《指数函数的图象与性质》教学案例(共5则范文)

时间:2019-05-14 08:37:11下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《指数函数的图象与性质》教学案例(共)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《指数函数的图象与性质》教学案例(共)》。

第一篇:《指数函数的图象与性质》教学案例(共)

《指数函数的图象与性质》教学案例

一、问题的提出

新课程理论指出:学生学习知识不单是从教师授课的课程中获取,还需要学生结合教师的指导以及同学的合作,将自身的学习经验运用于一定的情境中,主动构建以获取课堂知识。理论主要阐述学生是学习的主体,课堂知识的获取应以学生主动学习为重心,而教师的作用只是辅导或促进学生获取知识。几年来,笔者通过对新课程理论的学习和实践,发现在中学数学教学中若能贯彻这一原则,数学课堂将是一种高效的活动。

二、教材中的地位

众所周知,初中教纲中已经涉及初步探讨正比例函数、反比例函数、一次函数以及二次函数的图象与性质。高中数学《指数函数的图象与性质》这节内容是在指数范围扩充到实数的基础上引入指数函数的,而指数函数是高中研究的第一种具体函数。由此可知,指数函数的图象与性质是课程知识学习的重点,而正确理解和掌握底数a对函数变化的影响是学习的难点。本节课主要是要求学生利用描点法画出函数的图象,并描述出函数的图象特征,从而指出函数的性质。通过这样的授课活动,从而使学生强化从形到数的熟悉,体验研究函数的过程与思路,实现意识的深化。

三、教学背景设计

新课改给予了我们全新的教学理念,在新教材的教学中,笔者慢慢体会到新教材渗透的、螺旋式上升的基本理念,知识点的形成过程经历从具体的实例引入,形成概念,再次运用于实际问题或具体数学问题的过程,它的应用性、实用性更明显的体现出来。学数学重在培养学生的思维品质,经过多年的数学学习,学生还是害怕学数学,尤其高中的数学,对于学生来说显得很抽象。所以,如果再让学生感到数学离我们的生活太远,那么将很难激发他们的学习爱好。在教学中要尽力抓住知识的本质,以实际问题引入新知识。另外,就本章来说,指数函数是学习函数概念及基本性质之后研究的第一个重要的函数,让学生学会研究一个新的具体函数的方法比学会本身的知识更重要。在这个过程中,所有的知识都是生疏的,在大脑中没有形成基本的框架结构,需要老师的引导,使他们逐渐建立。数学中任何知识的形成都体现出它的思想与方法,因而授课中注重让学生领悟其中的思想,运用其中的方法去学习新的知识是非常重要的。

四、教学目标确立

1.知识目标:准确理解指数函数定义,初步掌握指数函数图象与性质,并能简单应用。

2.过程与方法:由实例引入指数函数的概念,利用描点作图的方法做出指数函数的图象,(有条件的话借助计算机演示、验证指数函数图象)由图象研究指数函数的性质,利用性质解决实际问题。

3.能力目标:一是探讨指数函数的图像与性质,培养学生观察、分析和归纳能力,并使学生进一步了解数形结合的数学思想方法;二是分析指数函数变化规律,使学生能掌握函数变化的基本分析方法。

【教学过程】

进一步理解函数的定义:

指数函数的定义域:在我们学过的指数运算中,指数可以是有理数,当指数是无理数时,也是一个确定的实数,对于无理数,学过的有理指数幂的性质和运算法则都适用,所以指数函数的定义域为R。

研究函数的途径:

由函数的图象的性质,从形与数两方面研究。函数的应用是函数学习的重要课堂目标,通过探讨分析函数图象与性质,从而使用函数的图象与性质解决实际问题以及数学问题。根据以往的经验,你会从那几个角度考虑?(图象的分布范围,图象的变化趋势,……)函数图象分布与函数的定义域和值域有关,函数的变化规律表现出函数的单调性。引导学生从定义域,值域,单调性,奇偶性,与坐标轴的交点情况着手开始。

