第一篇:有理数减法教案
有理数的减法
教学目标
1.使学生掌握有理数减法法则并熟练地进行有理数减法运算; 2.培养学生观察、分析、归纳及运算能力. 教学重点
有理数减法法则 教学难点
有理数减法法则 教学过程
(一)、从学生原有认知结构提出问题
1.计算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0. 2.化简下列各式符号:
(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3). 3.填空:
(1)______+6=20;(2)20+______=17;
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.
(二)、师生共同研究有理数减法法则
问题1(1)(+10)-(+3)=______ ;(2)(+10)+(-3)=______.
教师引导学生发现:两式的结果相同,即(+10)-(+3)=(+10)+(-3).
教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性? 问题2(1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.
对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?
(2)的结果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教师引导学生归纳出有理数减法法则: 减去一个数,等于加上这个数的相反数.
教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.
减数变号(减法============加法)
(三)、运用举例 变式练习例1 计算:
(1)(-3)-(-5);(2)0-7. 例2 计算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18). 通过计算上面一组有理数减法算式,引导学生发现:
在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数. 例3 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?
(四)、小结
1.教师指导学生阅读教材后强调指出:
由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.(五)、课堂练习
1.计算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8; 2.计算:
(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;(5)123-190(6)(-112)-98;(7)(-131)-(-129);(8)341-249. 3.计算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;(4)(-5.9)-(-6.1);(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
第二篇:有理数减法教案
第二章 有理数及其运算
5.有理数的减法
时间:2017.09.20 备课组:数学组
一、学习目标:
1.理解掌握有理数的减法法则.
2.会进行有理数的减法运算.
二、学习重点:有理数减法法则和运算.
三、学习难点:有理数减法法则的推导.
四、教学方法:教师尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动.
五、课前准备:课件 三角尺
六、教学过程设计:
(一)创设情境,引入新课
1、计算(口答)
(1)7+(-3);(2)-3+(-7);
(3)-10+(+3);(4)+10+(-3).
2、用算式表示下列情境.
先请同学读出右图的第一支温度计所示温度.学生口答为 5℃,现上升15℃(演示动画,让学生仔细观察这一过程),到20℃处停止.学生通过观察口答表示这一情境的算式:5+15=20(此举进一步揭示加法在实际中的应用).第二支温度计上温度为15℃,现下降10℃(演示动画,让学生仔细观察这一过程),到5℃处停止.学生通过观察回答用加法表示这一情境的算式:15+(-10)=5.你能从图中观察出15℃比5℃高多少吗?你是怎样得出结论的?能用算式表示吗?得:15-5=10.这是一个小学里就已经学过的减法问题. 再观察第三支温度计,它显示的温度是-10℃,现上升15℃(演示动画,让学生仔细观察这一过程),到5℃处停止.学生通过观察回答表示这一情境的算式:(-10)+15=5;温度又从5℃下降到-10℃(继续演示动画),你能从图中看出哪个温度更高些吗?高多少?你是怎样得出这个结论的?能用算式表示吗?
学生讨论后,尝试给出算式5-(-10)=?是15吗?这个算式该如何计算呢?这就是我们今天要学的内容.
这是一个具体实例,教师创设问题情境,激发学生的认知兴趣,渗透了数形结合的思想,把具体实例抽象成数学问题,从而点明本节课的课题――有理数的减法.
(二)师生共同探索新知
活动内容:通过对温度计的观察,计算温差,感知有理数减法法则。
问题1:你能从温度计上看出4℃比-3℃高多少摄氏度吗?
先请同桌两位同学相互讨论交流,然后请2~3个学生发言.
问题2:如何计算4-(-3)呢?
先引导学生回忆:被减数、减数、差之间的关系,被减数-减数=差,再利用减法是加法的逆运算,引导学生得出:差+减数=被减数。如:计算4-3就是求一个数“x”,使它加上3等于4,同样的,要计算4-(-3)就是求一个数“x”,使x与-3相加等于4.即X+(-3)=4,因为7+(-3)=4,所以4-(-3)=7(+4)-(-3)=+7(+4)+(+3)=+7 让学生比较上面这两个算式并讨论后得出:(+4)-(-3)=(+4)+(+3)
再给出以下算式:
减法 加法
(+5)-(+2)=+
3(+5)+(-2)=+3 继续让学生比较上面这两个算式并讨论后得出:
(+5)-(+2)=(+5)+(-2)问题3:请同学们想一想,4十?=7? 请学生回答,教师板书:4+(+3)= 7,用彩色粉笔在4-(-3)与4十(+3)处画出着重号.引导学生观察4+(+3)=7与4-(-3)=7,从而提出猜想“减去一个数与加上这个数的相反数是相等的”:
4-(-3)=4+(+3).
这时教师问:你发现这个等式有什么特点?
学生回答后,示意再换几个数试一试,并请学生分组合作计算、交流:
(1)把4换成0,-1,-5,得0-(-3),(-5)-(-3),(-5)一(-3),这些数减(-3)的结果与它们加(+3)的结果相同吗?
(2)计算9-8,9+(一8),15一7,15+(一7),你发现了什么?
请小组代表全班汇报,教师在此基础上归纳: 有理数减法法则:减去一个数,等于加上这个数的相反数.
