油气管道泄漏检测应对事故技术一览

时间:2019-05-14 08:53:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《油气管道泄漏检测应对事故技术一览》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《油气管道泄漏检测应对事故技术一览》。

第一篇:油气管道泄漏检测应对事故技术一览

油气管道泄漏检测应对事故技术一览

2014-04-13 能源情报

能源情报按:先是青岛爆燃,接着是兰州石化管道泄露污染饮用水,都是管道惹的祸。管道安全一向被企业重视,但为何还是屡次出现事故?看看这些检测泄露的技术吧。

文/苏欣 中油工程设计西南分公司

油气长输管道发生泄漏的原因多种多样,但大致可以分为:(1)管道腐蚀:防护层老化、阴极保护失效, 以及腐蚀性介质对管道外壁造成的腐蚀和传输介质的腐蚀成分对管道内壁造成的腐蚀;(2)自然破坏:由于地震、滑坡等自然灾害以及气候变化使管道发生翘曲变形导致应力破坏;(3)第三方破坏:不法分子的盗窃破坏, 施工人员违章操作, 野蛮施工造成的破坏;(4)管道自身缺陷:包括管道焊接质量缺陷, 管道连接部位密封不良, 未设计管道伸缩节, 材料等原因。油气管道泄漏不仅给生产、运营单位造成巨大的经济损失,而且会对环境造成破坏、严重影响沿线居民的身体健康和生命安全。检漏技术发展历史 国外从上个世纪70年代就开始对管道泄漏检测技术进行了研究。早在1976年德国学者R.Isermann和H.Siebert就提出以输入输出的流量和压力信号经过处理后进行互相关分析的泄漏检测方法;1979年Toslhio Fukuda提出了一种基于压力梯度时间序列的管道泄漏检测方法;L.Billman和R.Isermann在1987年提出采用非线性模型的非线性状态观测器的检漏方法;A.Benkherouf在1988年提出了卡尔曼滤波器方法;1991 年Kurmer 等人开发了基于Sagnac 光纤干涉仪原理的管道流体泄漏检测定位系统;1993年荷兰壳牌(shell)公司的X.J.Zhang提出了统计检漏法;1999年美国《管道与气体杂志》报道了一种称作“纹影”(Schlieren)的技术,即采用空气中的光学折射成象原理可用于管道检漏;2001年Witness提出了采用频域分析的频域响应法,其基本思想是将管道系统的模型转换到频域进行泄漏检测和定位分析;2003年Marco Ferrante提出了采用小波分析的方法,利用小波技术对管道的压力信号进行奇异性分析,由此来检测泄漏。

我国对于管道泄漏技术的研究起步较晚,但发展很快。1988年方崇智提出了基于状态估计的观测器的方法;1989年王桂增提出了一种基于Kullback信息测度的管线泄漏检测方法;1990年董东提出了采用带时变噪声估计器的推广Kalman滤波方法;1992年提出了负压波法泄漏检测法;1997, 1998年天津大学分别采用模式识别、小波分析等技术对负压波进行了很大程度的改进;1997年唐秀家等人首次提出基于神经网络的管道泄漏检测模型;1999年张仁忠等提出了压力点分析(PPA)法和采集数据与实时仿真相关分析法相结合的方法;2000年胡志新等提出了分布式光纤布拉格光栅传感器的油气管道监测系统;2002年崔中兴等介绍了声波检漏法;2003年胡志新提出了基于Sagnac 光纤干涉仪原理的天然气管道泄漏检测系统理论模型;2003年潘纬等利用小波分析方法来分析信号的奇异性及奇异性位置,来检测天然气管线泄漏;2003年夏海波等提出了基于GPS 时间标签的管道泄漏定位方法;2004年白莉等提出了一致最大功效检验探测泄漏信号;2004年吴海霞等运用负压波和质量平衡原理,采用模糊算法和逻辑判断法,利用压力、流量和输差三重机制实现了对原油管道的泄漏监测及定位、原油渗漏监测和报警;2004年伦淑娴等利用自适应模糊神经网络系统的去噪方法可以提高压力信号;2005年张红兵等介绍了根据管道的瞬态数学模型,并应用特征线法求解进行不等温输气管道泄漏监测;2005年刘恩斌等研究了一种新型的基于瞬态模型的管道泄漏检测方法,并对传统的特征线法差分格式进行了改进,将其应用于对管道瞬态模型的求解;2005年朱晓星等提出了将仿射变换的思想应用到基于瞬态压力波的管道泄漏定位算法中;2005年白莉等等将扩展卡尔曼滤波算法,应用于海底管道泄漏监测与定位;2006年白莉等利用多传感器的信息融合思想,提出分布式检测与决策融合方法进行长距离海底管线泄漏监测;2006年提出了一种基于Mach-Zehnder光纤干涉原理的新型分布式光纤检漏测试技术。泄漏检测技术方法

对于检漏技术的分类,现在没有统一的规定,根据检测过程中所使用的测量手段不同,分为基于硬件和软件的方法;根据测量分析的媒介不同可分为直接检测法与间接检测法;根据检测过程中检测装置所处位置不同可分为内部检测法与外部检测法;根据检测对象的不同可分为检测管壁状况和检测内部流体状态的方法。2.1 热红外成像

对于加热输送的液体管道,当管道发生泄漏时,土壤被泄漏的液体加热后温度上升,通过红外辐射的不同来感知这种异常的温度,将其与事先保存在计算机中的管道周围土壤正常温度分布图进行比较检测泄漏。近年美国OIL TON公司开发出一种机载红外检测技术,由直升飞机携带一高精度红外摄像机沿管道飞行,通过分析输送物资与周围土壤的细微温差确定管道是否泄漏。这类方法不能对管线进行连续检测,因此发现泄漏的实时性差而且对管道的埋设深度有一定的限制,具有关资料介绍,当直升机的飞行高度为300m时,管道的埋设深度应当在6m之内。2.2 探地雷达

探地雷达(GPR)将脉冲发射到地下介质中,通过时域波形的处理和分析探知地下管道是否泄漏。当管道内的原油发生泄漏时,管道周围介质的电性质会发生变化,从而反射信号的时域波形也会发生变化,根据波形的变化就可以检测到管道是否发生了泄漏。应用探地雷达探测时,物体必须有一定的体积,因此这种方法不适用于较细的管道。而且用探地雷达探测泄漏时,与管道周围的地质特性有关,地质特性的突变对图象有很大的影响,这也是应用中的一个难点。2.3 气体成像

在输气管道泄漏检测中,气体成像技术也是一个比较有效的方法。以前气体成像的原理主要是根据背景吸收气体成像和红外辐射吸收技术。设备比较笨重,需要大型的激光器。近年来,开发了一种称之为“纹影”的技术,即采用空气中光学折射成像原理检漏。其设备轻巧、使用方便,还能提供有关泄漏量的指示。这种光学非侵入技术,可以远距离观测漏失量为每分钟仅为几毫升的轻微泄漏。泄漏到大气中的天然气比周围的空气折射率高,天然气泄漏使光线发生折射,在摄像机和照明条件下光栅之间的泄漏,使光线到达摄像机时产生位移。这样肉眼见不到的天然气泄漏就变成可视的纹影图象并可拍摄下来。利用这种技术,氧气和氮气难于在空气中成象,但烃类气体、挥发性流体的蒸气却容易看到;氦气、氢气、含氯氟烃等密度大于或小于空气的气体都可成象。同样纹影摄像机也能看到冷暖气流和超声冲击波。纹影成象技术不仅能发现气休泄漏而且能提供信息估算泄漏量。这种技术是地面成象系统,但检测来自地下的天然气泄漏也是可行的。2.4 传感器法

随着传感器技术的发展,人们已经制造出对某种化学物质特别敏感的传感器,再借助于计算机和现代信号处理技术可以大大地提高检测的灵敏度和精确度。(1)嗅觉传感器 将嗅觉传感器应用于管道检测还是一项不大成熟的技术。可以将嗅觉传感器沿管道按一定的距离布置,组成传感器网络对管道进行实时监控。当发生泄漏时,对泄漏物质非常敏感的嗅觉传感器就会发出报警。(2)分布式光纤声学传感器

方法是利用Sagnac干涉仪测量泄漏所引起的声辐射的相位变化来确定泄漏点的范围,这种传感器可以用于气体或液体运输管道。这种方法是把光纤传感器放在管道内,通过接收到的泄漏液体或气体的声辐射,来确定泄漏和定位。由于是玻璃光纤,所以不会被分布沿线管道的高压所影响,也不会影响管道内液体的非传导特性,而且光纤还不受腐蚀性化学物资的损害,寿命较长。在理论上,10km管道定位精度能达到±5m,反应也较灵敏及时,但成本较高。2.5 探测球法

基于磁通、超声、涡流、录像等技术的探测球法是上世纪80年代末期发展起来的一项技术,将探测球沿管线内进行探测,利用超声技术(“超声猪”)或漏磁技术(“磁通猪”)采集大量数据,并进行事后分析,以判断管道是否有泄漏点。该方法检测准确、精度较高,缺点是探测只能间断进行,易发生堵塞、停运的事故,而且造价较高。2.6 半渗透检测管法