首先做出指数函数的图象,以具体函数入手,让学生以小组形式取不同底数的指数函数画它们的图象,将学生画的函数图象展示,(画函数图象的步骤是:列表、描点、连线)。最后,老师在黑板(电脑)上演示列表,描点,连线的过程,并且画出取不同的值时函数的图象。要求学生描述出指数函数图象的特征,并试着描述出性质。

数学演变过程表明,任何重要的数学概念从提出到发展都有着丰富的经历,新课程教学理论中已经较好地阐述出这点。在新课程理论指导下,学生要了解数学知识的学习是一种数学化的过程,也就是说,学生通过仔细观察和思考常识材料并经过分析、比较、综合、抽象、概括等思维活动,对常识材料进行归纳总结。文章案例正是从数学实验过程研究以及数学知识研究的角度进行设计,学生的思维过程可能没有重演人类对数学知识探索的全过程,然而学生通过数学实验的观察和思考,并经历分析、比较、综合、抽象、概括等思维活动,能真切地感受将数学知识数学化的探索过程,从而激发学生学习数学知识的兴趣,并能了解数学知识的一些研究方法。

学生学习的数学知识虽是前人已经提出并发展好的,然而课堂要求掌握的数学知识对于学生来说是全新的,需要学生经历自身的思维活动再现数学知识形成的过程。教师应该把教学设计成学生动手操作、观察猜想、揭示规律等一系列过程,学生的探索、分析与思考,侧重于过程的探究及在此过程中所形成的一般数学能力。

教师活动的展开应以学生活动为主体,教师地位应从主导者转为引导者,通过教师的引导,学生能够积极学习数学知识,能够独立探索数学知识的研究过程。使教学活动始终处于学生的“最近发展区”,使每一个学生通过自己的努力,在自己原有的基础上都有所获,都有提高。

总之,通过对高中数学的案例研究,进而不断研究新教材、新理念,不断调整教学策略优化课堂教学,培养学生探究学习与创新学习能力将是我们在今后的数学教学中持之以恒的探究课题。

(编辑:杨迪)

第二篇:指数函数的图象及其性质评课稿

指数函数的图象及其性质评课稿

听了高翔老师的课,现在作个点评:指数函数是高中阶段学习的第一个新函数,可以说在高中函数学习中起着举足轻重的作用。

本节课标规定为三个课时,本节课是第一课时指数函数及其性质概念课,高老师在教学设计中,让人印象深刻的是以学生为主体,注重学法指导,重视新旧知识的契合,关注知识的类比,学习方法的迁移。高老师通过纸的折叠与珠峰测量问题有机地结合在一起,抓住了学生的好奇心,提高了学生学习本节知识的兴趣。在观察纸的折叠后,巧妙而不失时机地引导学生从具体问题中抽象出数学模型,发现指数在变化,这与以前所学函数(一次函数、二次函数、反比例函数)都不一样,把变化的量x用 表示,不变的量用a表示;通过让学生给函数命名,举几个指数函数例子这个小环节,增强学生对指数函数本质的理解,激发学习兴趣,概念的得到可谓“润物细无声”。接着高老师在设计中还注重对学生探索能力的培养,让学生通过切身感受,给出指数函数的定义及底数 的取值范围。

在研究指数函数的性质时,高老师能够紧扣第一章的函数知识,让学生在研究指数函数时有明确的目标:函数三个要素(对应法则、定义域、值域、)和函数的基本性质(单调性、奇偶性)。通过提问的方法,让学生明白研究函数可以从图象和解析式这两个不同的角度进行出发,将学生的注意力引向本节的第二个知识点——图象及其性质。设计中通过学生的自主探究、合作学习,侧重对解析式、作图象探索。老师借助几何画板的直观图形,以形助数,以数定形,数形结合的数学方法,收到了较好的研究效果。

不足之处:由于在讲解指数函数概念时,给出a的范围时花费时间过长,导致整堂课前松后紧;再者,高老师在分析函数特征时没有给出较好的总结,所以在学生判断指数函数时比较模糊。