问题4:你能够用字母把法则表示出来吗?
a-b=a+(-b)(说明:简明的表示方法,体现字母表示数的优越性实际运算时会更加方便)
强调运用法则时:被减数不变,减号变加号,减数变成其相反数
减数变号(减法============加法)
例1.计算 :(1)(-3)-(-5);
(2)0(-4.8);(2)(-3 -2)-5 例3 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米? 活动目的:通过例题教学使学生巩固方法,初步具备解决问题的能力。讲解时注意让学生复述有理数法减法则,加深学生对法则的认识,并注意归纳有理数减法的规律,而不机械地将减法转化成加法,为今后进一步学习减法运算逐步省略化成加法的中间步骤作准备。渗透化归的思想:让学生归纳一些运算的规律、特征,有利于提高学生的运算能力。补充例题的作用在于让学生体会减法在实际生活的应用。让学生感受8848米这个高度,培养学生的数感。
(四)尝试反馈,巩固练习
教科书练习题1、2 学生活动:1题找学生口答,2题指名学生板演,其他同学做在练习本上.
我编你答.应用课件随机出题,学生抢答.(五)、课堂小结:通过本节课学习你学到了什么?
(六)布置作业
1、选做题习题1.6第1、2、3题中的奇数题;
2、必做题:第4、5题中的偶数题
七、板书设计
课题
1、有理数减法法则
3、练习
2、例1
八、课后反思
本案例从数学知识的形成过程设计问题,使得学生的认知能力与知识的形成不分离,达到结伴而行的目的。主要方法与效果有以下几点:
(1)以问题情境为导引。为学生提供丰富的感性材料,这有助于学生积极参与,调动学生的积极性,树立学习的自信心。
(2)调动学生动手实验,动脑思考,教学中很多知识的形成要借助于数学实验来发现。
第三篇:有理数减法教案
一、课题2.4有理数的减法
二、教学目标
1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;
2.培养学生观察、分析、归纳及运算能力.
三、教学重点
有理数减法法则
四、教学难点
有理数减法法则
五、教学用具
三角尺、小黑板、小卡片
六、课时安排
1课时
七、教学过程
(一)、从学生原有认知结构提出问题
1.计算:
(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化简下列各式符号:
(1)-(-6);(2)-(+8);(3)+(-7);
(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:
(1)______+6=20;(2)20+______=17;
(3)______+(-2)=-20;(4)(-20)+______=-6.
在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.
(二)、师生共同研究有理数减法法则
问题1(1)(+10)-(+3)=______ ;
(2)(+10)+(-3)=______.
教师引导学生发现:两式的结果相同,即(+10)-(+3)=(+10)+(-3).
教师启发学生思考:减法可以转化成加法运算.但是,这是否具有一般性? 问题2(1)(+10)-(-3)=______ ;
(2)(+10)+(+3)=______.
对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?
(2)的结果是多少?
于是,(+10)-(-3)=(+10)+(+3).
至此,教师引导学生归纳出有理数减法法则:
减去一个数,等于加上这个数的相反数.
教师强调运用此法则时注意“两变”:一是减法变为加法;二是减数变为其相反数.减数变号(减法============加法)
(三)、运用举例变式练习
例1计算:
(1)(-3)-(-5);(2)0-7.
例2计算:
(1)18-(-3);(2)(-3)-18;(3)(-18)-(-3);(4)(-3)-(-18).
通过计算上面一组有理数减法算式,引导学生发现:
在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.
例3世界上最高的山峰是珠穆朗玛峰,其海拔高度大约为是8848米,吐鲁番盆地的海拔高度大约是-155米,两处高度相差多少米?
阅读课本63页例3
(四)、小结
1.教师指导学生阅读教材后强调指出:
由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决.
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的.
(五)、课堂练习
1.计算:
(1)-8-8;(2)(-8)-(-8);(3)8-(-8);(4)8-8;
2.计算:
(1)16-47;(2)28-(-74);(3)(-37)-(-85);(4)(-54)-14;
(5)123-190;(6)(-112)-98;(7)(-131)-(-129);(8)341-249.
3.计算:
(1)1.6-(-2.5);(2)0.4-1;(3)(-3.8)-7;
(4)(-5.9)-(-6.1);
(5)(-2.3)-3.6;(6)4.2-5.7;(7)(-3.71)-(-1.45);(8)6.18-(-2.93).
利用有理数减法解下列问题
4.世界最高峰是珠穆朗玛峰,海拔高度是8848m,陆上最低处是位于亚洲西部的死海湖,湖面海拔高度是-392m.两处高度相差多少?
八、布置课后作业:
课本习题2.6知识技能的2、3、4和问题解决1
九、板书设计
2.5有理数的减法
(一)知识回顾
(三)例题解析
(五)课堂小结
例
1、例
2、例3
(二)观察发现
(四)课堂练习练习设计
十、课后反思
第四篇:有理数的减法 教案
有理数的减法 教案
教学目标
1.使学生掌握有理数减法法则
2.熟练地进行有理数减法运算,培养学生观察、分析、归纳及运算能力.
二、教学重点:运用有理数的减法法则,熟练进行减法运算。
三、教学难点:理解有理数减法法则。
四、教学评价:通过环节一、二评价目标一的达成情况
通过环节三评价目标一的达成情况
课堂教学过程设计
一、从学生原有认知结构提出问题 1.计算:
(1)(-2.6)+(-3.1);
(2)(-2)+3;
(3)8+(-3);
(4)(-6.9)+0. 2.化简下列各式符号:
(1)-(-6);
(2)-(+8);
(3)+(-7);
(4)+(+4);
(5)-(-9);
(6)-(+3).
3.填空:
(1)______+6=20;
(2)20+______=17;(3)______+(-2)=-20;
(4)(-20)+______=-6. 在第3题中,已知一个加数与和,求另一个加数,在小学里就是减法运算.如______+6=20,就是求20-6=14,所以14+6=20.那么(2),(3),(4)是怎样算出来的?这就是有理数的减法,减法是加法的逆运算.
