更为合理,更加接近最佳温度分布曲线,触媒层的阻力降也更小。同时,在合成塔出口设置了合成废锅,利用合成氨余热产生125×105Pa(绝)的高压蒸汽,能量回收更为充分。但是,由于转化工序加入过量空气,使合成系统氮过剩,加大了合成排放气量。为此增加了氢回收装置加以弥补,回收的氢返回合成系统。
1、合成系统
从甲烷化来的新鲜气(40℃、2.6Mpa、H2/N2=3:1)先经压缩前分离罐(104-F),分离气体中的水后,进合成气压缩机(103-J)低压段,在压缩机的低压缸将新鲜气体压缩到合成所需要的最终压力的二分之一左右,出低压段的新鲜气先经热交换器(106-C,与甲烷化进料气换热)冷却至93.3℃,再经水冷器(116-C)冷却至38℃,最后经氨冷器(129-C)冷却至7℃后与氢回收来的氢气混合进入中间分离罐(105-F),进一步分离气体中的水后,从中间分离罐出来的氢氮气再进合成气压缩机高压段。
合成回路来的循环气与经高压段压缩后的氢氮气混合进压缩机循环段,从循环段出来的合成气进合成系统水冷器(124-C)。高压合成气自水冷却器124-C出来后,分两路继续冷却,第一路串联通过原料气和循环气一级和二级氨冷器117-C和118-C的管侧,冷却介质都是冷冻用液氨,另一路通过就地的MIC-23节流后,在合成塔进气和循环气换热器120-C的壳侧冷却,两路会合后,又在新鲜气和循环气三级氨冷器119-C中用三级液氨闪蒸槽112-F来的冷冻用液氨进行冷却,冷却至-23.3℃。冷却后的气体经过水平分布管进入高压氨分离器(106-F),在前几个氨冷器中冷凝下来的循环气中的氨就在106-F中分出,分离出来的产品液氨送往低压氨分离器(107-F)。从高压氨分离器出来后,循环气就进入合成塔进气—新鲜循环气换热器120-C的管侧,从壳侧的工艺气体中取得热量,然后又进入合成塔进气--出气换热器(121-C)的管侧,再由HCV-11控制进入合成塔(105-D),在121-C管侧的出口处分析气体成分。
SP-35是一专门的双向降爆板装置,是用来保护121-C的换热器,防止换热器的一侧卸压导致压差过大而引起破坏。
主线合成气进气由HCV-11控制,从冷激式合成塔105-D的塔底进入,自下而上地沿内件与外筒之间的环隙上升,被预热至合成塔顶部。再向下依次经过各触媒层进行反应;一路副线合成气进气(冷激气)经由MIC-13控制,直接到第一层触媒的入口,用以控制该处的温度(开工时仅由这一路进气),另一路副线冷激气可以分别用MIC-
14、MIC-15和MIC-16进行调节,分别控制第二、第三、第四层触媒的入口温度。气体经过最底下一层触媒床后,又自下而上地把气体导入中心内部换热器的管侧,把热量传给进来的气体,再由105-D的顶部出口引出。
合成塔出口气进入合成塔--锅炉给水换热器123-C的管侧,把热量传给锅炉给水,接着又在121-C的壳侧与进塔气换热而进一步被冷却,最后回到103-J高压缸循环段(最后一个叶轮)而完成了整个合成回路。
合成塔出来的一部分气体(吹出气,又叫驰放气),经氨冷器125-C至高压吹出气分离缸108-F,经MIC-18调节并用FI-63指示流量后,送往氢回收装置或送往一段转化炉燃料气系统。从合成回路中排出一部分气是为了控制循环气中的甲烷和氩的浓度,甲烷和氩在系统中积累多了会使氨的合成率降低。吹出气在进入分离罐108-F以前先在氨冷器125-C中冷却,由108-F分出的液氨送低压氨分离器107-F回收。
合成塔备有一台开工加热炉(102-B),它是用于开工时把合成塔引温至反应温度,开工加热炉的原料气流量由FI-62指示,另外,它还设有一低流量报警器FAL-85与FI-62配合使用,MIC-17调节102-B燃料气量。
2、冷冻系统
合成来的液氨进入中间闪蒸槽(107-F,即低压氨分离器),闪蒸出的不凝性气体通过PICA-8排出,作为燃料气送一段炉燃烧。分离器107-F装有液面指示器LI-12。液氨减压后由液位调节器LICA-12调节进入三级闪蒸罐(112-F),进一步闪蒸,闪蒸后作为冷冻用的液氨进入系统中。冷冻的一、二、三级闪蒸罐操作压力分别为:0.4MPa(G)、0.16MPa(G)、0.0028MPa(G)。三台闪蒸罐与合成系统中的第一、第二、第三氨冷器相对应,它们是按热虹吸原理进行冷冻蒸发循环操作的。液氨由各闪蒸罐流入对应的氨冷器,吸热后的液氨蒸发形成的气液混合物又回到各闪蒸罐进行气液分离,气氨分别进氨压缩机(105-J)各段气缸,液氨分别进各氨冷器。
