第一篇:1.3.2有理数的减法 说课稿
1.3 有理数的加减法
一、教材分析
有理数的加法是有理数运算的一个非常重要的内容,它建立在小学算术运算的基础上。
但是,它与小学的算术又有很大的区别,小学的加法运算不需要确定和的符号,运算单一,而有理数的加法,既要确定和的符号,又要计算和的绝对值。因此,有理数加法运算,在确定“和”的符号后,实质上是进行算术数的加减运算,思维过程就是如何把中学有理数的加法运算化归为小学算术的加减运算。
由于有理数的加法是有理数运算的开始,因而它是时一步学习有理数运算的基础,也是
今后学习实数运算、代数式的运算、解方程以及函数知识的基础。同时,学好这部分内容,对减少两极分化、增强学生学习代数的信心具有十分重要的意义。
本节课的重点是有理数的加法法则,理由是:
(1)要熟练地进行有理数的加法运算,就得深刻理解运算法则,对运算法则理解得越深,运算才能掌握得越好。
(2)有理数的加法作为基本运算,在今后的各种运算中有着广泛的应用。
本课的教学难点是异号两数相加的法则,原因是:学生学习数学是一种认识过程,要遵循一般的认识规律。而初一年级的学生,对异号两数相加从未接触过,与小学加法比较,思维强度增大,需有通过绝对值大小的比较来确定和的符号和加法转化为减法两个思维过程,要求学生在课堂上短时间内完成这个认识过程确有一定的难度。在教学时,应从实例出发,充分利用数轴,从数形结合的观点加以讲授,并配以适量的练习,让学生在练习中感知法则的应用。以求突破这一难点。
二、教学目的的确定
1.使学生理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。
2.通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力。3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神。
以上教学目的是从知识教学、技能训练和能力培养三个方面,根据《教学大纲》中关于“有理数加法”的教学要求,和加强“双基”教学的要求,以及培养学生良好的个性品质等要求而确定的。
三、教学方法的选择
引导发现法和直观演示法
引导发现法属于启发式教学,是通过教师的引导,启发调动学生的学习积极性,让学生在课堂上多活动、多观察,主动参与到整个教学的全过程来,通过自己的努力,发现规律、总结出法则。它符合教学论中自学性和积极性、教师的主导作用和学生的主体地位相统一的原则。
另外,在教学中,还运用电教手段进行直观演示,动态演示出物体在一直线上两次运动的结果,使学生在获得感性知识的同时,为掌握理性知识创造条件,这样做可激发学生的学习兴趣,注意力也容易集中,符合教学论中直观性和可接受性原则。这就是说,要从感性和理性两个方面入手来提高学生的素质和能力。
四、学法指导
通过本节课的教学,教师应引导学生学会观察、归纳的学习方法。通过观察实例,让每个学生都动口、动脑、动手,积极思考,自己归纳出运算法则,培养学生学习的主动性和积极性。
五、课堂教学程序 1.类比联想,提出问题
通过引导学生回忆小学算术运算的学习过程,类比联想到在认识了有理数之后,必然要首先学习有理数的加法。
又通过提问,复习具有相反意义的量和用负数表示的量的实际意义,并通过实际问题,提出质疑导入新课。
具体问题是:在下列问题中用负数表示量的实际意义是什么?(1)某人第一次前进了5米,接着按同一方向又向前进了3米;(2)某地气温第一天上升了3°C,第二天上升了-1°C;(3)某汽车先向东走4千米,再向东走-2千米。紧接着,回答:
(1)某人两次一共前进了多少米?(2)某地气温两天一共上升了多少度?(3)某汽车两次一共向东走了多少千米?