第三篇:《指数函数概念与图象》教学设计

《指数函数概念与图象》教学设计

郑美华

〈设计思想〉新课程改革的根本目的是更加全面,更加深刻地实施素质教育,强调学生形成积极主动的学习态度,所以我在教学设计过程中倡导学生主动参与,乐于探究,培养学生学会用科学的方法获得知识,逐步形成发现问题与分析问题的能力。下面从几个方面谈我的教学设计。

﹙一﹚教材分析

1、地位和作用

本节课是在《集合与函数概念》一章中继函数性质后的第一个具体函数,通过本节课学习过程可以使学生体会研究具体函数的过程和方法,为进一步研究其它函数奠定基础。而图象变换也是本章的难点,分散难点也是本节课的设计意图。

2、教学目标

①使学生理解指数函数的概念和意义,能画出指数函数的图像 ②探索指数函数衍生函数图象

③培养学生独立分析和解决问题的能力

3、教学重点

指数函数概念和图象

4、教学难点

探索指数函数有关的图象变换 ﹙二﹚分析学生情况与教材处理

我校是一所省级师范性高中,学生普遍基础扎实,思维活跃开阔,求知欲强。但是部分学生过分依赖老师,独立分析问题解决问题能力较差,因此通过教师的引领提高这方面能力就显得尤为重要。

﹙三﹚教学方法

①以设疑,探究,解疑为主体 ②多次应用启发式教学

③设置知识台阶,将问题一分为二,化难为易 ﹙四﹚教学程序

1、指数函数概念

形如yaxa0,a1的函数叫指数函数

xx1〈思考〉①y2 ②y3 ③y5.4 是否是指数函数?

x﹙学生讨论,得出正确答案﹚

2、指数函数图象

①四组同学分别画y2,y3,y4,y5图象

②请同学讨论这四个函数的共同特点:定义域为R;值域为0,;过0,1;在R上单调递增。

◆电脑演示时指数函数图象a1

xxxx11◆四组同学分别画y,y图象

23◆请同学讨论这两个函数共同特点:定义域为R;值域为0,;过0,1;在R上单调递减。

◆电脑演示0a1时指数函数图象 ◆请同学总结两类图象

﹙三﹚研究指数函数图象与底数关系

xx11◆请同学在同一坐标系中画函数y2x,y3x,y,y的图象

23◆讨论图象与底数关系:a1时,a越大图象在Y轴右侧越接近Y轴,Y轴左侧部分越接近X轴。0a1时,a越小图象在Y轴左侧越接近Y轴,在Y轴右侧部分越接近X轴。

﹙四﹚巩固练习

1、① y2x1 ② y3x1 ③ y2x ④ y2|x|

2、画函数y|3x1|简图,并利用图象回答: ① 何时方程|3x1|k无解? ② 何时方程|3x1|k有一解?

﹙五﹚请同学总结本堂课内容

xx

第四篇:第12课时指数函数图象和性质1[定稿]

盐城市2009届高三艺术生数学一轮复习教学案

§12指数函数图象和性质(2)【典型例题讲练】

例1 要使函数y12x4xa在x,1上y0恒成立.求a的取值范围.练习

已知2x

例2 已知函数f(x)3x,且log318a2,g(x)3ax4x的定义域为[1,1].2x≤()x2,求函数y2x2x的值域.14(1)求g(x)的解析式并判断其单调性;(2)若方程g(x)m有解,求m的取值范围.练习

若关于x的方程25 x145x1m0有实根,求m的取值范围.1 盐城市2009届高三艺术生数学一轮复习教学案

【课堂小结】

联系指数函数的单调性和奇偶性等性质进行综合运用.【课堂检测】

1.求下列函数的定义域和值域:(1)y21x4

(2)y()23x

(3)y4x2x11

【课后作业】

1y()1求函数2

x23x4的单调区间.2求函数f(x)()122x14()x5的单调区间和值域.2 2

第五篇:《一次函数的图象及其性质》教学案例

《一次函数的图象及其性质》教学案例

林函应

教学内容:

本课为人教版义务教育课程标准实验教科书数学八年级上册“一次函数的图象及其性质”

教学目标: 会画一次函数的图象

结合图象记住一次函数的性质。能应用性质解决简单的问题 重点:性质的理解与应用 难点:同上 [教学过程] 师:一次函数的一般表达式是y=kx+b(k、b为常数,k≠0,请同学们在黑板上写出一些常数较简单的一次函数表达式,行吗?(生表现踊跃,写出了十多个)

师:黑板上这些一次函数大致有几个类型?