二、师生共同研究有理数减法法则
1、出示幻灯片二: 如图:
这是2006年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
教师引导观察
教师总结:这就是我们今天要学习的内容(引入新课,板书课题)
1、师:谁能把10-3=7这个式子中的性质符号补出来呢?(+10)-(+3)=7 再计算:(+10)+(-3),师让学生观察两式结果,由此得到:(+10)-(+3)=(+10)+(-3)
观察减法是否可以转化为加法 计算呢?是如何转化的呢?(教师发挥主导作用,注意学生的参与意识)
三、运用举例
变式练习例1 计算:
(1)(-3)-(-5);
(2)0-7. 例2 计算:
(1)18-(-3);
(2)(-3)-18;
(3)(-18)-(-3);
(4)(-3)-(-18). 通过计算上面一组有理数减法算式,引导学生发现:
在小学里学习的减法,差总是小于被减数,在有理数减法中,差不一定小于被减数了,只要减去一个负数,其差就大于被减数.
例3 计算:
(1)(-3)-[6-(-2)];
(2)15-(6-9).
例4 15℃比5℃高多少? 15℃比-5℃高多少? 课堂练习1.计算(口答):
(1)6-9;
(2)(+4)-(-7);
(3)(-5)-(-8);
(4)(-4)-9;
(5)0-(-5);
(6)0-5.
2.计算:(1)15-21;
(2)(-17)-(-12);
(3)(-2.5)-5.9;
四、小结
1、谈谈本节课你有哪些收获和体会?[
2、本节课涉及的数学思想和数学方法是什么
教师点评:有 理数减法法则是一个转化法则,要求同学们掌握并能应用进 行计算。
五、课堂检测(包括基础题和能力提高题)
1、-9-(-11)2、3-15
3、-37-12
4、水银的凝固点是-38.87℃,酒精的凝固点是-117.3℃。水银的凝固点比酒精的凝固点高多少摄氏度?
六、课后作业
课本
板书设计:
2.6有 理数的减法 有理数减法法则:
(+10)-(+3)=(+10)+(-3)(-10)-(-3)=(-10)+(+3)
减去一个数等于加上这个数的相反数.
第五篇:有理数的减法教案(实用10篇)
篇1:有理数减法教案
一、教学目标:
知识与技能:理解掌握有理数的减法法则,会将有理数的减法运算转化为加法运算。
过程与方法:通过把减法运算转化为加法运算,向学生渗 透转化思想,通过有理数的 减法运算,培养学生的运算能力。
情感态度与价值观:通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辩证唯物主义思想。
二、教学重点:运用有理数的减法法则,熟练进行减法运算。
三、教学难点:理解有理数减法法则。
四、教 材分析:本节是在学习了正负数、相反数、有理数加法运算之后,以初中代数第一 册第53页的有理数减法法则及有理数减法运算的例1、例2为课堂教学内容。有理数的减法运算是一种基本的有理数运算,对今后正确熟练地进行有理数的混合运算,并对解决实际问题都有十分重要的作用。
五、教学方法:师生互动法
六、教具:幻灯片
七、课时:1课时
八、教学过程:
1、计算(口答):
(1) 1+(-2)
(2) -10+(+3)
(3) +10+(-3)
2、出示幻灯片二:
如图:
这是20xx年11月某天北京的温度为-3~3℃,它的确切含义是什么?这一天北京的温差是多少?
教师引导观察
教师总结:这就是我们今天要学习的内容(引入新课,板书课题)
1、师:谁能把10-3=7这个式子中的性质符号补出来呢?
(+10)-(+3)=7
再计算:(+10)+(-3),师让学生观察两式结果,由此得到:
(+10)-(+3)=(+10)+(-3)
观察减法是否可以转化为加法 计算呢?是如何转化的呢?
(教师发挥主导作用,注意学生的参与意识)
2、再看一题:
计算:(-10)-(-3)
教师启发:要解决这个问题,根据有理数减法的意义,这就是要求一个数使它与-3相加会得到-10,那么这个数是多少?
问题:计算:(-10)+(+3)
教师引导,学生观察上述两题结果,由此得到
(-10)-(-3)=(-10)+(+3)
教师进一步引导学生观察式子,你能得到什么结论呢?
教师总结:由以上两式可以看出减法运算可以转化成加法运算。
教师提问:通过以上的学习,同学们想一想两个有理数相减的法则是什么?
教师对学生回答给予点评,总结有理数减法法则:减去一个数,等于加上这个数的相反数。
强调法则:(1)减法转化为加法,减数要变成相反数(2)法则适用于任何两个有理数相减(3)用字母表示一般形式为a-b=a+(-b)
3 、例题讲解:
出示幻灯片三(例1和例2)
例1计算:
(1)6-(-8)
(2)(-2)-3
(3)(-2.8)-(-1.7)
(4)0-4
(5)5+(-3)-(-2)
(6)(-5)-(-2.4)+(-1)
教师板书做示范,强调解题的规范性, 然后师生共同总结解题步骤,(1)转化(2)进行加法运算。
例2:小明家蔬菜大棚的气温是24℃,此时棚外的气温是-13℃,棚内气温比棚外气温高多少摄氏度?
师巡视指导,最后师生讲评两个学生的解题过程。
课后练习1、2
教师巡视指导
师组织学生自己编题
1、谈谈本节课你有哪些收获和体会?[
2、本节课涉及的数学思想和数学方法是什么
教师点评:有 理数减法法则是一个转化法则,要求同学们掌握并能应用进 行计算。
课堂检测(包括基础题和能力提高题)
1、-9-(-11)
2、3-15
3、-37-12
4、水银的凝固点是-38.87℃,酒精的凝固点是-117.3℃。水银的凝固点比酒精的凝固点高多少摄氏度?