组织学生展开讨论,在此基础上指出:这三个问题都是求物体两次向同一方向运动的和的问题,同小学一样,可以用加法来做。但是,这些数中出现了负有理数,怎样进行有理数的加法运算呢?引出课题。
在刚才的教学中,我通过复习,加强了铺垫,刻意去引导学生回忆和复习前面学过的有关知识和方法,在旧知识的复习中找到新知识的生长点。这样,既了解了学生的认知基础,带领学生做好学习新课的知识准备,又使学生认识到本课学习的重要性,引起学生的注意,激发他们的求知个欲望,让每个学生都进行积极的思维参与。2.直观演示,归纳法则
用6个实例讲两个有理数相加的问题:
(1)向东走5米,再向东走3米,两次一共向东走了多少米?(2)向东走-5米,再向东走-3米,两次一共向东走了多少米?(3)向东走5米,再向东走-5米,两次一共向东走了多少米?(4)向东走5米,再向东走-3米,两次一共向东走了多少米?(5)向东走3米,再向东走-5米,两次一共向东走了多少米?(6)向东走-5米,再向东走0米,两次一共向东走了多少米?
以上六个问题的设置运用了数学中分类的思想方法,因为两数相加,按符号异同划分为三大类。即:
这样自然就把问题归结为三种情况:问题(1)和(2)是同号两数相加的情况;问题(3)、(4)、(5)是异号两数相加的情况;问题(6)有是有一个加数为零的情况。
这6个问题,都借助于数轴,先规定了向东为正,向西为负,通过电教手段具体演示两次运动的结果,由在数轴上表示结果的点所处的方向,确定和的符号,由表示结果的点与原点的距离,确定和的绝对值。引导学生认真观察,积极思考,通过分类、观察,最后师生共同归纳总结出有理数的加法法则。
归纳出法则之后,进一步启发诱导学生分析法则特点,并总结规律:两个有理数相加所得的“和”由符号和绝对值两部分组成,计算“和”的绝对值,实质上是进行算术数的加减,因此,有理数的加法运算,贯穿一个化归思想,即把有理数的加法运算化归为算术数的加减运算,具体地说就是:
进而总结出有理数加法运动,一般步骤为:
(1)根据有理数的加法法则确定和的符号;
(2)根据有理数的加法法则进行绝对值的加减运算。
前面已经分析过,异号两数相加的法则是学生学习的难点。因此,我抓住突破难点的关键,一是借助于数轴的直观演示,引导学生认真观察、积极思考,自己归纳法则;二是引导学生分析法则特点,总结规律,在此基础上加以记忆,从而使难点化解,并在化解难点的过程中培养学生的思维能力。
总结出法则之后,可进一步提问:在算术里,两个不都是零的数相加,和一定大于加数,那么,对于两个有理数,相加后和还一定大于加数吗?
提出问题后,让学生去思考、去分析,最终要让学生明白:在有理数运算中,算术中的某些结论不一定再成立,即对于两个有理数,相加的和不一定大于加数,这是有理数的加法与算术运算的一个很大的区别。3.应用举例,变式练习,解决问题
为了解决从掌握知识到运用知识的转化,使知识教学和智能培养结合起来,接下来我设计了例题和练习题,选题遵循由浅入深,循序渐进的原则。例1:计算下列各题:
(1)(-3)+(-4)(2)(-5)+(+8)
(3)(+0.5)+(-1.6)
通过此例,训练学生对法则的理解和直接应用,特别是异号两数相加的问题,师生共同来完成,老师做板书示范。
接下来做一组练习题,此题比较简易,目的在于巩固法则,特别是异号两数相加的问题,加深对法则的理解和记忆。
练习1 填空(口答)(1)(-4)+(-7)=_____()
(2)(+4)+(-7)=_____()
(3)7+(-4)=_____()
(4)4+(-4)=_____()
(5)9+(-2)=_____()
(6)(-9)+2 =_____()
(7)(-9)+0 =_____()
(8)0+(-3)=_____()
通过变式训练,使学生对法则有了一定的认识,为了进一步加深学生对法则的理解和掌握,并培养学生应用数学的意识,我设计了练习2。
练习2 今年,我国南方部分地区发生了严重的洪涝灾害。某地水库的水位在某天当中每一次上升了a厘米,第二次上升了b厘米,问:
(1)两次一共上升了多少厘米?
