第一篇:数理统计与统计学区别
数理统计是数学系各专业的一门重要课程。随着研究随机现象规律性的科学—概率论的发展,应用概率论的结果更深入地分析研究统计资料,通过对某些现象的频率的观察来发现该现象的内在规律性,并作出一定精确程度的判断和预测;将这些研究的某些结果加以归纳整理,逐步形成一定的数学概型,这些组成了数理统计的内容。
第二篇:统计学-数理统计在统计学中的地位
统计学-数理统计在统计学中的地位.txt珍惜生活——上帝还让你活着,就肯定有他的安排。雷锋做了好事不留名,但是每一件事情都记到日记里面。
一、数理统计与统计学的主要特点
(一)数理统计的主要特点
数理统计就是通过对随机现象有限次的观测或试验所得数据进行归纳,找出这有限数据的内在数量规律性,并据此对整体相应现象的数量规律性做出推断或判断的一门学科。概括起来有如下几方面的特点:一是随机性,就是说数理统计的研究对象应当具有随机性,确定性现象不是数理统计所要研究的内容。二是有限性,就是说数理统计据以研究的随机现象数量表现的次数是有限的。三是数量性,即数理统计以研究随机现象的数量规律性为主,而对随机现象质的研究为次。四是采用的研究方法主要为归纳法。最后,数理统计通过对小样本的研究以达到对整体的推断都具有一定的概率可靠性。用样本推断总体误差的存在是客观的,但是数理统计不仅重在研究误差的大小,还指出误差发生的可能性的大校
从数理统计的学科特征来看,数理统计是应用数学中最重要、最活跃的学科之一。由此可见!数理统计从学科划分来说,应属于数学学科,但是其重在应用!而不是纯数学理论或方法的研究,故其采用的方法也就重在归纳法,而不是数学的演绎法。
综上所述,数理统计的主要特点可以用一句话概括为、数理统计是一门对随机现象进行有限次的观测或试验的结果进行数量研究,并依之对总体的数量规律性做出具有一定可靠性推断的应用数学学科。
(二)统计学的主要特点
统计学是一门收集、整理和分析统计数据的方法论科学,其目的在于探索数据的内在数量规律性,以达到对客观事物的科学认识。
统计学从其研究的范围来说有三大领域:数据的收集$数据的整理和数据的分析。首先,这三大领域随着统计学的不断发展,已很难分辨出哪个领域更重要些。也许有很多人认为数据的分析要相对重要些。在对1900 年和1910年美国两次农业普查资料进行分析时,列宁曾指出:“全部问题,任务的全部困难在于,如何综合这些资料,才能确切地从政治上经济上说明不同种类或类型的农户的整个情况。”这足见数据整理的重要性。近年来困扰我国统计研究的并不是数据的分析方法,而是缺少充分真实有效的统计数据,造成无法用数据去检验或证实相应的经济理论、经济模型和经济政策。数据收集的重要性可见一斑。其次,统计学是一门方法论科学。长期以来,人们一直认为在这众多的方法中,统计研究的基本方法是大量观察法、统计指标法、统计分组法和模型推断法。特别是大量观察法更成为统计学最重要的基本特征方法之一,也可以说这是统计学与数理统计的根本区别之一,否则,统计学也就真的成了现代西方数理统计学了。随着统计学由早期的纯粹描述统计不断拓展为描述统计与推断统计并重,直至有的学者认为现代统计学应该以推断统计为主,描述统计为辅,暂且不论这种观点是否有不妥之处,但可足见推断统计学已在现代社会生活中起到举足轻重的作用。事实上,推断统计已成为现代统计学的基本特征之一。再次,统计学从其成为一门科学的那一天起,就把对现象数量方面的研究作为自己的基本特征,但是,同时强调要以对现象的定性认识为基矗
(三)数理统计与统计学的比较
通过上述对数理统计与统计学特点的分析,可以把数理统计与统计学的主要异同归纳为如下几方面:
1.从其研究目的来看,两者都重在揭示总体现象的数量规律性,而统计学更声称要以对总体现象的定性认识为基矗
2.从其研究的途径来看,数理统计希望通过对总体部分个体的数量特征的研究,以达到对总体相应数量特征的认识;而统计学既希望通过对构成总体的全部个体的数量特征的研究(如果可能$或值得的话),以达到对总体相应数量特征的认识,同时也希望能通过对构成总体的部分个体的数量特征的研究,以达到对总体相应数量特征的认识。
3.从其研究的手段来看,数理统计主要依赖于小样本特征值统计分布的数学原理来推断总体的相应特征值;而统计学或者说推断统计学主要依赖于大样本特征值统计分布的数学原理来推断总体的相应特征值。
4.从其研究的主要范围来看,数理统计侧重于对样本数据的定量分析;而统计学不仅重视样本数据的定量分析,而且重视对所获得的总体全部数据的定量分析,同时,重视数据收集方法、数据整理方法的研究。
5.从其利用样本数据对总体进行推断的数理机理而言,概率论是其共同的基矗特别是作为统计学基本方法之一的大量观察法,其数理基础正是概率论中的大数定律;统计学中用大样本可以方便地推断出总体特征的数理基础正是概率论中的中心极限定理,而无论是大数定律还是中心极限定理也都是数理统计的根基。
6.数理统计尽管强调应用性,但是它本身还是一门数学学科,重在应用方法的数理基础的研究;统计学更侧重于对解决社会、经济等现实问题数量分析方法的研究与应用,而方法本身的数理基础的科学性研究,则由相应的理论统计学去研究,事实上,推断统计方法的数理基础的科学性研究,正是数理统计的研究范畴之一。