学生思考后抢答,尽量照顾不同层次的学生参与的积极性。
学生观察思考如何计算
学生观察思考
互相讨论
学生口述解题过程
由两个学生板演,其他学生在练习本上做
第1小题学生抢答
第2小题找两个 学生板演。
学生回答
学生相互交流自己的收获和体会,教师参与互动并给予鼓励性评价。
综合考查学以致用
既复习巩固有理数加法法则,同时为进行有理数减法运算打下基础
创设问题情境,激发学生的认知兴趣。
让学生通过尝试,自己认识减法可以转化为加法计算。
学生通过一个问题易于充分发挥学习的主动性,同时也培养了学生分析问题的能力
可以培养学生严谨的学风和良好 的学习习惯,同时锻炼学生的表达能力
可以照顾不层次的学生,调动学生学习积极性。
通过练习让学生进一步巩固新知,体验知识的应用性。
能增强学生学习的主动性和参与意识。
学生尝试小结,疏理知识,自由发表学习心得,能锻炼学生的语言表达能力和归纳概括能力。
锻炼学生综合运用知识,独立解题的能力
板书设计:
2.6有 理数的减法
有理数减法法则:
(+10)-(+3)=(+10)+(-3)
( -10)-(-3)=(-10)+(+3)
减去一个数等于加上这个数的相反数. 例1:
例2:
练习:
教学反思:
本节课我在问题探索过程中,以提问的形式展现新问题,激发学生的好奇心,学生学习的积极性很高,讨论交流的气氛很热烈,解决问题后有 一种成就感,从而使学生更积极主动的学习,并且营造了良好的学习氛围,从而收到较好的学习效果。
篇2:有理数减法教案
一、课题§2.5有理数的减法
二、教学目标
1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;
2.培养学生观察、分析、归纳及运算能力.
三、教学重点和难点
有理数减法法则
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
1.使学生掌握有理数减法法则并熟练地进行有理数减法运算;
2.培养学生观察、分析、归纳及运算能力。
有理数减法法则。
有理数的减法转化为加法时符号的改变。
电脑、投影仪
习题:
一、从学生原有认知结构提出问题
1.计算:(1)(-2.6)+(-3.1);(2)(-2)+3;(3)8+(-3);(4)(-6.9)+0.
2.化简下列各式符号:(1)-(-6);(2)-(+8);(3)+(-7);(4)+(+4);(5)-(-9);(6)-(+3).
3.填空:(1)____+6=20; (2)20+____=17;(3)____+(-2)=-20; (4)(-20)+___=-6.
二、师生共同研究有理 数减法法则
问题1 (1)4-(-3)=______ ;
(2)4+(+3)=______.
教师引导学生发现:两式的结果相同,即4-(-3)= 4+(+3).
思考:减法可以转化成加法运算.但是,这是否具有一般性?
问题2 (1)(+10)-(-3)=______ ;(2)(+10)+(+3)=______.
对于(1),根据减法意义,这就是要求一个数,使它与-3相加等于+10,这个数是多少?
(2)的结果是多少?于是,(+10)-(-3)=(+10)+(+3).
归纳出有理数减法法则:减去一个数,等于加上这个数的相反数.
强调运用时注意“两变”:一是减法变为加法;二是减数变为其相反数.
三、运用举例 变式练习
例1 计算:(1)9 -(-5); (2)0-8.(3)(-3)-1;(4)(-5)-0(5)(-3)-[6-(-2)];(6)15-(6-9)
例2 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8848米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米?
例3 P63例3
例4 15℃比5℃高多少? 15℃比-5℃高多少?
练一练: P63. 1题 P64-65数学理解1、问题解决1、联系拓广1、2题.
补充:1.计算:(1)-8-8; (2)(-8)-(-8);(3)8-(-8);(4)8-8;
(5)0-6; (6)6-0; (7)0-(-6); (8)(-6)-0.
2.计算:(1)16-47; (2)28-(-74); (3)(-37)-(-85); (4)(-54)-14;
(5)123-190; (6)(-112)-98; (7)(-131)-(-129); (8)341-249.
3.计算:(1)(3-10)-2; (2)3-(10-2); (3)(2-7)-(3-9);
4.当a=11,b=-5,c=-3时,求下列代数式的值:
(1)a-c; (2) b-c; (3)a-b-c ; (4)c-a-b.
四、反思小结
1.由于把减数变为它的相反数,从而减法转化为加法.有理数的加法和减法,当引进负数后就可以统一用加法来解决。
2.不论减数是正数、负数或是零,都符合有理数减法法则.在使用法则时,注意被减数是永不变的。
习题2.6知识技能1、3、4题。
本节课内容较为简单,学生掌握良好,课上反应热烈。
篇3:有理数减法教案
知识与能力:
1.使学生理解有理数的加减法法可以互相转化。2.使学生熟练地进行有理数的加减混合运算。
过程与方法:
1.体会有理数的加减法法可以互相转化的思想。2.培养学生的运算能力。
情感态度与价值观:
培养学生认真、仔细的良好学习态度。
重点准确迅速地进行有理数的加减混合运算。
教材提示:
本节课是学习有理数减法的第二课时,在教学过程中,教师应该首先通过探究的方式组织学生分组讨论,借助于已有知识,体会有理数的加减法法可以互相转化的思想,如何省略加号,并且还要正确掌握省略加号后它们表示的是哪些数的和,强化混合运算的准确性。
教学过程
一、自主学习
(一)、阅读教材23-24页。
(二)、导学练习[活动1]:学生课前自主完成。 1.减法法则: ,用字母表示为:
2.计算(1)1-5= (2)8-11= (3)6-9=
(4)9-(-9)= (5)(- )-(- )=
[活动2]:学生先课前自主,然后在课堂上一起和大家交流讨论。
1、红星队在4场足球赛中的战绩是:第一场3:1胜,第二场2:3负,第三场0:0平,第四场2:5负。红星队在4场比赛中总的净胜球数是多少?