(2)计算当a、b为下列各数时的值:
① a= 4 , b=3 ② a=-3 , b= 7 ③ a= 5 , b=-5 ④ a= 4-2, b=-1 ⑤ a =-3 , b=0(3)说出以上运算结果的实际意义 4.反馈练习
学生对所学法则到底掌握了多少呢?为了检测学生对本课教学目的完成情况,进一步加强法则的应用训练,我设计了反馈练习,针对学生的解答情况:若出现问题,准备采以措施及时弥补和调整;若学生解答顺利,可再给学生出一些补充练习题。5.归纳小结
为了使学生对所学知识有一个完整而深刻的印象,利用提问形式,从以下三方面小结。学生先回答,进而教师归纳总结,体现学生为主体,教师为主导的教学思想。
(1)本节所学习的主要内容;
(2)有理数的加当选法则在应用时应注意的问题;
(3)本节课涉及的数学思想方法主要有哪些? 6.作业
结合学生的实际情况,贯彻因材施教的原则,作业分两部分来布置,(1)第75页A组的1、2、3、7,(2)第77页B组1、2。第(2)部分是为学有余力的同学布置的,这样可以充分调动学生学习积极性,培养学生良好的学习品质。中代数中具有极其重要的作用,而有理数的加法是在学生小学算术运算的基础上继续学习的有理数的第一种运算。1.化归的基本原则之一是熟悉化的原则。熟悉化的原则就是将不熟悉的问题化归为比较熟悉的问题,从而充分调动已有的知识和经验,用于解决新问题。我们知道,有理数经过“+、-、×÷”运算后,所得结果仍是有理数,要确定一个有理数,只要确定它的绝对值与性质符号。因此,有理数的加法运算包含两个部分,即性质符号和绝对值运算。而有理数的绝对值就是小学里学习的算术数,这样就把有理数的运算化归为算术数的运算。
2.有一数可分为正灵敏、零、负数三类,运算法则中的各条都是以这三类数为出发点,分别叙述了同类数之间如何进行加法运算,异数数之间如何进行加法运算,在教学中注意渗透了分类的思想,并借助于数轴,对以上各种情况作了详尽的分析。
3.整个教学过程,都是以《教学大纲》中要重视“双基”教学的要求,发展思维能力为培养能力的核心,充分调动学生的主观能力性和发挥教师的主导作用,以及坚持启发式,反对注入式等要求设计的。
4.本节教材的知识密度大,教学时间紧,为了更好地突出重点,分散难点,增加课堂容量,提高课堂效率,我运用了电教手段进行辅助教学。
第二篇:有理数的减法的说课稿
大家好,我是3号选手,某某,我的课题是:有理数的减法,现在我开始我的说课环节:
“数的运算”是“数与代数”学习领域的重要内容,减法是其中的一种基本运算.有理数的减法是小学减法运算的延续,它解决了小学数学中“小数不能减大数”的问题,同时将加与减这两种运算统一成加法运算,使学生感受数学的完整美和统一美,促进了中、小学知识的衔接。通过对有理数的减法运算的学习,学生将对减法运算有进一步的认识和理解,为后继诸如实数、复数的减法运算的学习奠定了坚实的基础.鉴于以上对教学内容在教材体系中的位置及地位的认识和理解,确定本节课的教学目标如下: 二
教学目标:
1、知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。
2、能力目标:培养学生探究思维能力和分析解决问题的能力
3、情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,渗透辩证唯物主义思想,培养探究分析数学知识方法的兴趣。三
教学重点、难点:
重点:有理数的减法法则,熟练地进行有理数的减法运算
难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,根
分析问题的能力,达到能力培养的目标. 第四个环节:例题讲解