这种检漏管埋设在管道上方,一旦气体管道发生泄漏,安装在检测管一端的抽气泵持续地从管内抽气,并进入烃类检测器,如检测到油气,则说明有泄漏发生。但这种方法安装和维修费用相对较高,另外,土壤中自然产生的气体(如沼气)可能会造成假指示,容易引起误报警。美国谢夫隆管道公司在天然气管道上安装了这种检测系统(LASP)。2.7 检漏电缆法

检漏电缆多用于液态烃类燃料的泄漏检测。电缆与管道平行铺设,当泄漏的烃类物质渗入电缆后,会引起电缆特性的变化。目前己研制的有渗透性电缆、油溶性电缆和碳氢化合物分布式传感电缆。这种方法能够快速而准确地检测管道的微小渗漏及其渗漏位置,但其必须沿管道铺设,施工不方便,且发生一次泄漏后,电缆受到污染,在以后的使用中极易造成信号混乱,影响检测精度,如果重新更换电缆,将是一个不小的工程。2.8 GPS时间标签法

GPS(全球定位系统)的基本定位原理是:卫星不间断地发送自身的星历参数和时间信息,用户接收到这些信息后,经过计算求出接收机的三维位置,三维方向以及运动速度和时间信息。采用GPS同步时间脉冲信号是在负压波的基础上强化各传感器数据采集的信号同步关系,通过采样频率与时间标签的换算分别确定管道泄漏点上游和下游的泄漏负压波的速度,然后利用泄漏点上下游检测到的泄漏特征信号的时间标签差就可以确定管道泄漏的位置。采用GPS进行同步采集数据,泄漏定位精度可达到总管线长度的1%之内,比传统方法精度提高近3倍。2.9 放射性示踪剂检测

放射性示踪剂检测是将放射性示踪剂(如碘131)加到管道内, 随输送介质一起流动, 遇到管道的泄漏处, 放射性示踪剂便会从泄漏处漏到管道外面, 并附着于泥土中。示踪剂检漏仪放于管道内部, 在输送介质的推动下行走。行走过程中, 指向管壁的多个传感器可在3600 范围内随时对管壁进行监测。经过泄漏处时, 示踪剂检漏仪便可感受到泄漏到管外的示踪剂的放射性, 并记录下来。根据记录, 可确定管道的泄漏部位。这种方法对微量泄漏检测的灵敏度很高。该方法优点是灵敏度高, 可监测到百万分之一数量级, 甚至十亿分之一数量级,但是由于放射性示踪剂对人身安全和生态环境的影响,因此如何选择化学和生物稳定性好、分析操作简单、灵敏度高、无毒、应用环境安全等特点的示踪剂, 进行示踪监测是亟待解决的问题。2.10 体积或质量平衡法

管道在正常运行状态下,其输入和输出质量应该相等,泄漏必然产生量差。体积或质量平衡法是最基本的泄漏探测方法,可靠性较高。但是管道泄漏定位算法对流量测量误差十分敏感, 管道泄漏定位误差为流量测量误差的6-7 倍, 因此流量测量误差的减小可显著提高管道泄漏检测定位精度。提高流量计精度是一种简便可行的方法,北京大学的唐秀家教授于1996 年首次提出了采用三次样条插值拟合腰轮流量计误差流动曲线, 动态修正以腰轮流量计滑流量为主的计量误差的方法。此方法能显著提高管道泄漏检测的灵敏度和泄漏精度。2.11 负压波

当管道发生泄漏事故时, 在泄漏处立即有物质损失, 并引起局部密度减小, 进而造成压力降低。由于管道中流体不能立即改变流速, 会在泄漏处和其任一端流体之间产生压差。该压差引起液流自上而下流至泄漏处附近的低压区。该液流立即挤占因泄漏而引起密度及压力减小的区域在临近泄漏区域和其上、下游之间又产生新的压差。泄漏时产生的减压波就称为负压波。设置在泄漏点两端的传感器根据压力信号的变化和泄漏产生的负压波传播到上下游的时间差,就可以确定泄漏位置。该方法灵敏准确,无需建立管线的数学模型,原理简单,适用性很强。但它要求泄漏的发生是快速突发性的,对微小缓慢泄漏不是很有效。基于负压波的传播理论, 提出了两种定位方法:(1)设计了一种能够快速捕捉负压波前锋到达压力测量点的波形特征点的微分算法, 并基于此种算法进行漏点定位;(2)将极性相关引入漏点定位技术, 通过确定相关函数峰值点的方法, 进行漏点定位。这两种定位方法是对泄漏时的压力时间序列分别从微分和积分, 从瞬态和稳态两方面进行处理,提取特征值。这两种方法配合使用, 相互参照, 能够提高泄漏点定位的准确度。

目前,负压波法在我国输油管道上进行了多次试验,取得了令人满意的效果,但在输气管道上的试验并不多。有文献指出,负压波法完全适合于气体管道的泄漏检测, ICI 公司曾经使用负压波法在乙烯管道上进行过成功的试验。使用压力波法时,应当选用只对负压波敏感的压力传感器(因为泄漏不会产生正压波),传感器应当尽量靠近管道,而且要设定合适的阈值,这样可以更好地抑制噪音。2.12 压力点分析法(PPA)PPA较其它方法体现了许多优点。该方法依靠分析由单一测点取得数据, 极易实现。增添测点可改善性能, 但在技术上不是必需的。在站场或干线某位置上安装一个压力传感器, 泄漏时漏点产生的负压波向检测点传播, 引起该点压力(或流量)变化, 分析比较检测点数据与正常工况的数据, 可检测出泄漏。再由负压波传播速度和负压波到达检测点的时间可进行漏点定位。PPA具有使用简便、安装迅速等特点。美国谢夫隆管道公司(CPL)将PPA法作为其管道数据采集与处理系统(SCADA)的一部分,试验结果表明,PPA具有优良的检漏性能,能在10min内确定50gal/min的漏失。但压力点分析法要求捕捉初漏的瞬间信息,所以不能检测微渗。该方法使用于检测气体、液体和某些多相流管道,己广泛应用于各种距离和口径的管道泄漏检测。2.13 压力梯度法

压力梯度法是上世纪80年代末发展起来的一种技术,它的原理是:当管道正常输送时,站间管道的压力坡降呈斜直线,当发生泄漏时,漏点前后的压力坡降呈折线状,折点即为泄漏点,据此可算出实际泄漏位置。压力梯度法只需要在管道两端安装压力传感器,简单、直观,不仅可以检测泄漏,而且可确定泄漏点的位置。但因为管道在实际运行中,沿线压力梯度呈非线性分布,因此压力梯度法的定位精度较差,而且仪表测量对定位结果有很大影响。所以压力梯度法定位可以作为一个辅助手段与其它方法一起使用。2.14 小波变换法

小波变换即小波分析是20世纪80年代中期发展起来新的数学理论和方法,被称为数学分析的“显微镜”,是一种良好的时频分析工具。利用小波分析可以检测信号的突变、去噪、提取系统波形特征、提取故障特征进行故障分类和识别等。因此,可以利用小波变换检测泄漏引发的压力突降点并对其进行消噪,以此检测泄漏并提高检测的精度。小波变换法的优点是不需要管线的数学模型,对输入信号的要求较低,计算量也不大,可以进行在线实时泄漏检测,克服噪声能力强,是一种很有前途的泄漏检测方法。但应注意,此方法对山工况变化及泄漏引起的压力突降难以识别,易产生误报警。

2.15 互相关分析法

相关技术实质是在时延域中考察两个信号之间的相似性,包含自相关和互相关两个内容。油气输送管道管壁一般都是弹性体,流体发生泄漏时,流体受压力喷射而诱发弹性波并沿管壁内传播。检测管道某两点处的弹性波信号,分析其互相关函数,利用相关时延技术便可判定是否发生泄漏及泄漏的位置。相关检漏技术是综合振动、测试、信号处理等许多学科知识的高新技术。用互相关分析法检漏和定位灵敏、准确,只需检测压力信号,不需要数学模型,计算量小。但它对快速突发性的泄漏比较敏感,对泄漏速度慢、没有明显负压波出现的泄漏很难奏效。2.16 基于瞬变流模型的检漏法

文献[18]介绍了一种基于瞬变流模型的检漏方法。该方法根据拟稳态流的假设,考虑了在瞬态条件下管道的流量变化和压力分布。对一条假设天然气管道的研究结果表明,即使是对于瞬态条件,该方法也比以往一些未考虑管道的流量变化和压力分布的常规方法更准确地确定管道的泄漏点。这种方法也能应用于设有能引起管道流量分布突变的配气站的管道系统。

瞬态模型法主要针对动态检测泄漏,瞬时模拟管道运行工况,它可以提供确定管道存储量变化的数据,为流量平衡法提供参考量。使用管道瞬变模型法的关键在于建立比较准确的管道流体实时模型,以可测量的参数作为边界条件,对管道内的压力和流量等参数进行估计。当计算结果的偏差超过给定值时,即发出泄漏报警。2.17 应力波法