2、一20十3十(十5)十(一7)(读作 , , , 的和 ) 3、计算:(一20)十(十3)一(一5)一(十7). 注意:在进行有理数混合运算时,应该先将减法按规则统一成加法后再计算;第一个数前面的一常用括号括起来,但熟练后,第一个数带负号时,通常可以不用括号手起来。 4、计算在做有理数运算时,易出 符号错误。
计算:(1)(一5)一(一4)一(十1)=(一5)十(一4)十(十1)
=(一9)十(十1) =一8
(2)(一7)一(十4) 十(一8)十(一3)一(一8) =一7十4一8一3一8 =一22. 以上两个小题均有错误,指出错在哪里,并改正。 [学法指导:有理数混合运算,只有将减法按规则统一成加法后,才能省略加号,而减号不能省略。在有理数加减混合运算中,当我们把减法转化为加法时,为了书写简便,常常省略加号和括号。] 5、分别指出下列两个式子的读法,表示那些数的和,并计算: (1)8一7十4一6 (2)(一8)一(十4)十(一7)一(十9)。
(三)自学疑难摘要:
自主学习小组长检查等级 等,组长签字
二、合作探究
计算:1、-5+3-2 +6+7-8-9; 2、-0.5-(-3 )+2.75-(+7 )
3、4、
[学法指导:在完成以上计算题时,一定要注意当把 减号变为加号时,减数必须变为原数的相反数,再利用加法法则进行计算。在进行有理数的加减运算时,当减法转 化为加法后,可以用加法交换律和加法结合律,这样可以使运算简便。]
[小组活动:1.在进行小组交流时,各位组长一定要注意每一位组员,看他们是否掌握了减法法则,特别是交流一下如何把减数变为原来的相反数。2.特别小心在省略加号时是否正确。3.组长注意自己小组到黑板上交流的任务,安排好展示的人员,督促大家掌握本节课的学习任务。]
三、展示提升
1、每个同学自主完成二中的练习后先在小组内交流讨论。 2、每个组根据分配的任务把自己组的结论板 书到黑板上准备展示。 3、每个组在展示的过程中其他组的同学认真听作好补充和提问。
四、反馈与检测
1.计算:(1)(-41)-(-18)-(+39)-(-72) (2) 2.活动与探究:23. 1 �D3 +5�D7 +9�D11++97�D99= 。 [学法指导:这个环节的处理方式是第1题在课堂上完成,第2题在课外由组长主持,进行探究活动,进而对所学知识加以巩固。]
五、课后 反思
篇4:有理数减法教案
教学目标
知识与技能:
熟记有理数的减法法则,能熟练进行有理数减法运算。
过程与方法:
1.借助求温差的过程,探索有理数减法的法则,发展逻辑思维能力;
2.经历减法化成加法的过程,体验、熟悉 的思想方法,提高思维品质。
情感态度价值观:
4.通过同学之间的合作与交流,经历观察、比较、推断、归纳形成一般规律的过程,体验数学规律探索的过程,逐步形成数学探究的积极态度。
教学重、难点
重点:有理数减法法则和运算
难点及突破:有理数减法法则的推导
教学用具
多媒体
教学过程设计
一、导入
我们经常会遇到一个数量比另一个数量多多少的运算,这时用什么运算?
生:减法
师:今天我们一起来学习有理数的减法!
二、一起研究
下表是中央气象台发布的20xx年1月28日天气预报中部分城市的和最低气温统计表
城市/°C最低气温/°C
昆明92
杭州6-2
北京-2-12
温差怎么表示?(温差=-最低气温)
1.那么怎么表示这一天的温差呢?学生填表回答
城市表示温差的算式观察到的温差/°C
昆明9-27
杭州
北京
结论:昆明的温差可表示成9-2=7°C
杭州的温差可表示成6-(-2)=8°C
北京的温差可表示成-2-(-12)=10°C
2.现在我们来看这样一组算式,填空:
9+________=7; 6+______=8; -2+_______=10.
3.比较:9-2=7 9+(-2)=7
6-(-2)=8 6+2=8
-2-(-12)=10 -2+(+12)=10
思考:比较上述式子,你有什么结论?两个算式一个加法,一个减法,结果却相同。
怎样把加法转化为减法运算?
法则:减去一个数,等于加上这个数的相反数。
4.对于6-(-2)=8,我们可以这样成6°C比0°C高6°C,而0°C比-2°C又高2°C。你能解释第三个问题中各个算式表示的实际意义么?
例1(略)
注意:减法转化为加法时,减数一定要改变符号
例2 (略)
三、练习:
P28 1、2
四、小结
1.理解有理数减法运算的法则。
2.熟悉有理数减法运算的两个步骤
3.有理数的基本概念及加减运算,都渗透着数学上重要的化归思想。
五、板书设计
1.6 有理数减法
1.减法法则:减去一个数,等于加上这个数的相反数
a-b=a+(-b)
2.例
篇5:有理数减法教案
教学目标
1.知识与技能
使学生会使用计算器进行有理数的加减运算.