讲解时注意让学生复述有理数法减法法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。第五个环节:解决课前问题
课前疑问,它们的解答有利于培养学生“用数学”的意识.并与新课引入前后呼应。第六个环节:课堂小结
鼓励学生积极发言,增进师生、生生之间的交流、互动,通过对本节课所学知识的梳理,让同学们更好的了解到本节课的重点。七 布置课后作业:
通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。
第三篇:有理数的减法的说课稿
有理数的减法的说课稿
魏永林 一..说教材
1、教材分析《有理数的减法》是在小学算术运算和刚学过有理数加法运算的基础上继续学习的一种运算,并且在学生具备了初步的观察、操作等活动经验的基础上讲授的。这一节课是前面所学知识的继续,又是后面学习有理数混合运算、方程等知识的基础,起着承前启后的作用。教材从学生年龄特征、文化知识的实际水平出发,先让学生动脑思考,然后与同伴交流、探索、总结归纳,升华得出有理数的减法法则,再用减法法则去解决实际问题。这样的安排使抽象的法则让学生更易于接受,并能在整个教学过程中真正享受到探索的乐趣。本节课的内容主要渗透了化归的数学思想,即把不熟悉的有理数减法问题化归为比较熟悉的有理数加法来解决,从而充分调动已有的知识和经验,用于解决新问题。同时让学生尝试观察、类比、归纳等数学思想方法。2.教学重点、难点本着课程标准,在吃透教材基础上,我觉得本节课主要是理解减法法则,熟练运用法则计算。法则的探究——由特殊到一般,由现象到本质,要学生通过观察、猜想、归纳得出减法法则。所以我认为本节课的重点是:掌握有理数的法则,能根据法则进行有理数的减法运算。难点是:探索有理数减法法则,正确完成有理数减法到加法的转化。
二.教学目标:知识与技能:使学生掌握有理数的减法法则并熟练的进行有理数减法运算。过程与方法(1)、经历有理数减法法则的探索过程,培养学生观察、分析、归纳及运算能力。(2)、理解通过化减法为加法进行有理数的运算,渗透化归的对立统一的辨证唯物主义思想。(3)、通过分组合作学习活动,学会在活动中与人合作,并能与他人交流思维的过程与结果。情感态度与价值观:通过化减法为加法进行有理数运算的教学,渗透事物是普遍联系和变化发展的这一辨证唯物主义观
三.教法分析 : 为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,根据本节课的特点我进行这样的教法设计:在教师的引导下,“创设情境——观察探索——总结归纳——知识运用”为主线的教学方法。让学生在老师的指导下,自始至终处于一种积极思维、主动探究的学习状态。使课堂洋溢着轻松和谐的气氛,探索进取的气氛。在思考中体会法则的形成过程中所蕴涵的数学方法。同时借助多媒体进行演示、以增加课堂容量和教学的直观性
四 学法指导: 这节课学生学会运用观察、分析、类比、归纳、概括等方法,得出解决问题的方法。使传授知识和培养能力融为一体,使学生不仅学到科学探究方法,而且体验到探究的甘苦,领会到成功的喜悦。
五.教学程序
(一)、创设情境,引入新课
由两个实例本题是从学生身边随手拈来,学生根据小学掌握的知识都能理解,知道是作差运算。这样设计的目的是:让学生感到与刚学过的有理数加法所解决的问题,有理数的加法所解决的问题都是进行和的运算,而本题是进行差的运算。为引入本节课的内容减缓了坡度。
(二)动手实践,发现新知
观察、探究、讨论能看出减-3相当于加哪个数吗?从而得到结论。
(此时所形成的问题场,既能激活学生思维,又能复习已学知识,培养学生语言的表述能力)
(三)类比探究,总结提高
如果将4换成-1和0还有类似于上述的结论?
上面当被减数不变,减数换成3、0,从中又能有新发现吗?