管线由于腐蚀、人为打孔原因破裂时,会产生一个高频的振动噪声,该噪声以应力波的形式沿管壁传播,强度随距离按指数规律衰减。在管道上安装对泄漏噪声敏感的传感器,通过分析管道应力波信号功率谱的变化,即可检测出流体的泄漏。由于影响管道应力波传播的因素很多,在实际中很难用解析的方法准确描述出管道振动。有人提出使用神经网络学习管道正常信号与泄漏信号,进而对管道的泄漏进行判断。

2.18 基于状态估计的方法

该方法根据质量平衡方程、动量平衡方程、能量平衡方程及状态方程等机理建模。得到一个非线性的分布式参数系统模型, 通常可采用差分法或特征线法等方法将其线性化。设计状态估计器对系统状态进行估计,将估计值作为泄漏检测的依据,这就是基于状态估计的方法的基本原理。其中估计器可以是观测器,也可以是Kalman 滤波器。根据建立模型的方法,这类方法可分为不包含故障的模型法和包含故障的模型法。

①不包含故障的模型法。不包含故障的模型法的基本思路是,建立管道模型并设计估计器,模型中不含有泄漏的信息。当泄漏发生时,模型估计值与实际测量值将会产生残差,可用残差信号来进行检测定位。当泄漏量大时,该方法不可行。另外,该方法需要设置流量计,而且对于气体管道,检测和定位的响应时间太慢。②包含故障的模型法。包含故障的模型法的基本思路是,建立管道模型时预先假设管道有几处指定的位置发生了泄漏, 通过对系统的状态估计得到这几个预先假设的泄漏点的泄漏量估计值, 运用适当的判别准则便可进行泄漏检测和定位。该方法在长90 km、内径785 mm 的气体管道上,在80 min 内可检测出2 %的泄漏量,并在100min 内可完成定位,定位精度比较高。但当实际泄漏点不处于指定泄漏点之间时,定位公式将无法使用。对于气体管道,检测速度相对较慢,仍需设置流量计。

2.19 基于系统辨识的方法

通过系统辨识来建立模型是工业上经常使用的方法,与基于估计器的方法相比,具有实时性强和更加精确等优点,管道的模型也可以通过系统辨识的方法来得到。目前,采用的方法是在管道系统上施加M 序列信号,采用线性ARMA 模型结构增加某些非线性项来构成管道的模型结构,采用辨识的方法来求解模型参数,并用与估计器方法类似的原理进行检漏和定位。

为了对管道的泄漏进行检测,可以对根据管道实际情况建立“故障灵敏模型”及“无故障模型”进行对比和计算。系统辨识法的局限性与不包含故障的模型法类似。基于模型法的一个共同的问题在于,检测管道泄漏时的响应时间慢,特别是对于气体管道。这是由于气体的动态特性变化比较缓慢,实际测量信号的采样时间比较长的缘故。另外,基于模型的方法无一例外,都要采用实际测量的流量信号,由于流量计价格昂贵,维护起来比较困难,因此,我国多数管道没有安装,而且受流量测量时流体成分、温度以及压力等参数变化的影响,测量的准确度比较低。2.20 基于神经网络的方法

由于有关管道泄漏的未知因素很多,采用常规数学模型进行描述存在较大困难,用于泄漏检测时,常因误差很大或易漏报误报而不能用于工业现场。基于人工神经网络检测管道泄漏的方法,不同于已有的基于管道准确流动模型描述的泄漏检测法,能够运用自适应能力学习管道的各种工况,对管道运行状况进行分类识别,是一种基于经验的类似人类的认知过程的方法。试验证明这种方法是十分灵敏和有效的。理论分析和实践表明,这种检漏方法能够迅速准确预报出管道运行情况,检测管道运行故障并且有较强的抗恶劣环境和抗噪声干扰的能力。泄漏引发应力波适当的特征提取指标能显著提高神经网络的运算速度。基于神经网络学习计算研制的管道泄漏检测仪器简洁实用,能适应复杂工业现场。神经网络检测方法可推广应用到管道堵塞、积砂、积蜡、变形等多种故障的检测中,对于管网故障诊断有广泛的应用前景。2.21 统计检漏法

该方法采用一种“顺序概率测试”(SequentialProbability Ratio Test)假设检验的统计分析方法,从实际测量到的流量和压力信号中实时计算泄漏发生的置信概率。在实际统计上,输入和输出的质量流通过流量变化(Inventory Variation)来平衡。在输入的流量和压力均值与输出的流量和压力均值之间会有一定的偏差,但大多数偏差在可以接受的范围之内,只有一小部分偏差是真正的异常。通过计算标准偏差和检验零假设,对偏差的显著性进行检验,来判断是否出现故障。泄漏发生后,采用一种最小二乘算法进行定位。2.22 水力坡降线法 水力坡降线法的技术不太复杂。这种方法是根据上游站和下游站的流量等参数, 计算出相应的水力坡降, 然后分别按上游站出站压力和下游站进站压力作图, 其交点就是理想的泄漏点。但是这种方法要求准确测出管道的流量、压力和温度值。对于间距长达几十或百公里的长输管道, 由仪表精度造成的误差可能使泄漏点偏移几公里到几十公里, 甚至更远, 给寻找实际泄漏点带来困难。因此,应用水力坡降线法寻找长输管道泄漏点时应考虑仪表精度的影响。压力表、温度计和流量计等的精度对泄漏点的判定都有直接关系。把上、下游站这3种仪表的最大和最小两种极端情况按照排列组合方式, 可以构成64 种组合, 其中有2 种组合决定泄漏区间的上、下游极端点。目前这种方法较少采用。检漏方法性能指标 3.1 泄漏检测性能指标

一个高效可靠的管道泄漏检测与定位系统,必须在微小的泄漏发生时,在最短的时间内,正确地报警,准确地指出泄漏位置,并较好地估计出泄漏量,而且对工况的变化适应性要强,也即泄漏检测与定位系统误报率、漏报率低,鲁棒性强,当然还应便于维护。归结起来可分为:灵敏性、定位精度、响应时间、误报率、评估能力、适应能力、有效性、维护要求、费用。3.2 诊断性能指标

1)正常工序操作和泄漏的分离能力:是指对正常的起/ 停泵、调阀、倒罐等情况和管道泄漏情况的区分能力。这种区分能力越强,误报率越低。

2)泄漏辨识的准确性:指泄漏检测系统对泄漏的大小及其时变特性的估计的准确程度。对于泄漏时变特性的准确估计,不仅可识别泄漏的程度,而且可对老化、腐蚀的管道进行预测并给出一个合理的处理方法。3.3 综合性能指标

1)鲁棒性:指泄漏诊断系统在存有噪声、干扰、建模误差等情况下正确完成泄漏诊断的任务,同时保证满意的误报率和漏报率的能力。诊断系统鲁棒性越强,可靠性就越高。

2)自适应能力:指诊断系统对于变化的诊断对象具有自适应能力,并且能够充分利用由于变化产生的新的信息来改善自身。

在实际工程设计中,首先要正确分析工况条件及最终性能要求,明确各性能要求的主次关系,然后从众多的泄漏检测方法中进行分析,经过适当权衡和取舍,最后选定最优解决方案。4 存在问题及发展趋势

长输管道的泄漏检测与定位具有十分重要的现实意义,尽管已经取得很大的进步,工程实践中已得到应用,取得了一定的经济效益,同时也暴露了许多尚需解决的问题。例如长输管道的小泄漏检测和定位仍是重点攻克问题;如何增强泄漏检测和定位系统的自适应能力和自学习能力;如何将多种方法有机的结合起来进行综合诊断,发挥各自的优势,从而提高整个系统的综合诊断性能;如何有效解决长输管道的非线性分布参数的时间滞后问题等。

目前的泄漏检测和定位手段是多学科多技术的集成,特别是随着传感器技术、模式识别技术、通信技术、信号处理技术和模糊逻辑、神经网络、专家系统、粗糙集理论等人工智能技术等发展,为泄漏检测定位方法带来了新的活力,可对诸如流量、压力、温度、密度、粘度等管道和流体信息进行采集和处理,通过建立数学模型或通过信号处理,或通过神经网络的模式分类,或通过模糊理论对检测区域或信号进行模糊划分,利用粗糙集理论简约模糊规则,从而提取故障特征等基于知识的方法进行检测和定位。将建立管道的数学模型和某种信号处理方法相结合、将管外检测技术和管内检测技术相结合、将智能方法引入检测和定位技术实现智能检测、机器人检测和定位等是一研究方向。

第二篇:油气管道无损检测技术

油气储运前言知识讲座

油气管道无损检测技术

管道作为大量输送石油、气体等能源的安全经济的运输手段,在世界各地得到了广泛应用,为了保障油气管道安全运行,延长使用寿命,应对其定期进行检测,以便发现问题,采取措施。