生:(讨论后)四类,即k>0,b>0;k>0,b<0;k<0,b>0;k<0,b<0。教师按不同类型在学生板书的函数中各选两个,并把复杂的常数更换成简单的常数,找到如下函数:y=2x+2,y=-2x+3,y=-x+1,y=x+2,y=-2x-2,y=x-2,y=-x-3,y=2x-1.(教师在这里是让学生自己准备学习素材。)

教师启发学生找到画直线的“两点式”简易方法后,把画上述八个函数图象的任务分配给八个小组,一组一个,八人一组在已画好坐标系的小黑板上动手操作。学生在自己提供的素材上进行再“加工”,兴趣很大,合作交流充分,课堂气氛活跃。教师到每组巡视、指导,在确认画图全部正确的情况下,提出了要求,开始了探究之旅。

师:请同学们小组之间比较一下,你们画的图象位置一样吗? 生;不一样。

师:有什么不一样?(开始聚焦矛盾)生A:走向不一样。生B:经过的象限不一样。

生C:我们的图象在原点的上方,他们的图象在原点的下方。

师:看来是有些不一样,那么它们位置的不一样是由什么要素决定的?(教师指明了探究方向,但未指明具体的探究之路,这是明智的)生:是由k、b的取值确定的。

师:好了,根据同学们的回答,能得到图象或函数的那些结论?(顺水推舟,放手让学生一搏)

热烈讨论后,生A回答并板书,当k>0时,图象从“左下”到“右上”;当k<0时,图象从“左上”到“右下”。

生B板书:当b>0时,图象在原点的上方,当b<0时,图象在原点的下方。生C板书:当k>0,b>0时,图象过一、二、三象限。

另一生D跑到黑板前补充:当k>0,b<0时,图象过一、三、四象限;当k<0,b>0时,图象过一、二、四象限,当k<0,b<0时,图象过二、三、四象限。

(这个过程约用了十多分时间,学生体会非常充分,从学生的神情看,绝大多数学生已接受了这几个学生的板书,但教师未对结论进行优化。怎么没有一个学生说出一次函数的性质呢?短暂停顿后,教师确定了思路)

师:刚才你们是研究图象的性质,你们能否由图象性质得出相应的函数的性质?(学生茫然)

师:请看同学们的板书,能揣摩图象“走向”的意思吗?

生:(七嘴八舌)当k>0时,图象向上爬;当k<0时,图象向下走。(未出现教师所预期的结论)

师:好,你们从图象的直观形象来理解的图象性质,很贴切,你们能从自变量与函数值之间的变化角度来说明“向上爬”和“向下走”吗?

生:当k>0时,x与y同向变化;当k<0时,x与y异向变化。师:也就是说,k>0,x增大,y„„ 生:增大。

师: 当k<0时,x„„y„„

生:x增大,y减小;x减小,y增大。

(在这里,教师努力避免了“告诉”的知识传授方式。间接引导需要智慧,是一种艺术)

师:好了,我们就用x与y之间的变化规律来表述一次函数的性质,好吗?请同学们在书上补充一下图象的性质,并熟悉一下一次函数的性质。(接下来学生练习几道题)

师;有人能得出正比例函数性质吗?