让学生通过计算总结如下结论:减去一个数,等于加这个数的相反数。渗透了一种重要的数学思想方法——化归思想。
(四)例题分析,运用法则
1)(-3)-(-5)
(2)0-7(3)7.2-(-4.8 四)、即时训练——巩固新知
1、口算
(1)3 – 5 ;
(2)3 –(– 5);
(3)(– 3)– 5 5)–6 –(–6);
(6)
– 7 – 0;
(7)0 –(–7);
(8)(– 6)– 6
(9)9 –(–11)
计算
(1)6-9
(2)(+4)-(-7)
(3)(-5)-(-8 4)0-(-5)
(5)(-2.5)-5.9
(6)1.9-(-0.6)了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了两组即时训练题,通过学生的观察尝试,教师引导来巩固新知识。
(五)总结巩固,初步应用
这节课我们学习了那些数学知识和数学思想?你能说一说吗?
设计意图及设想]让学生通过知识性内容的小结,把课堂教学传授的知识尽快化为学生的素质;通过数学思想方法的小结,使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。
(六)、布置作业
教课书习题1.3第4、10、学生课时练p23~24
第四篇:有理数的减法说课稿
有理数的减法说课稿
董淑娟
各位领导、老师,大家好!
今天我要说课的课题是有理数的加减法,首先,我对本节教材进行一些分析。本节课选自人民教育出版社出版的〈义务教育课程标准实验教科书〉数学七年级(上)。这一节课是本册书第一章第三节的内容。我打算分四课时完成,去括号、加法计算、减法计算、加减法混合计算。下面我就从以下六个方面——教材结构与内容简析、教学目标、教学重点难点及关键、教法、学法、教学过程的设计向大家介绍一下我对本小节的理解与设计。
一 教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理
数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想(2)培养学生严谨的思维品质。
二 教学目标
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2.通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
三、教学建议
(一)重点、难点分析本小节的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略符号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-
3、-4两数的代数和,-4+3表示-
4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要
概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7 应变成 12+7-5,而不能变成12-7+5。备注:教学过程我主要说第一小节---去括号
四、教学过程:
根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点. 本节课的教学设计环节:
教学 环节
1、前提诊测,复习提问
(1)如何表示一个数的相反数?-(+3),+(-2)各表示的意义是什么?从而引导学生理解“-”号表示一个数的相反数,“+”表示一个数的本身;
(2)绝对值检测:随机出五六道小题即可复习旧知识的目的是对学生新课应具备的“认知前提能力”和“情感前提特征进行检测判断”.提出问题,创设情景把以下数相加、相减
1、+4,-5,+3,-6,-7,3,-2.5
2、-3.2,-2.6,+5,+6,-4在黑板上写五六个正负数请同学们把他们加在一起再减在一起。不要怕学生写错,让学生自己体会书写的繁琐计算的困难,继而想出解决办法。(可以多给学生时间。)
2、尝试指导,实施目标从学生的错误出发,引导学生先填括号,在想法去括号,通过小组探究得出去括号法则。,掌握计算方法。(5-10分钟即可)
3、题型训练,巩固目标
1、两数加减: +3+(-4);(-5)+(-6);(-8)-(+4);(+5)-(-6)
2、多数加减:(-12)-(+23)+(-7)-(-2);-(-4)+(+5)-(-6); +(+6)-(-5)+(-9);0-(-3)+(+6)-(+0.1)+(-0.25);-(-7)+(-2.3)-(-5.1)+(-3)此处要反复练习,并使学生明白去括号后的是省略加号的和式。鼓励学生积极发言,增进师生、生生之间的交流、互动.
4、形成性测试,检测目标
1、做书18、20、23、24页练习题(只去括号)
2、利用书上习题1.3复习巩固1、2题的双数题进检测把“反馈---调节”贯穿于整个课堂,教学结束,应针对教学目标的层次水平,进行测试,对尚未达标的学生进行补救,以消除错误的积累,从而有效的控制学生学习上的两极分化。
5、归纳 总结,纳入知识系统+(),去掉括号后所得结果仍是括号内的数;-(),去掉括号后所得结果是括号内数的相反数。由学生总结、归纳、反思,加深对知识的理解,并且能熟练运用所学知识解决问题
6、布置 作 业
1、课后作业:书24页习题1.3 1.(1)、(3)、(5)、(7);2.(1)、(3)要求:小组长及时检查力争人人掌握去括号方法,会省略括号。利用课堂检测及时反馈本课重、难点。利用课后作业巩固新知.