一、管道元件的无损检测

(一)管道用钢管的检测

埋地管道用管材包括无缝钢管和焊接钢管。对于无缝钢管采用液浸法或接触法超声波检测主要来发现纵向缺陷。液浸法使用线聚焦或点聚焦探头,接触法使用与钢管表面吻合良好的斜探头或聚焦斜探头。所有类型的金属管材都可采用涡流方法来检测它们的表面和近表面缺陷。对于焊接钢管,焊缝采用射线抽查或100 %检测,对于100 %检测,通常采用X射线实时成像检测技术。

(二)管道用螺栓件

对于直径> 50 mm 的钢螺栓件需采用超声来检测螺栓杆内存在的冶金缺陷。超声检测采用单晶直探头或双晶直探头的纵波检测方法。

二、管道施工过程中的无损检测

(一)各种无损检测方法在焊管生产中的配置

国外在生产中常规的主要无损检测配置如下图一中的A、B、C、E、F、G、H工序。我国目前生产中的检测配置主要岗位如下图中的A、C、D、E、F、G、H工序。

油气储运前言知识讲座

图一 大口径埋弧焊街钢管生产无损检测岗位配置

(二)超声检测

全自动超声检测技术目前在国外已被大量应用于长输管线的环焊缝检测,与传统手动超声检测和射线检测相比,其在检测速度、缺陷定量准确性、减少环境污染和降低作业强度等方面有着明显的优越性。

全自动相控阵超声检测系统采用区域划分方法,将焊缝分成垂直方向上的若干个区,再由电子系统控制相控阵探头对其进行分区扫查,检测结果以双门带状图的形式显示,再辅以TOFD(衍射时差法)和B扫描功能,对焊缝内部存在的缺陷进行分析和判断。

全自动超声波现场检测时情况复杂,尤其是轨道位置安放的精确度、试块的校准效果、现场扫查温度等因素会对检测结果产生强烈的影响,因此对检测结果的评判需要对多方面情况进行综合考虑,收集各种信息,才能减少失误。

(三)射线检测

射线检测一般使用X 射线周向曝光机或γ射线源,用管道内爬行器将射线源送入管道内部环焊缝的位置,从外部采用胶片一次曝光,但胶片处理和评价需要较长的时间,往往影响管道施工的进度,因此,近年来国内外均开发出专门用于管道环焊缝检测的X 射线实时成像检测设备。

油气储运前言知识讲座

图二 管道环焊缝自动扫描X射线实时成像系统

图二为美国Envision公司生产的管道环焊缝自动扫描X射线实时成像系统,该设备采用目前最先进的CMOS成像技术,用该设备完成Φ 609mm(24 in)管线连接焊缝的整周高精度扫描只需1~2 min,扫描宽度可达75 mm,该设备图像分辨率可达80μm,达到和超过一般的胶片成像系统。

(四)磁粉检测

磁粉检测的基础是缺陷处漏磁场与磁粉的磁相互作用。铁磁性材料或工件被磁化后,由于不连续性的存在,使工件表面或近表面的磁力线发生局部畸变而产生漏磁场,吸附施加在工件表面的磁粉,形成在合适光照下目视可见的磁痕,从而显示出不连续性的位置、形状和大小。

国内很少对焊管坡口面进行磁粉检测。国外使用的自动检测系统,主要采用荧光磁悬液湿法检测。自动磁粉检测设备采用磁化线圈在钢管壁厚方向对坡口面局部磁化,同时在坡口表面喷洒荧光磁悬液,凭借在该部位装置的高分辨率摄像系统,将磁化、磁悬液喷洒区域的影像传输在旁边的监视屏上,操作人员监视屏幕,就可以及时发现磁痕影像,找出缺陷。

磁粉检测适用于检测铁磁性材料表面和近表面的缺陷,因此对于奥氏体不锈钢和有色金属等非铁磁性材料不能用磁粉检测的方法进行探伤。由

油气储运前言知识讲座

于马氏体不锈钢、沉淀硬化不锈钢具有磁性,因此可以进行磁粉检测。磁粉检测可以发现表面和近表面的裂纹、夹杂、气孔、未熔合、未焊透等缺陷,但难以发现表面浅而宽的凹坑、埋藏较深的缺陷及与工件表面夹角极小的分层。

三、钢质管道管体无损检测技术

钢质管道管体的无损检测,主要就是管体的完整性(如剩余壁厚、管道缺陷、表面腐蚀形态、腐蚀产物类型、腐蚀深度等)检测。表一列出了目前常用的管道检测技术及其检测内容。

表一 管道检测技术分类

(一)弹性波检测技术

弹性波检测是利用管道泄漏引起的管道内压力波的变化来进行诊断定位,一般可分为声波、负压力波和压力波三种。其主要工作原理是利用安置好的传感器来检测管道泄漏时产生的弹性波并进行探测定位。这种技术的关键是区分正常操作时和发生泄漏时的弹性波。目前有两种方法,一

油气储运前言知识讲座

种是利用硬件电路的延时来进行信号过滤,另一种是结合结构模式识别和神经网络来区分正常操作时和发生事故时产生的不同波形,从而更好地监测管道的运行。

(二)漏磁通检测技术

漏磁式管道腐蚀检测设备的工作原理是利用自身携带的磁铁,在管壁圆周上产生一个纵向磁回路场。如果管壁没有缺陷,则磁力线封闭于管壁之内,均匀分布。如果管内壁或外壁有缺陷,则磁通路变窄,磁力线发生变形,部分磁力线将穿出管壁产生漏磁。漏磁检测原理图三所示。

图三 漏磁检测原理

漏磁场被位于两磁极之间的紧贴管壁的探头检测到,并产生相应的感应信号。这些信号经滤波、放大、模数转换等处理后被记录到检测器上的存储器中,检测完成后,再通过专用软件对数据进行回放处理、判断识别。

从整个检测过程来说,漏磁检测可分为图四所示的四个部分:

图四 漏磁检测流程图

漏磁检测技术的优点:(1)易于实现自动化;较高的检测可靠性;(2)可以实现缺陷的初步量化;(3)在管道检测中,厚度达到30mm的壁厚范

油气储运前言知识讲座

围内,可同时检测内外壁缺陷;(4)高效,无污染,自动化的检测可以获得很高的检测效率。

漏磁检测技术的局限性:(1)只适用于铁磁材料;(2)检测灵敏度低;(3)缺陷的量化粗略;(4)受被检测工件的形状限制由于采用传感器检测漏磁通,漏磁场方法不适合检测形状复杂的试件;(5)漏磁探伤不适合开裂很窄的裂纹,尤其是闭合型裂纹;(6)不能对缺陷的类型或者缺陷的严重程度直接作定量性的分析。

(三)超声波检测技术

管道超声检测是利用现有的超声波传感器测量超声波信号往返于缺陷之间的时间差来测定缺陷和管壁之间的距离;通过测量反射回波信号的幅值和超声波探头的发射位置来确定缺陷的大小和方位。

图五为超声波检测原理图, 图中Wt代表管道正常壁厚, SO代表超声波探头与管道内表面间的标准位移。

图五 超声波检测原理图

超声波检测技术的优点:(1)检测速度快,检测成本低;(2)检测厚度大,灵敏度高;(3)缺陷定位较准确;(4)对细微的密闭裂纹类缺陷灵

油气储运前言知识讲座

敏度高。

超声波检测的缺点:(1)由于受超声波波长的限制,该检测法对薄管壁的检测精度较低,只适合厚管壁,同时对管内的介质要求较高;(2)当缺陷不规则时,将出现多次反射回波,从而对信号的识别和缺陷的定位提出了较高要求;(3)由于超声波的传导必须依靠液体介质,且容易被蜡吸收,所以超声波检测器不适合在气管线和含蜡高的油管线上进行检测,具有一定局限性。

(四)电磁超声检测

电磁超声技术(EMAT)是20世纪70年代发展起来的无损检测新技术。这一技术是以洛仑兹力、磁致伸缩力、电磁力为基础,用电磁感应涡流原理激发超声波。

电磁超声的发射和接收是基于电磁物理场和机械波振动场之间的相互转化,两个物理场之间通过力场相互联系。从物理学可知,在交变的磁场中,金属导体内将产生涡流,同时该电流在磁场中会受到洛仑兹力的作用,而金属介质在交变应力的作用下将产生应力波,频率在超声波范围内的应力波即为超声波。与之相反,该效应具有可逆性,返回声压使质点的振动在磁场作用下也会使涡流线圈两端的电压发生变化,因此可以通过接收装置进行接收并放大显示。人们把用这种方法激发和接收的超声波称为电磁超声。

与传统压电超声换能器相比,EMA的优点主要有:(1)非接触检测,不需要耦合剂;(2)可产生多种模式的波,适合做表面缺陷检测;(3)适合高温检测;(4)对被探工件表面质量要求不高;(5)在实现同样功能的油气储运前言知识讲座