生:它是y=kx+b中b=0时的性质,其实y=kx与y=kx+b的性质是一致的。(特殊与一般的关系,学生理解起来非常容易)

课堂小结:学生先自结,然后教师补充 [案例反思] 这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到一次函数的性质。花费了一番周折,说明去掉这个中介,直接让学生从单调性来接受一次函数性质是困难的。

真正的形成往往来源于真实的自主探究。只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。

首先,要设计适合学生探究的素材。教材对一次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。但是能让学生理解和接受的知识才是最好的。如果牵强的引出来,不一定是好事。

其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。探究教学是追求教学过程的探究和探究过程的自然和本真。只有这样探究才是有价值的,真知才会有生长性。要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。追求自然,就要适当放开学生的手、口、脑,例如本文中的“走向”问题,“向上爬”、“向下走”等,如果是讲授注入式,我们就听不到学生真实的声音了。

最后,教师在学生探究真知之旅上应是一个促进者、协作者、组织者。要做善于点燃学生探究欲望和智慧火把的人,要善于让学生说教师要说的话,做教师想做的事,这就是一个成功的促进者。数学教学的过程是师生共同活动、共同成长与发展的过程。真正的知识不全是由教材和教师讲授的途径获取的,其实学生也是课程资源的开发者,如本课例中的“走向”问题,“同向变化”等,这为函数性质的得出做了很好的铺垫。要彻底抛弃“唯书论”“唯师论”,与学生一起去探究协作,寻觅适合学生自己的真知才是最有效的教学。要开展成功的探究,教师要科学设置问题情景或问题素材,使探究的问题具有层次性和探究性,适时、适势、适度地用教学机智调控课堂。例如本课中,学生老是得不出一次函数性质的内容,其中引导的过程就是充满机智的过程。在教学设计中,要预设多种意外和可能,这样探究真知的过程就会艰辛并顺利展开。这才是一个成功的组织者。

下载《指数函数的图象与性质》教学案例(共5则范文)word格式文档
下载《指数函数的图象与性质》教学案例(共5则范文).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《一次函数的图象及其性质》教学案例(精选5篇)

    一、背景分析 本节课为人教版义务教育课程标准教科书七年级下册《一次性函数的图像及性质》,教材背景是学生刚学完的一次性函数表达式。本节课是一次函数的关键点,同时也是重......

    一次函数图象与性质的探究教学

    一次函数图象与性质的探究教学 学习函数知识,可以帮助学生解决生活中的很多问题,提高生活质量.一次函数是八年级数学的重难点内容之一,学生以往学习的知识大多是固定不变的值,而......

    对数函数的图象和性质教学设计

    对数函数的图象和性质教学设计 北京十八中 王丽敏 教学目标: ①认知性学习目标:理解对数函数概念,掌握对数函数的图象和性质。 ②技能性学习目标:通过对数函数的学习,培养学生用......

    一次函数图象和性质的教学反思范文

    《一次函数图象和性质》的教学反思 内容提要:华东师大版八年级下册第十八章中“一次函数的图象和性质”是全章书教学的重点和难点。在对该内容的反复施教和反思中,本人深刻感......

    一次函数的图象和性质的教学反思

    一次函数的图象和性质的教学反思 本节课能基本完成教学任务。表现在对教学目标(1.会选取两个适当的点画出正比例函数与一次函数的图象。 2.能结合图象理解正比例函数和一次函......

    一次函数的图象和性质教学反思

    一、结合实际,引入概念正确理解数学概念是掌握数学基础知识的前提,是学好定理、公式、法则和数学思想以及提高解题能力的基础,在数学教学过程中,数学概念的教学就尤为重要,对这项......

    反比例函数的图象与性质教学设计

    河南省 许斌 5.2反比例函数的图象与性质(1) 焦作市道清中学 许斌 ★教学分析 一、教学目标 1.经历探索反比例函数的图象的过程,掌握函数作图的方法、步骤,会作反比例函数的图......

    《一次函数的图象与性质》的教学设计与反思[★]

    一次函数的图象与性质的教学设计与反思 教学目标: 知识目标:⒈知道一次函数的图象是一条直线; ⒉会选取两个适当点画一次函数(含正比例函数)的图象; ⒊能结合图象理解一次函数(含正......