由液氨接收槽(109-F)来的液氨逐级减压后补入到各闪蒸罐。一级闪蒸罐(110-F)出来的液氨除送第一氨冷器(117-C)外,另一部分作为合成气压缩机(103-J)一段出口的氨冷器(129-C)和液氨接收槽(109-F)的氨冷器(126-C)的冷源(126-C)。氨冷器(129-C)和(126-C)蒸发的气氨进入二级闪蒸罐(111-F),110-F多余的液氨也送往111-F。111-F的液氨除送第二氨冷器(118-C)和弛放气氨冷器(125-C)作为冷冻剂外,其余部分送往三级闪蒸罐(112-F)。112-F的液氨除送119-C作为冷冻剂外,还可以由冷氨产品泵(109-J)作为冷氨产品送液氨贮槽贮存。
由三级闪蒸罐(112-F)出来的气氨进入氨压缩机(105-J)一段压缩,一段出口与二级闪蒸罐111-F来的气氨汇合进入二段压缩,二段出口气氨先经压缩机中间冷却器(128-C)冷却后,与一级闪蒸罐110-F来的气氨汇合进入三段压缩,三段出口的气氨经氨冷凝器(127-CA、CB),冷凝的液氨进入接收槽(109-F)。109-F中的闪蒸气去闪蒸罐氨冷器(126-C),冷凝分离出来的液氨流回109-F,不凝气作燃料气送一段炉燃烧。109-F中的液氨一部分减压后送至一级闪蒸罐(110-F),另一部分作为热氨产品经热氨产品泵(1-3P-1,2)送往尿素装置。实习思考题
1.以天然气为原料生产合成气过程有哪些主要反应? CH4+H2O = CO+3H2
CnH2n+nH2O = nCO+(2n+1)H2
2.天然气-水蒸气转化法制合成气过程有哪些步骤? a、经过预热器进行加热 b、脱硫
c、在外加热的反应管中进行烃类的蒸汽转化反应即一段转化
d、高温的一段转化气进入二段转化炉并加入空气,利用反应热将甲烷转化反应进行到底
e、利用废热锅炉回收高温转换气的热量,产生高压蒸汽 3.为什么天然气要预先脱硫才能进行转化?
天然气中含有少量硫化物,这些硫化物可以使多种催化剂中毒而不同程度地使其失去活性,硫化氢能腐蚀设备管道。因此,必须尽可能地除去原料气中的各种硫化物
4.Co-Mo加氢和氧化锌脱硫有何特点?
Co-Mo加氢转化主要指在加入氢气的条件下使原料气中有机硫转化为无机硫。加氢转化不能达到直接脱硫的目的,但经转化后就大大的利于硫的脱除。在有机硫转化的同时,也能使烯烃类加氢转化为烷氢类从而可减少下一工序蒸汽转化催化剂析炭的可能性。
氧化锌是一种内表面积颇大,硫容较高的接触反应型脱硫剂。除噻吩及其
衍生物外,脱除硫化氢及各种有机硫化物的能力极高,可将(108-D)出口气中硫含量降至0.1PPm以下
5.为什么天然气-水蒸气转化过程需要供热?供热形式是什么?
由于转化反应是吸热反应,在高温条件下有利于反应平衡及反应速度。在实际生产中,转化反应分别是在一段炉和二段炉中完成。在一段炉中(101-B),烃类和水蒸气的混合气在反应管内镍催化剂的作用下进行转化反应,管外有燃料气燃烧供给反应所需热量,出一段炉转化气温度控制在800℃左右。实习收获与体会
为期三周的实习很快的结束了,这三个星期的实习让我对自己的专业有了更深的认识。在这次实习之前,我一直都在怀疑自己平时在学校里学的那些知识的实用性,学习的时候也找不到重点,常常只是为了应付考试而被动的去学。这次实习让我意识到平时的学习是非常重要的,因为任何实际的操作都依赖于一套理论体系,只有熟悉了理论,才可能在实际问题中找到解决的办法。
第一周去南化公司化机厂的实习让我印象深刻。尤其是进场的那两天师父说过一句话,29个危险源就会引起一小的事故,31个小的事故就会引起一大的事故。可见事故就是从小的事件积累起来的,安全就要从点点滴滴坐起。
最后两周的这次仿真实习让我们充分了解了合成氨工艺的流程和主要的控制参数,更加深刻的理解课本上学到的知识,有这次实践的机会,让我们大大开阔了眼界,获得了书本上得不到的知识。
此外,员工自己应当以身作则,积极遵守各项规章制度,培养较高的安全责任意识,珍惜自己与他人的生命。