2.过程与方法
尝试从不同角度寻求解决问题的方法,并能有效地解决问题.
3.情感、态度与价值观
有克服困难和运用知识解决问题的成功体验.
教学重点难点
重点:记清计算器中常用功能键的用法,多进行实际操作,逐步熟悉计算器的用法.
难点:准确地用计算器进行加减运算.
教与学互动设计
观察体验 大家看这样一个算式:-15.13+4.85+(-7.69)-(-13.38)要计算出它的值,你能有什么方法吗?
引导 使用计算器、电子计算器,简称计算器,具有运算快,操作简便,体积小,功能多等特点,既可帮助我们进行各种复杂的数学计算,还可以帮助我们理解数学概念,有时计算器还可以编程序或绘制各种图形.在信息高速发展的时代,它已成为人们广泛使用的计算工具。
篇6:有理数减法教案
一、知识与技能
理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算。
二、过程与方法
经历综合运用有理数加减法解决实际问题的过程,培养学生分析问题解决问题的能力。
三、情感态度与价值观
体会数学与现实生活的联系,提高学生学习数学的兴趣。
教学重点、难点与关键
1.重点:有理数加减法统一为加法运算,掌握有理数加减混合运算。
2.难点:省略括号和加号的加法算式的运算方法。
3.关键:理解加减混合运算可以统一成加法,以及正确理解省略加号的有理数加法形式。
教具准备
投影仪。
四、教学过程
一、复习提问,引入新课
1.叙述有理数的加法、减法法则。
2.计算。
(1)(-8)+(-6); (2)(-8)-(-6); (3)8-(-6);
(4)(-8)-6; (5)5-14.
五、新授
我们已学习了有理数加、减法的运算,今天我们来研究怎样进行有理数的加减混合运算。
例6:计算:(-20)+(+3)-(-5)-(+7)。
分析:这个式子中有加法,也有减法,可以按照运算顺序,从左到右逐一加以计算。也可以用有理数的减法法则,则它改写为(-20)+(+3)+(+5)+(-7)使问题转化为几个有理数的加法。
解:(-20)+(+3)-(-5)-(+7)
=(-20)+(+3)+(+5)+(-7)
=[(-20)+(-7)]+[(+3)+(+5)]
=-27+(+8)
=-19
把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。
归纳:加减混合运算可以统一为加法运算。
用式子表示为a+b-c=a+b+(-c)。
式子(-20)+(+3)+(+5)+(-7)是-20,+3,+5,-7这四个数的和,为了书写简单,可以省略式子中的括号和加号,把它写为:-20+3+5-7.
这个式子读作负20、正3、正5、负7的和或读作负20加3加5减7。
例6的运算过程也可简写为:
(-20)+(+3)-(-5)-(+7)
=(-20)+(+3)+(+5)+(-7) (加减法统一为加法)
=-20+3+5-7 (省略式子中的括号和括号前面的加号)
=-20-7+3+5 (加法交换律交换时,要连同符号一起交换)
=-19 (异号两数相减)
六、巩固练习
1.课本第24页练习。
(1)题是已写成省略加号的代数和,可运用加法交换律、结合律。
原式=1+3-4-0.5=0-0.5=-0.5
(2)题运用加减混合运算律,同号结合。
原式=-2.4-4.6+3.5+3.5=-7+7=0
(3)题先把加减混合运算统一为加法运算。
原式=(-7)+(-5)+(-4)+(+10)
=-7-5-4+10 (省略括号和加号)
=-16+10
=-6
七、课堂小结
有理数加减混合运算通常统一成加法运算,运算时常用交换律和结合律使计算简便,一般情况采用:(1)凡相加是整数的,可以先加;(2)分母相同或易于通分的分数相结合;(3)有互为相反数可以互相抵消的,先相加;(4)正、负数分别相加。总之要认真观察,灵活运用运算律。
八、作业布置
1.课本第25页第26页习题1.3第5、6、13题。
九、板书设计:
1.3.2 有理数的减法(2)
第四课时
1、把有理数加减混合运算转化为加法后,常用加法交换律和结合律使计算简便。
归纳:加减混合运算可以统一为加法运算。
用式子表示为a+b-c=a+b+(-c)。
2、随堂练习。
3、小结。
4、课后作业。
十、课后反思
篇7:有理数减法教案
2.5 有理数的减法
题 目
有理数的减法
课时1
学校教者
年级七年
学科数学
设计来源
自我设计
教学时间
教学目标
1.理解有理数减法法则, 能熟练进行减法运算.
2.会将减法转化为加法,进行加减混合运算,体会化归思想.
重点
有理数的减法法则的理解,将有理数减法运算转化为加法运算.
难点
有理数的减法法则的理解,将有理数减法运算转化为加法运算.
教学方法
讲授教学过程
一、情境引入:
1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)
2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少?
探索新知:
(一) 有理数的减法法则的探索
1.我们不妨看一个简单的问题: (-8)-(-3)=?
也就是求一个数“?”,使 (?)+(-3)=-8
根据有理数加法运算,有 (-5)+(-3)= -8
所以 (-8)-(-3)= -5 ①
2.这样做减法太繁了,让我们再想一想有其他方法吗?
试一试
做一个填空:(-8)+( )= -5
容易得到 (-8)+(+3 )= -5 ②
思考: 比较 ①、②两式,我们有什么发现吗?
3.验证:
(1)如果某天A地气温是3℃,B地气温是-5℃,A地比B地气温高多少?