前提下,EMAT探伤设备所用的通道数和探头数都少于压电超声;(6)发现自然缺陷的能力强,对不同的入射角有明显的端角反射,对表面裂纹检测灵敏度较高。

EMA的缺点:(1)EMAT的换能效率要比传统压电换能器低20—40dB;(2)探头与试件距离应尽可能小;(3)EMAT仅能应用于具有良好导电性能的材料中。

(五)涡流检测技术

涡流检测技术是目前采用较为广泛的管道无损检测技术,其原理为:当一个线圈通交变电时,该线圈将产生一个垂直于电流方向(即平行于线圈轴线方向)的交变磁场,把这个线圈靠近导电体时,线圈产生的交变磁场会在导电体中感应出涡电流(简称涡流),其方向垂直于磁场并与线圈电流方向相反。导电体中的涡流本身也要产生交变磁场,该磁场与线圈的磁场发生作用,使通过线圈的磁通发生变化,这将使线圈的阻抗发生变化,从而使线圈中的电流发生变化。通过监测线圈中电流的变化(激励电流为恒定值),即可探知涡流的变化,从而获得有关试件材质、缺陷、几何尺寸、形状等变化的信息。

涡流检测技术可分为常规涡流检测、透射式涡流检测和远场涡流检测。常规涡流检测受到趋肤效应的影响,只适合于检测管道表面或者亚表面缺陷,而透射式涡流检测和远场涡流检测则克服了这一缺陷,其检测信号对管内外壁具有相同的检测灵敏度。其中远场涡流法具有检测结果便于自动化检测(电信号输出)、检测速度快、适合表面检测、适用范围广、安全方便以及消耗的物品最少等特点,在发达国家得到广泛的重视,广泛用于在油气储运前言知识讲座

用管道的检测。

涡流检测技术的优点:(1)检测速度高,检测成本低,操作简便;(2)探头与被检工件可以不接触,不需要耦合介质;(3)检测时可以同时得到电信号直接输出指示的结果,也可以实现屏幕显示;(4)能实现高速自动化检测,并可实现永久性记录。

涡流检测技术的缺点:(1)只适用于导电材料,难以用于形状复杂的试件;(2)只能检测材料或工件的表面、近表面缺陷;(3)检测结果不直观,还难以判别缺陷的种类、性质以及形状、尺寸等;(4)检测时受干扰影响的因素较多,易产生伪显示。

(六)激光检测技术

激光检测系统主要包括激光扫描探头、运动控制和定位系统、数据采集和分析系统三个部分,利用了光学三角测量的基本原理。与传统的涡流法和超声波法相比,激光检测(或轮廓测量)技术具有检测效率高、检测精度高、采样点密集、空间分辨力高、非接触式检测,以及可提供定量检测结果和提供被检管道任意位置横截面显示图、轴向展开图、三维立体显示图等优点。

但是激光检测方法只能检测物体表面,要全面掌握被测对象的情况,必须结合多种无损检测方法,取长补短。

(七)管道机器人检测技术

管道机器人是一种可在管道内行走的机械,可以携带一种或多种传感器,在操作人员的远端控制下进行一系列的管道检测维修作业,是一种理想的管道自动化检测装置。

油气储运前言知识讲座

一个完整的管道检测机器人应当包括移动载体、视觉系统、信号传送系统、动力系统和控制系统。管道机器人的主要工作方式为: 在视觉、位姿等传感器系统的引导下,对管道环境进行识别,接近检测目标,利用超声波传感器、漏磁通传感器等多种检测传感器进行信息检测和识别,自动完成检测任务。其核心组成为管道环境识别系统(视觉系统)和移动载体。目前国外的管道机器人技术已经发展得比较成熟,它不仅能进行管道检测,还具有管道维护与维修等功能,是一个综合的管道检测维修系统。

四、管道外覆盖层检测技术

(一)PCM检测法

PCM(多频管中电流检测法)评价的核心是遥控地ICI电流信号的张弱来控制发射到管道表ICI的电流,通过检测到的电流变化规律,进而判断外防腐层的破损定位与老化程度。加载到管道上的电流会产生相应的电磁场,磁场张弱与加载电流的大小成正比,同时随着传输距离增大,电流信号逐渐减小。当管道外涂层有破损时,电流通过破损点流向大地,该点处的电流衰减率突然增大,可判定外涂层破损点的位置。

但PCM法对较近的多条管道难以分辨、在管道交叉、拐点处及存在交流电干扰时,测得数据误差大。

(二)DCVG检测技术

DCVG(直流电压梯度测试技术)的原理是对管道上加直流信号时,在管道防腐层破损裸漏点和土壤之间会出现电压梯度。在破损裸漏点附近部位,电流密度将增大,电压梯度也随着增大。普遍情况下,裸漏面积与电

油气储运前言知识讲座

压梯度成正。直流电压梯度检测技术就是基于上述原理的。

在用DCVG测量时,为了便于对信号的观察和解释,需要加一个断流器在阴极保护输出上。测量过程中,沿管线以2m的间隔在管顶上方进行测量。

DCVG的优点为能准确地测出防腐层的破损位置,判断缺陷的严重程度和估计缺陷大小,之后根据检测结果提供合理的维护和改造建议;测量操作简单,准确度高,在测量过程中不受外界干扰,几乎不受地形影响。缺点在于整个过程需沿线步行检测,不能指示管道阴极保护的效果和涂层剥离;环境因素会引起一定误差,如杂散电流、地表土壤的电阻率等。

(三)Pearson检测法

Pearson检测法(皮尔逊检漏法)的原理是对管道施加交流信号,此信号会通过管道防腐层的破损点处流失到土壤中,因此距离破损点越远,电流密度越小,破损点的上方地表形成一个交流电压梯度。检测过程中,两位测试员相距3~6m,脚穿铁钉鞋或手握探针,将各探测的的电压信号发回接收装置,信号经滤波、放大,即能得到检测结果。

Pearson检测法是目前国内最常用的检测技术,其优点是:(1)有较成熟的使用经验,并且检测速度较快,能沿线检测防腐层破损点和金属物体;(2)能识别破损点大小,还能测到微小漏点,长输管道的检测与运行维护中有良好的使用反馈。

Pearson检测法的不足之处在于,(1)整个检测过程需步行;(2)不能指明出缺陷的损坏程度;(3)对操作者的技能求高;(4)在水泥或沥青地面上检测接地困难。

油气储运前言知识讲座

(四)标准管/地(P/S)电位测试法

标准管/地(P/S)电位测试法的原来是采用万用表来测接地Cu/CuS04电极与管道表ICI某监测点之间的电位,通过电位与距离构成的曲线了解电位的分布,把当前电位与以往电位区别开来,可用检测来的阴极保护电位来判定是否对管道外涂层起保护作用。

目前,地面测量管道保护电位的通用方法就是标准管/地电位测试法,其优点是无需开挖管道、现场取得数据容易、检测速度快(每天10~50km)。一般情况,每隔1km左右设一个测试桩,所以这种方法只能总体评估这一管段的防腐层,不能详细地评价防腐层缺陷,不能确定防腐层的缺陷位置以及缺陷的分布情况。故此方法不适合用于无阴极保护或测试桩的管道。

第三篇:油气管道腐蚀检测

油气管道腐蚀的检测

摘要:油气管道运输中的泄漏事故,不仅损失油气和污染环境,还有可能带来重大的人身伤亡。近些年来,管道泄漏事故频繁发生,为保障管道安全运行和将泄漏事故造成的危害减少到最小,需要研究泄漏检测技术以获得更高的泄漏检测灵敏度和更准确的泄漏点定位精度。本文介绍几种检测方法并针对具体情况进行具体分析。

关键字:腐蚀检测

涡流

漏磁

超声波 引言:

在油气管道运输中管道损坏导致的泄漏事故不仅浪费了石油和天然气,而且泄露的有毒气体不仅污染环境,而且对人和动物造成重大的伤害,因此直接有效的检测技术是十分必要的,油气管道检测是直接利用仪器对管壁进行测试,国内外主要以超声波、漏磁和祸流等领域的发展为代表。[1]

1、涡流检测

电涡流效应的产生机理是电磁感应.电涡流是垂直于磁力线平面的封闭的 旋涡!状感应电流, 与激励线圈平面平行, 且范围局限于感应磁场所能涉及的区 域.电涡流的透射深度见图1, 电涡流集中在靠近激励线圈的金属表面, 其强度随透射深度的增加而呈指数衰减, 此即所谓的趋肤效应.[1]

电涡流检测金属表面裂纹的原理是: 检测线圈所产生的磁场在金属中产生电涡流, 电涡流的强度与相位将影响线圈的负载情况, 进而影响线圈的阻抗.如果表面存在裂纹, 则会切断或降低电涡流, 即增大电涡流的阻抗, 降低线圈负载.通过检测线圈两端的电压, 即可检测到材料中的损伤.电涡流检测裂纹原理见图2.[2]