谢谢大家!我的说课完毕。
第五篇:有理数的减法说课稿
有理数的减法说课稿
丁沟中学何志伟
一 说教材:
(一)地位、作用:
本节课是在学习了正负数、相反数、有理数的加法运算之后,以初中代数第一册的有理数的减法法则及有理数减法运算的例
1、例
2、例3为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用
(二)教学目标:
1、知识目标:使学生掌握有理数的减法法则,熟练地进行有理数的减法运算。
2、能力目标:培养学生探究思维能力和分析解决问题的能力
3、情感目标:使学生了解加与减两种运算的对立统一的关系,了解数学中转化的数学思想方法,培养探究分析数学知识方法的兴趣。
(三)重点、难点:
重点:有理数的减法法则,熟练地进行有理数的减法运算
难点:理解有理数减法的意义,正确熟练地进行有理数的减法运算
二、说教学方法:
根据本节教材内容和学生的实际水平,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,我将采用探究发现法。教学中教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,教师并适时演示,激发学生探索知识的欲望来达到对知识的发现,并自我探索找出规律,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、说学法:
根据学法指导自主性的原则,让学生在教师创设的问题情
境下,通过教师的启发点拨,学生的积极思考努力下,自主参与知识的发生、发展、发现的过程,使学生掌握了知识,体现了素质教育中学生学习能力的培养问题,达到教学的目的。
四、说教学程序:
(一)引入课题环节:
1、复习有理数的加法法则,为新课的讲授作好铺垫。
2、(提问)用算式表示:与-3的和等于4的数。
(根据学过的知识,引导学生列出减法算式后提出问题:怎样进行这里的减法运算呢?有理数的减法运算法则是什么呢?由问题的给出,激发学生探求解决问题方法的兴趣,从而引出本节课的课题。
(二)新课讲解环节:
1、给出以下算式:
减法加法
(+7)-(+3)=+4(+7+(-3)=+4 让学生比较上面这两个算式并讨论后得出:
(+7)-(+3)=(+7)+(-3)
再给出以下算式:
减法加法
(+5)-(+2)=+3(+5)+(-2)=+3
继续让学生比较上面这两个算式并讨论后得出:
(+5)-(+2)=(+5)+(-2)
从而,它启发我们有理数的减法可以转化成加法进行
2、讲解课本的内容,回答复习题2提出的问题即如何求(+4)-(-3)的结果。通过分析讲解,请学生自己归纳出有理数的减法法则,最后老师再完整地总结出法则。
文字叙述:减去一个数,等于加上这个数的相反数
字母表示:a-b=a+(-b)(说明:简明的表示方法,体现字母表示数的优越性,实际运算时会更加方便)
强调运用法则时:被减数不变,减号变加号,减数变成其相反数减数变号
3、出示小黑板,讲解例题2和3.4、通过例题教学使学生巩固方法,初步具备解决问题的能力。说明:讲解时注意让学生复述有理数法减法法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。
(三)巩固练习环节:
让学生完成课本的练习,巩固有理数减法法则的运用,强化学生对这节课的掌握。随堂练习第1题口答,知识技能第1题请6个学生上台板演。对回答好的同学给予表扬肯定,如果有错误,请其他同学纠正。
(四)课堂小结环节:(师生共同完成)
本节课学习了有理数的减法运算,进行有理数的减法运算时转化成加法进行计算,即a-b=a+(-b)
(五)布置课后作业:课本P64习题2、3、4、题
通过作业反馈对学生所学知识掌握的效果,以利课后解决学生尚有疑难的地方。
(六)板书设计:(略)