3-(-5)=3+ ;
(2)如果某天A地气温是-3℃,B地气温是-5℃,A地比B地气温高多少?
(-3)-(-5)=(-3)+ ;
(2)如果某天A地气温是-3℃,B地气温是5℃,A地比B地气温高多少?
(-3)-5=(-3)+ ;
(二)有理数的减法法则归纳
1.说一说:两个有理数减法有多少种不同的情形?
2.议一议:在各种情形下,如何进行有理数的减法计算?
3.试一试:你能归纳出有理数的减法法则吗?
由此可推出如下有理数减法法则:
减去一个数,等于加上这个数的相反数。
字母表示:
由此可见,有理数的减法运算可以转化为加法运算。
【思考】:两个有理数相减,差一定比被减数小吗?
说明:(1)被减数可以小于减数。如: 1-5 ;
(2)差可以大于被减数,如:(+3)�C(-2) ;
(3)有理数相减,差仍为有理数;
(4)大数减去小数,差为正数;小数减大数,差为负数;
(三 )问题:
问题1. 计算:
①15-(-7) ②(-8.5)-(-1.5) ③ 0-(-22)
④(+2)-(+8) ⑤(-4)-16 ⑥
问题2.(1)-13.75比少多少??
(2)从-1中减去-与-的和,差是多少?
(四)课堂反馈:
1.求出数轴上两点之间的距离:
(1)表示数10的点与表示数4的点;
(2)表示数2的点与表示数-4的点;
(3)表示数-1的点与表示数-6的点。
归纳总结:
1.有理数减法法则2.有理数减法运算实质是一个转化过程
达标测评
【知识巩固】
1.下列说法中正确的是( )
A减去一个数,等于加上这个数. B零减去一个数,仍得这个数.
C两个相反数相减是零. D在有理数减法中,被减数不一定比减数或差大.
2.下列说法中正确的是( )
A两数之差一定小于被减数.
B减去一个负数,差一定大于被减数.
C减去一个正数,差不一定小于被减数.
D零减去任何数,差都是负数.
3.若两个数的差不为0的是正数,则一定是( )
A被减数与减数均为正数,且被减数大于减数.
B被减数与减数均为负数,且减数的绝对值大.
C被减数为正数,减数为负数.
4.下列计算中正确的是( )
A(―3)-(―3)= ―6 B 0-(―5)=5
C(―10)-(+7)= ―3 D | 6-4 |= ―(6-4)
5.(1)(―2)+________=5; (―5)-________=2.
(2)0-4-(―5)-(―6)=___________.
(3)月球表面的温度中午是1010C,半夜是-153oC,则中午的温度比半夜高____.
(4)已知一个数加―3.6和为―0.36,则这个数为_____________.
(5)已知b < 0>,则a,a-b,a+b从大到小排列________________.
(6)0减去a的相反数的差为_______________.
(7)已知| a |=3,| b |=4,且a,则a-b的值为_________.
6.计算
(1) (―2)-(―5) (2)(―9.8)-(+6)
(3)4.8-(―2.7) (4)(―0.5)-(+)
(5)(―6)-(―6) (6)(3-9)-(21-3)
(7)| ―1-(―2)| -(―1)
(8)(―3)-(―1)-(―1.75)-(―2)
7.已知a=8,b=-5,c=-3,求下列各式的值:
(1)a-b-c;(2)a-(c+b)
8.若a<0>0, 则a, a+b, a-b, b中最大的是( )
A. a B. a+b C. a-b D. b
9.请你编写符合算式(-20)-8的实际生活问题。
教与学反思
你有什么收获?
教学反思:
1、本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索,法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成种,减法法则的归纳得出是本节课的难点,在这个过程中,设计了师生的交流对话,教师适时、适度的引导,也体现教师是学生教学的引导者、伙伴的新型师生关系.
2、在教学设计中,除了考虑学生探索新知的需要,还考虑学生对法则的理解和掌握是建立在一定量的练习基础之上的,因此,在例题中增加了一道实际问题,让学生在解决实际间题过程中培养运算能力.另外教师引导(提倡)学生进行解题后的反思,意在逐步培养学生思维的全面性、系统性.在反思的基础上又让学生(或教师启发引导)去寻找一些(如减正数即加负数;减负数即加正数)规律,目的。
篇8:有理数减法教案
教学目标:
1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。
(2)能熟练进行有理数的减法法则。
2、过程与方法
通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。
重点、难点
1、重点:有理数减法法则及其应用。
2、难点:有理数减法法则的应用符号的改变。
教学过程:
一、创设情景,导入新课
1、有理数加法运算是怎样做的?(-5)+3= ―3+(―5)=
―3+(+5)=
2、-(-2)= -[-(+23)]=,+[-(-2)]=
3、20xx的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少?
导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题)
二、合作交流,解读探究
1(-2)-(-10)=8=(-2)+8
2:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?
3、通过以上列式,你能发现减法运算与加法运算的关系吗?
(学生分组讨论,大胆发言,总结有理数的减法法则)
减去一个数等于加上这个数的相反数
教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗?