涡流检测是一种无损检测方法,它适用于导电材料。涡流检测系统适应于核电厂、炼油厂、石化厂、化学工厂、海洋石油行业、油气管道、食品饮料加工厂、酒厂、通风系统检查、市政工程、钢铁治炼厂、航空航天工业、造船厂、警察/军队、发电厂等各方面的需求.[2] 涡流检测的优点为:1.对导电材料和表面缺陷的检测灵敏度较高;2.检测结果以电信号输出,可以进行白动化检测;3.涡流检测仪器重量轻,操作轻便、简单;4.采用双频技术可区分上下表面的缺陷:5.不需要祸合介质,非接触检测;6.可以白动对准_!:件探伤;7.应用范围广,可检测非铁磁性材料。

涡流检测的缺点为:1.只适用于检测导电材料;2.受集肤效应影响,探伤深度与检测灵敏度相矛盾,不易两全:3.穿过式线圈不能判断缺陷在管道圆周上所处的具体位置;4.要有参考标准才能进行检测:5.难以判断缺陷的种类。[1]

2、超声波检测

超声波检测的基本原理基本原理见图3所示。

垂直于管道壁的超声波探头对管道壁发出一组超声波脉冲后,探头首先接收到由管道壁内表面反射的回波(前波),随后接收到由管道壁缺陷或管道壁外表面反射的回波(缺陷波或底波)。于是,探头至管道壁内表面的距离A与管道壁厚度T可以通过前波时间以及前波和缺陷波(或底波)的时间差来确定:

式中,为第一次反射回波(前波)时间,为第二次反射回波(底波或缺陷波)时间,为超声波在介质中的声速、为超声波在管道中的声速。[3] 不过,仅仅根据管道壁厚度T曲线尚无法判别管道属内壁缺陷还是外壁缺陷,还需要根据探头至管道壁内表面的距离A曲线来判别。当外壁腐蚀减薄时,距离A曲线不变;而当内壁腐蚀减薄时,距离A曲线与壁厚T曲线呈反对称。于是,根据距离A和壁厚T两条曲线,即可确定管道壁缺陷,并判别管道是内壁腐蚀减薄缺陷还是外壁腐蚀减薄缺陷。[3] 超声波检测是通过超声传感器将高频声波射入被检管道内,如果其内部有缺陷,则一部分入射的超声波在缺陷处被反射回来,再利用传感器将反射同来的信号接收,可以检出缺陷的位置和大小。超声检测的常用频率范围为0.5一10MHz。

管道腐蚀缺陷深度和位置的直接检测方法,是利用超声波的脉冲反射原理来测量管壁腐蚀后的厚度,对管道材料的敏感性小,检测时不受管道材料杂质的影响,超声波法的检测数据简单准确,能够检测出管道的应力腐蚀破裂和管壁内的缺陷。适用于大直径、厚管壁管道的检查。超声波检测具有检测成本低,现场使用方便,特别适用于检验厚度较大的管道。[4] 超声检测作为一种成熟的无损检测技术有着它白己的优点,但还存在以下几个方面的不足:1.必须去除表面涂层,或者对表面进行打磨处理,增加了劳动强度;2.管材为圆柱曲面,容易造成祸合不良,检测速度慢、时间一长:3.有一定的近场盲区,易造成漏检:4.检测结果带有土观因素,并与操作人员有关:5.腐蚀坑底或腐蚀表面对声波散射严重,造成回波信号降低;6.不适合在气管线和含蜡高的油管线进行检测,具有一定局限性;7.内、外壁回波难以判断,容易发生误判。

3、漏磁检测

最适合油管探伤检验的方法是漏磁法, 国内油田现用的旧油管修复检测线80%,[5]以上都采用了漏磁探伤方法 漏磁检测是以自动化为目的发展起来的一种自动无损检测技术,国外己经得到广泛应用。漏磁检测的基本原理是建立在铁磁性材料的高磁导率特性之上的。铁磁性材料的磁导率远大于其它非铁磁性介质(如空气)的磁导率。当用磁场作用于被测对象并采用适当的磁路将磁场集中于材料局部时,一旦材料表面存在缺陷,缺陷附近将有一部分磁场外泄出来。用传感器检测这一外泄漏磁场可以确定有无缺陷,进而可以评价缺陷的形状尺寸。

钢管缺陷瀚磁检测原理是钢管被永久磁铁磁化后,当钢管中无缺陷时,磁力线绝大部分通过钢管,见图:当管壁变薄,管内、外壁局部被磨损,有腐蚀坑、凹坑、通孔等缺陷时,钢管缺陷处的磁阻变大,聚集在管壁的部分磁通向外扩张,磁力线发生弯曲井且有一部分磁力线泄翻出钢管表面,利用磁感应元件(霍尔元件)在钢管表面相对切割磁力线产生感应电信号,通过对感应电信号的特征提取来对缺陷进行定性和定量分析。[6]

真实的缺陷具有比模拟缺陷复杂得多的儿何形状,况且它们千差万别地存在于不同的_1洲冲,要计算其漏磁场是很难的。在检测中,要使它们的漏磁场达到足以形成明确显示的程度是很有意义的,这里,必须考虑影响缺陷漏磁场强弱的各种因素。影响缺陷漏磁场的因素主要米口卜列三个方面。(1)磁化场对漏磁场的影响

l)当磁化程度较低时,漏磁场偏小,且增加缓慢;2)当磁感应强度达到饱和值的80%左右时,漏磁场不仅幅值较大,而且随着磁化场的增加会迅速增大;3)漏磁场及其分量与钢管表面的磁感应强度大小成正比;4)漏磁场及其分量与磁化场方向和缺陷侧壁外法向矢量之间的夹角余弦成正比。

(2)缺陷方向、大小和位置对漏磁场的影响 l)缺陷与磁化场方向垂直时,漏磁场最强: 2)缺陷与磁化场方向平行时,粼磁场儿乎为零;3)缺陷在l:件表面的漏磁场最人,随着离开表面中心水平距离的增加漏磁场迅速减小;4)缺陷深度较小时,随着深度的增加漏磁场增加较快,当深度增大到一定值后漏磁场增加缓慢;5)缺陷信号的幅值与缺陷宽度对应,缺陷长度对翻磁信号儿乎没有影响;6)缺陷宽度相同时,随深度的增加,漏磁场随之增人;(3)工件材质及工况对漏磁场的影响

钢材的磁特性是随其合金成分(尤其是含碳坛)、热处理状态而变化的,相同的磁化强度、相同的缺陷对不同的磁性材料,缺陷漏磁场不一样,土要表现为以下二点:(l)对于儿何形状不同的被测物体,如果表面的磁性场相同而被测物体磁性不同,则缺陷处的漏磁场不同,磁导率低的材料漏磁场小:(2)被测材料相同,如果热处理状态不同,则磁导率不一样,缺陷处的漏磁场也不同;(3)当l:件表面有覆盖层(涂层、镀层)时,随着覆盖层厚度的增加,漏磁场将减弱。[1] 同样漏磁检测也存在它自己的特点。漏磁检测的优点是1.适用于检测中小型管道;2.不需要祸合,检测速度快,效率高:3.检测灵敏度高,可靠性好;4.可对缺陷进行量化处理:5.同磁粉相比便于操作,改善_l:作环境适合于对壁减和腐蚀坑等形式的缺陷普卉,检测效果突出;6.易于实现白动化。除此之外漏磁检测也有它的缺点,漏磁检测的缺点是:1.材料只适用于铁磁性金属材料,不适用I几1卜铁磁性金属;2.被检管道不能太厚,否则容易出现虚假数据:3.很难判断缺陷是在上表面还是在下表面:4.仪器重量比较人。

实例: 新疆某油田某天然气管线始于西气东输一线主力气田, 管径为 1 016 mm, 管线全长约160 km。鉴于管道完整性管理要求, 油田特委托ROSEN 公司对该管线进行了基于漏磁通原理的管道金属损失的内检测工作, 其完整的内检测过程主要包括以下几个步骤。

1)管道机械清洗 机械清管的主要目的是清出管内的污物、障碍物、沉积杂质和管壁结蜡, 最大程度地保证内检测效果的准确性。

2)管道变径检测 管道变径检测是对管道的通过性能(最小通过直径)进行测试, 其检测结果用于判断管道能否进行下一步的几何检测和漏磁检测。3)电子几何清管器的内几何检测(EGP)电子内几何检测是对管道内的管段、设备进行检测并模拟漏磁通检测的一项检测内容, 用以推论这条管线没有影响ROSEN 公司CDP 检测的主要障碍。4)漏磁通金属损失检测(CDP)(1)设置定标点 由于内检测器的里程轮在如此长距离的管线中行走, 由于打滑或者弯头的影响, 很容易导致累积误差, 导致以后找几何缺陷点出现困难。为了便于以后对此次漏磁检测工程中检测出来的缺陷点进行开挖验证或是进行维修补强, 必须在管线的沿途对行走距离进行修正。此次检测共设置了21 个BM5 型跟踪器和30 个BM7 型定标点。平均每隔5.32 km设置一个定标点对内检测器在管线的行走距离进行修正。

(2)漏磁通金属损失检测 5)数据处理及最终报告 6)最终评价。[4] 除了这三种最常用的检测技术之外还有磁粉检测、渗透检测、射线检测等检测方法。下面对这几种方法进行简单的介绍。

4、磁粉检测

磁粉检测方法是美国人霍克(HOKE)1922年提出的口磁粉法是检测铁磁性材料表面或近表面的裂纹、折叠、夹渣等缺陷,并能确定缺陷位置和人小的一种简单易行的方法。检测时先将管道被检部分磁化,在被检测部位及周围产生磁场。如果有缺陷,缺陷处磁阻比材料本身磁阻大得多,因此在缺陷处磁力线会产生弯曲绕行现象。当缺陷位于管道表面或近表面时,一部分磁力线绕过缺陷暴露在空气中,产生所谓的漏磁现象。在管道表面撒上铁磁粉或涂上磁粉混浊液,则缺陷处的漏磁场会吸住部分磁粉而把缺陷显现出来。

磁粉检测所需的设备简单,操作方便,迅速可靠,对表面缺陷检测灵敏度高,缺陷较直观,成本低。但缺陷的显现程度与缺陷同磁力线的相对位置有关,当缺陷与磁力线垂直时显现得最清楚,当缺陷与磁力线平行时则不易显现出来。只能检测出缺陷的位置和在表面方向上的长度,不能检测出缺陷深度,检测灵敏度随缺陷深度而下降。

磁粉检测作为一种成熟的无损检测技术,土要应川在焊缝和l;件表面或近表面裂纹检测。因为管道土要缺陷形式是壁减和腐蚀坑,如果应用磁粉检测会增人劳动强度,工作环境恶劣,检测效果并不是很好,所以磁粉检测不适用于管道腐蚀的检测工作。[7] 5渗透检测

渗透检测是探杏物体表面开口缺陷的一种方法,物体可以是铁或非铁磁性金属材料以及非金属材料[8]。方法是先将渗透剂渗入缺陷,在施加显像剂以后,由I.表面上形成显像膜,缺陷中的渗透剂就通过毛细作用被吸出至材料表面。从缺陷渗出的渗透剂以迹象的形式显示出缺陷,并比实际缺陷大,易于发现,肉眼就能看出材料的缺陷。

渗透探伤的优点有设备、材料简单;对表面缺陷可靠性高。而渗透检测存在的不足之处是对表面清洁度要求高;难以确定缺陷深度;受操作人员的影响大等。[1]

6、射线检测

射线实时成像检验技术是随着成像物体的变动图像迅速改变的电子学成像方法,和胶片射线照相检验技术儿乎是同时发展的。早期的射线实时成像检验系统是X射线荧光检验系统,采用荧光屏将X射线照相的强度转化为可见光图像[9]。对管道进行放射线检杳的方法是:利用放射线检杏管道,计量壁厚腐蚀深度,管道截面部位的壁厚通过照片上的尺寸计举,通过扩人率算出实际壁厚。实际上利用这种方法只能计晕管道截面部位的壁厚,它不能计景截面以外的平面部位的壁厚,最主要的是射线的散射不容易控制,容易发生泄漏[10]。

7、工业CT检测

CT技术始于20世纪70年代,首先是在医疗诊断领域中的成功应用,随后推广到无损检测和其他领域。日前在一l二业CT方面发展最快的是X射线和丫射线。在管道检测方面,20世纪80年代初,前苏联就采用cT技术检测功210mm铝管。[11] CT成像法可显示管道内部的剖面图像,优点是对腐蚀和堵塞结果明显,而且还可定量显示腐蚀后的壁厚和结垢的堵塞率,是一种理想的检测方法,但是普通的CT成像装置用大电流、高功率的强X射线源,用儿百个检测器组成阵列,在儿百个方向上取投影数据,设备人而笨,成本太高[12] 结束语:

本文对现有的油气管道腐蚀的检测技术进行了简单的介绍,随着科学技术的不断发展,现有的检测技术将不断得到改善,同时也会有新的检测技术出现,石油气因为腐蚀而泄漏的事故也会不断减少。参考文献

[1]王亚东 钢管漏磁检测技术的研究 硕士研究生学位论文;

[2]陈晓雷 王秀琳 基于涡流技术的检测系统设计 郑州轻工业学院学报(自然科学版);

[3]钟家维 沈建新 贺志刚 喻西崇 管道内腐蚀检测新技术和新方法; [4]张伟 蔡青青 张磊 张勇 周卫军 漏磁检测技术在新疆某油田的应用 [5]权高军 漏磁检测技术在油管修复中的应用 [6]基于小波分析的输油管道泄漏检测方法研究 [7]穿越河流输油管道的安全性评估 [8]马铭刚,程望琦,王怡之,等.无损检测.第一版.北京:石油工业出版社,1986.1一4 [9]郑世才.射线实时成像检验技术.无损检测,2000,22(7):328 [10]李艳芝,李景辉.利用图像片判断管道腐蚀深度的方法—可以在现场使用的检卉判断技术.焊管,2003,23(2):57~59 [11]陈金根.CT技术与无损检测.无损检测,1991,13(4):91一95 [12]顾本立,李虹.在役管道CT检测仪.无损检测,2001,23(l):23~24

第四篇:管道天然气户内泄漏事故调研材料

管道天然气户内泄漏事故调研材料免费文秘网免费公文网

管道天然气户内泄漏事故调研材料2010-06-29 18:40:33免费文秘网免费公文网管道天然气户内泄漏事故调研材料管道天然气户内泄漏事故调研材料(2)管道天然气虽然是一种洁净卫生、使用方便的绿色能源。但它却也是一种极其危险的气体。尤其是在户内管道方面,如果管理不善或使用不当,一旦泄漏,将会给人们带来灾难,造成财产损失,人员伤亡。事故原因分析

一、用户使用不当或误操作造成泄漏事故。这主要表现在以下几个方面:

1、不懂得或不熟悉燃具的使用方法,甚至不了解燃气阀的旋转方向。例如:

在点燃灶具时,如果是脉冲点火的灶具没有安装电池便开起燃气阀,就会导致燃烧器未点着火。但使用人很可能会误以为没有气而离去,结果造成大量的燃气泄漏。

2、使用燃具时不够专心,点着火后就去做别的工作,而水壶、粥锅、奶锅等器具内的水、粥、乳之类的物品烧开后溢出器具外,把火焰浇灭,而使大量的燃气放散到房间内。所以要尽量推荐用户购买使用带有自动熄火保护装置的灶具。

3、燃气灶质量不合格或用户只注重使用燃具,不注意保养和维修,造成燃气阀缺油、无油或锁紧螺母松动,引起漏气。例如2007年 7月20日18时左右,在我省某市发生了一起燃气泄漏事故,事主家中燃气开关没有关闭,由于燃气具上的铁圈脱落,烫漏了燃气管导致泄漏,一位60多岁的老人不幸身亡。该居民家虽安装了燃气报警器,但没有插电源。

4、用户已发现漏气事故,由于处理不及时或处理方法不当,而引起爆炸或火灾。

二、工程施工质量造成的泄漏事故。

在天然气管道的安装施工过程中,如果对工程质量不严格把关,就很可能会产生安全事故。仅就户内管道安装来说,目前我国户内天然气管道按管材分主要焊接钢管和镀锌钢管。不同材质的管道在安装施工的过程中连接的方式也不相同。其中焊接钢管主要是采用焊接方式,镀锌钢管主要采用螺纹连接。根据对天然气火灾的统计,得知有很大一部分泄漏事故与管道的安装质量有关。例如:2007年5月份在我省苏北某县城正在使用的燃气主管道发生泄漏,螺纹连接部分松动是造成燃气泄漏的主要原因。该管道在施工中,执行工艺不严格,未紧到位也未做气密性试验便匆匆通气,结果造成天然气泄漏,发生火灾。

三、安全管理方面的缺陷所造成的事故

1.燃气管道原始资料不全,技术状况不明。在现实情况下,由于种种原因,例如,燃气管理部门出现人员调动情况,使得燃气管道原始资料遗失,致使新上任的人员无法了解管线的具体情况,未能进行定期的安全检查。

2.对燃气管道管理认识不足。燃气管理部门对制度落实不完善,落实不到位,缺乏成套的巡线、检测、查漏制度和机制。

处理对策

一、加强管理确保安全使用的具体措施

(一)加强工程质量监督与管理。在施工中,如发现有不按原设计图纸施工的现象,要立即坚决制止,并处罚有关责任人。工程验收时,要邀请建设主管部门和监检单位参与工程验收,对不符合要求的工段,要坚决返工,并严肃处理责任人。只有这样,才能把燃气管道的先天性隐患消灭在萌芽之中。

(二)专业设计、严密规划

城镇

燃气工程是一项全社会的基础工程,客观上要求设计、开发商、规划、城建、市政、技术监督、消防等部门密切配合,协调工作。设计单位在设计小区管道天然气配套时要充分听取开发商、规划等相关部门的意见,必要时邀请各部门专家“会诊”,以便制定合乎客观实际的,科学的方案,使城镇天然气管道的建设尽可能在确保安全第一的情况下正常发展。