三、应用迁移,巩固提高
1、P.24例1 计算:
(1) 0-(-3.18)(2)(-10)-(-6)(3)-
解:(1)0-(-3.18)=0+3.18=3.18
(2)(-10)-(-6)=(-10)+6=-4
(3)-=+=1
2、课内练习:P.241、2、3
3、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌点数为正数,红牌点数为负数,王牌点数为0。每人每次出一张牌,两人轮流先出(先出者为被减数),先求出这两张牌点数之差者获胜,直至其中一人手中无牌为止)。
四、总结反思
(1) 有理数减法法则:减去一个数,等于加上这个数的相反数。
(2) 有理数减法的步骤:先变为加法,再改变减数的符号,最后按有理数加法法则计算。
五、作业
P.27习题1.4A组1、2、5、6
备选题
填空:比2小-9的数是 。
а比а+2小 。
若а小于0,е是非负数,则2а-3е 0。
篇9:有理数减法教案
一、教学目标
㈠知识与技能
1.理解掌握有理数的减法法则
2.会进行有理数的减法运算
㈡过程与方法
1.通过把减法运算转化为加法运算,向学生渗透转化思想
2.通过有理数减法法则的推导,发展学生的逻辑思维能力
3.通过有理数的减法运算,培养学生的运算能力
㈢情感态度与价值感
通过揭示有理数的减法法则,渗透事物间普遍联系、相互转化的辨证唯物主义思想
二、学法引导
1.教学方法:尽量引导学生分析、归纳总结,以学生为主体,师生共同参与教学活动。
2.学生学法:探索新知归纳结论练习巩固
三、重、难点与关键
1.重点:有理数减法法则和运算
2.难点:有理数减法法则的推导
3.关键:正确完成减法到加法的转化
四、师生互动活动设计
教师提出实际问题,学生积极参与探索新知,教师出示练习题,学生以多种方式讨论解决。
五、教学过程
㈠创设情境,引入新课
1、计算(口答)
⑴;⑵-3+(-7)
⑶-10+3;⑷10+(-3)
2、由实物投影显示课本第21页中的画面,假设这是淮南冬季里的某个周六,白天的最高气温是3℃,夜晚的最低气温是-3℃,这一天的最高气温比最低气温高多少?
引导学生观察:
生:3℃比-3℃高6℃
师:能不能列出算式计算呢?
生:3-(-3)
师:如何计算呢?
总结:这就是我们今天要学的内容.(引入新课,板书课题)
㈡探索新知,讲授新课
1、师:大家知道减法是与加法相反的运算,计算3-(-3),就是要求出一个数χ,使χ与-3的和等于3,那什么数与-3的和等于3呢?
生:6+(-3)=3
师:很好!由此可知3-(-3)=6
师:计算:3+(+3)得多少呢?
生:3+(+3)=6
师:让学生观察两式结果,由此得到
3-(-3)=3+(+3)
师:通过上述题,同学们观察减法是否可以转化为加法计算呢?
生:可以
师:是如何转化的呢?
生:减去一个负数(-3),等于加上它的相反数(+3)
2、换几个数再试一试,计算下列各式:
⑴0-(-3)=0+(+3)=
⑵-5-(-3)=-5+(+3)=
⑶9-8=9+(-8)=
引导学生完成答题,并提问:通过上述的讨论,你能得出什么结论?
归纳得出:有理数的减法可以转化为加法来进行,“相反数“是转化的桥梁。
(投影显示或板书)有理数减法法则:
减去一个数,等于加上这个数的相反数。
用式子表示为:a-b=a+(-b)
强调注意:减法在运算时有2个要素发生了变化
1、减加
2、数相反数
3、例题讲解:(出示投影)
例1、计算下列各题
⑴9-(-5)⑵(-3)-1
篇10:有理数减法教案
教学目标
1、经历探索有理数减法法则的过程。
2、理解并初步掌握有理数减法法则,会做有理数减法运算。
3、能根据具体问题 ,培养抽 象概括能力和口头表达能力。
教学重点
运用有理数减法法则做有理数减法运算。
教学难点
有理数减法法则的得出。
教具 学具
多媒体、教材 、计算器
教学方法
研讨法、讲练结合
教学过程
一、引入新课:
师:下面列出的是连续四周的最高和最低气温:
第1周 第二周 第三周 第四周
最高气温 +6℃ 0℃ +4℃ -2℃
最低气温 +2℃ -5℃ -2℃ - 5℃
周温差
求每 周的温差时,应运用哪一种运算?你认为计算结果应是什么?请列出算式,并写出计算结果。
生:温差分别是4℃、5℃、6℃、3℃,应使用减法运算。
列式为;
(+6)-(+2)=4
0 -(-5)=5
(+4)-(-2)=6
(-2)-(-5)=3
教学过程
二、有理数减法法则的推倒:
师:1、根据上面的计算和计算结果,让我们以求四周的温差为例子研究一下,是否可以用加法的知识类做减法的运算。
2、是否能直接把减法转化为加法来求差?猜想一下,完成这个转化的法则是什么?
3 、自己设计一些有理数的减法,用计算器检验一下你 归纳的减法法则是否正确。
举例: (-5)+( )=-2
得出 (-5)+(+3)=-2
所以得到(-2)-(-5)=+3
而 (-2)+(+5)=+3
有理数减法法则:减去一个数,等于加上这个数的相反数。
三、法则的应用:
例1:先做笔算,再 用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)
教学过程
解:(1 )原式= -34+(-56)+(+28)
=-90+(+28)
= -62
(2)原式=+25+(+293)+(-472)
=+25+(-836)
= 676
注意:强调计算过程不能跳步,体现有理数减法法则的运用。
检 测 题
五、练习反馈:
书P411、2、3
师:巡视个别指导,订正答案。
六、小结
有理数减法法则:
减去一个数,等于加上这个数的相反数。
作业书P50、515、6(作业本上)
板书
25有理数的减法(一)
有理数减法法则:
减去一个数,等于加上
这个数的相反数。 例1:先做笔算,再用计数器检验。
(1)(-34)-(+56)-(-28);
(2)(+25)-(-293)-(+472)