(三)严格选材,严把工程质量关。

施工前,建设单位、监理单位、施工单位、监检等单位要联合对所选用的管材设备进行检查和检测,特别是对将要作户内管道的材料,更要严格筛选。在目前市场经济条件下,要教育材料质检及施工人员提高认识,增加责任感、使命感,并制定相应的责任制,填写责任状、检测签名等形式,切实把好选材和施工质量关。

(四)建立健全各项制度,加强后期管理。

1. 加强有关法规、技术标准的学习,提高认识,克服重使用、轻管理的思想,增强安全意识。

2. 组织落实:建立严格可行的管理体系和工作程序,落实岗位责任制。

3. 制度落实:制定、完善有关燃气管道的设计、安装、使用、检验、修理、改造等各项管理制度。

4. 具体工作中抓好制度的实施:对于新建燃气管道,必须要求有设计和安装资格的单位进行设计和安装;燃气管道技术档案要求的设计资料、安装竣工图,管材管件质证书,管道施工记录,阀门试验记录、系统试验记录等资料的搜集,整理建档;竣工验收和役前检验重点是设计安装资料审查,外观质量检查,内在质量和可疑部位的抽查,发现问题及时解决。

二、燃气泄漏后的补救措施。

首先,应迅速报告就近消防部门,消防部门接警后应及时通知医院和供气等部门配合,立即奔赴现场弄清情况,制

订出扑救计划。

第五篇:管道天然气户内泄漏事故调研材料

管道天然气虽然是一种洁净卫生、使用方便的绿色能源。但它却也是一种极其危险的气体。尤其是在户内管道方面,如果管理不善或使用不当,一旦泄漏,将会给人们带来灾难,造成财产损失,人员伤亡。

事故原因分析

一、用户使用不当或误操作造成泄漏事故。这主要表现在以下几个方面:

1、不懂得或不熟悉燃具的使用方法,甚至不了解燃气

阀的旋转方向。例如:在点燃灶具时,如果是脉冲点火的灶具没有安装电池便开起燃气阀,就会导致燃烧器未点着火。但使用人很可能会误以为没有气而离去,结果造成大量的燃气泄漏。

2、使用燃具时不够专心,点着火后就去做别的工作,而水壶、粥锅、奶锅等器具内的水、粥、乳之类的物品烧开后溢出器具外,把火焰浇灭,而使大量的燃气放散到房间内。所以要尽量推荐用户购买使用带有自动熄火保护装置的灶具。

3、燃气灶质量不合格或用户只注重使用燃具,不注意保养和维修,造成燃气阀缺油、无油或锁紧螺母松动,引起漏气。例如2007年 7月20日18时左右,在我省某市发生了一起燃气泄漏事故,事主家中燃气开关没有关闭,由于燃气具上的铁圈脱落,烫漏了燃气管导致泄漏,一位60多岁的老人不幸身亡。该居民家虽安装了燃气报警器,但没有插电源。

4、用户已发现漏气事故,由于处理不及时或处理方法不当,而引起爆炸或火灾。

二、工程施工质量造成的泄漏事故。

在天然气管道的安装施工过程中,如果对工程质量不严格把关,就很可能会产生安全事故。仅就户内管道安装来说,目前我国户内天然气管道按管材分主要焊接钢管和镀锌钢管。不同材质的管道在安装施工的过程中连接的方式也不相同。其中焊接钢管主要是采用焊接方式,镀锌钢管主要采用螺纹连接。根据对天然气火灾的统计,得知有很大一部分泄漏事故与管道的安装质量有关。例如:2007年5月份在我省苏北某县城正在使用的燃气主管道发生泄漏,螺纹连接部分松动是造成燃气泄漏的主要原因。该管道在施工中,执行工艺不严格,未紧到位也未做气密性试验便匆匆通气,结果造成天然气泄漏,发生火灾。

三、安全管理方面的缺陷所造成的事故

1.燃气管道原始资料不全,技术状况不明。在现实情况下,由于种种原因,例如,燃气管理部门出现人员调动情况,使得燃气管道原始资料遗失,致使新上任的人员无法了解管线的具体情况,未能进行定期的安全检查。

2.对燃气管道管理认识不足。燃气管理部门对制度落实不完善,落实不到位,缺乏成套的巡线、检测、查漏制度和机制。

处理对策

一、加强管理确保安全使用的具体措施

(一)加强工程质量监督与管理。在施工中,如发现有不按原设计图纸施工的现象,要立即坚决制止,并处罚有关责任人。工程验收时,要邀请建设主管部门和监检单位参与工程验收,对不符合要求的工段,要坚决返工,并严肃处理责任人。只有这样,才能把燃气管道的先天性隐患消灭在萌芽之中。

(二)专业设计、严密规划城镇燃气工程是一项全社会的基础工程,客观上要求设计、开发商、规划、城建、市政、技术监督、消防等部门密切配合,协调工作。设计单位在设计小区管道天然气配套时要充分听取开发商、规划等相关部门的意见,必要时邀请各部门专家“会诊”,以便制定合乎客观实际的,科学的方案,使城镇天然气管道的建设尽可能在确保安全第一的情况下正常发展。

(三)严格选材,严把工程质量关。施工前,建设单位、监理单位、施工单位、监检等单位要联合对所选用的管材设备进行检查和检测,特别是对将要作户内管道的材料,更要严格筛选。在目前市场经济条件下,要教育材料质检及施工人员提高认识,增加责任感、使命感,并制定相应的责任制,填写责任状、检测签名等形式,切实把好选材和施工质量关。

(四)建立健全各项制度,加强后期管理。

1. 加强有关法规、技术标准的学习,提高认识,克服重使用、轻管理的思想,增强安全意识。

2. 组织落实:建立严格可行的管理体系和工作程序,落实岗位责任制。

3. 制度落实:制定、完善有关燃气管道的设计、安装、使用、检验、修理、改造等各项管理制度。

4. 具体工作中抓好制度的实施:对于新建燃气管道,必须要求有设计和安装资格的单位进行设计和安装;燃气管道技术档案要求的设计资料、安装竣工图,管材管件质证书,管道施工记录,阀门试验记录、系统试验记录等资料的搜集,整理建档;竣工验收和役前检验重点是设计安装资料审查,外观质量检查,内在质量和可疑部位的抽查,发现问题及时解决。

二、燃气泄漏后的补救措施。

首先,应迅速报告就近消防部门,消防部门接警后应及时通知医院和供气等部门配合,立即奔赴现场弄清情况,制订出扑救计划。

其次,要在事故现场和周围划出危险区域并布置岗哨,防止非抢救人员进入。

再次,在事故处理中所有人员必须服从统一的领导和指挥,迅速将残余气体处理干净,同时还要严防各种点火源,以防止发生爆炸事故

下载油气管道泄漏检测应对事故技术一览word格式文档
下载油气管道泄漏检测应对事故技术一览.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    县油气输送管道事故应急预案

    扶风县油气输送管道事故应急预案 目 录 1.总则 1.1编制目的 1.2编制依据 1.3适用范围 1.4工作原则 1.5事故分级 2.组织机构及职责任务 2.1油气输送管道事故应急指挥部 2.2......

    输油管线泄漏监测技术在胜利油田油气管道输送中应用(共5篇)

    输油管线泄漏监测技术在胜利油田油气管道输送中应用 发布时间:2005.11.07 阅览次数:1657 作者:曹志阳 单位:摘要:文章对国内外输油管道泄漏检测方法进行了分析,对油田输油管道防......

    油气管道腐蚀检测技术与防腐措施初探(合集5篇)

    油气管道腐蚀检测技术与防腐措施初探 摘 要:天然气与石油资源是一种不可再生能源,在对其进行利用时,通常采取管道运输的方式。管道运输具有明显的优势:成本低、效率高,目前,已经成......

    中外油气管道技术差距对1

    中外油气管道技术差距对比 本文由【能源杂志】推荐 文/续理等中石油管道局专家委员会秘书长 中国的长输管道建设是从1970 年东北“八三”会战开始的,目前已有40多年的历史......

    油气管道事故六条禁令-安监总局

    严防油气输送管道事故六条规定 (初稿) 一、必须严格城乡建设规划审查和管道建设规划审查,严控管道周边建(构)筑与管道安全间距,严防管道与地下市政管网、涵洞交叉穿越油气窜漏风......

    从美国油气管道事故看我国管道运输安全

    从美国油气管道事故看我国管道运输安全 聚煤网7月8日讯:管道是油气资源配送的主要方式,在国民经济中占有重要地位。近年来,随着西气东输0等一批重要的油气长输管道陆续建成与......

    管道泄漏检测技术在合水油田中的应用(xiexiebang推荐)

    管道泄漏检测技术在合水油田中的应用 摘 要: 本文对管道泄漏检测方法进行了综述,介绍了“负压波法”和“输量平衡法”互补型管道泄漏监测系统及受限条件。关键词:管道泄漏 负压......

    CCTV管道内窥检测技术

    城市排水管网是城市的重要基础设施之一。在城市生活中,排水管网是不可缺少的,被称作城市的血管。排水管网的结构稳固和功能保障是城市排水安全的重要保证。管网设施中,大龄管段......