从上述数理统计与统计学的特点及其比较,可以清楚地看到,随着现代统计学的发展及其在社会政治经济生活中发挥作用越来越大的趋势,数理统计研究问题的理念及其方法已对统计学的发展产生重要的革命性影响,但是,数理统计与统计学毕竟是两门差异较大的学科,不可能简单地加以“统一”。
二、数理统计在统计学中的地位
数理统计与统计学是两门不同的学科,不可相互取代,也不可能像多年来有些学者提出的那样,要建立所谓的大统计,或者说融合统计学,其实质就是要把数理统计与统计学融合起来。但是其融合的直接后果就是现在某些高校所使用的统计学教材中,既有统计学的内容,也有数理统计的成分,不伦不类,细读之,其实就是数理统计的内容与统计学内容的简单拼接。这不能不说是近年来,中国统计学、统计学教材、统计教学的一大悲哀:迷失了自我,盲目地要“与西方接轨”。笔者认为要想理顺数理统计与统计学的关系,就必须对数理统计在统计学中的地位加以深入的研究。
(一)数理统计在统计思想发展中的地位
统计作为一项社会实践活动,已有几千年的历史。“统而计之”,就是人们对统计的朴素认识。随着社会生产力的不断进步,当代的统计已不圄于“统而计之”的范畴。
1.统计作为人们认识社会的最有力的武器之一,已广泛应用于社会、政治、经济、科技等众多领域,而每一个领域有其复杂多样性,若采用简单地“统”,即全面调查几乎是不可能的,但是全面地了解每一个领域的基本情况及不同领域之间的数量联系的规律性,又为现代社会管理所必需。数理统计研究问题的思路和方法,自然而然地为统计学所利用,即数理统计为现代统计学的发展点燃了解决复杂现实问题的科学思想火花——为用总体的部分去说明总体奠定了数理基矗
2.20 世纪30 年代以来,随着政府要有效地干预国民经济理念的形成,政府以社会经济生活直接参与者的身份出现,基于对全局数据的掌握,大大地推动了统计思想的发展,不仅投入了大量的资金对统计这支“武器”进行开发,更重要的是从立法的角度对统计行为进行规范。在当今许多国家的统计法规中,都明确地规定抽样调查在统计调查中的重要地位。比如,在我国1996 年5月经修改后颁布并实施的《中华人民共和国统计法》第二章第十条就明确规定:“统计调查应当以周期性普查为基础,以经常性抽样调查为主体,以必要的统计报表、重点调查、综合分析等为补充,收集、整理基本统计资料”。而抽样调查的基本原理就基于数理统计的推断原理。可见,数理统计的推断理念在统计实践中的地位已用法律的形式确定下来。
3.作为社会经济活动主体的企业单位,在世界经济全球化、区域经济一体化的发展背景下,不仅没有足够的资金、技术支持从事某一方面的全面调查,有时也没有必要通过全面调查以获得生产经营方面的全面数据资料,而抽样调查就足以提供相应可靠的数据作为企业生产经营决策的依据。这也说明数理统计有着微观的现实需要,为微观经济管理活动开辟了无限广阔的前景。在微观统计应用中有着坚实的思想根基。
4.统计的理念,已不仅仅在于用历史数据描述历史的发展特征,而当代更强调通过对历史数据的收集、整理和分析,去预测未来,而这种预测的基础同样基于数理统计的原理。即从历史的时序数据中找出数据的内在数量规律性,以把握未来的走向,即数理统计的分析原理在时间序列数据预测中的作用,同样功不可没。
(二)数理统计在统计方法中的地位
随着数理统计解决现实问题的理念在统计思想中地位的确立,数理统计在统计方法中的重要地位也相应地得以确立。
1.大数定律为数理统计应用于统计学搭起了连接的纽带。大量观察法是现代统计学的基本方法之一,而大数定律又是大量观察法的基矗统计学若没有大量观察法的支撑,则统计分析中的基本指标——平均数与相对数,则失去其应有的作用和意义,可见数理统计在统计方法中的基础地位不容置疑。
2.中心极限定理为数理统计在统计学中的应用铺平了道路。用样本推断总体的关键在于掌握样本特征值的抽样分布,而中心极限定理表明+只要样本容量足够地大,得自未知总体的样本特征值就近似服从正态分布。从而,只要采用大量观察法获得足够多的随机样本数据,几乎就可以把数理统计的全部处理问题的方法应用于统计学,这从另一个方面也间接地开辟了统计学的方法领域,其在现代推断统计学方法论中居于主导地位。
3.数理统计中样本抽样分布的理论,为现代统计学中的方差分析、正交设计等方法的应用同样提供了方法上的理论保证。特别是正交设计在现实工农业生产中的作用,及其对经济的贡献已引起国外学者的高度关注。据日本某些专家估计:“(日本)经济发展中至少有10%的功劳归于正交设计。”这足见数理统计的方法在统计方法中应用的现实意义。
(三)数理统计在统计内容中的地位
统计学是一门关于如何收集、整理和分析统计数据的一门方法论科学。不管数理统计对统计思想的发展有多大的影响,也不管数理统计在统计方法中居于何种地位,数理统计在统计学中的地位还是主要体现在统计分析中的地位。数理统计对数据的收集方法与整理方法的实际影响要比其对统计数据分析方法的影响小得多。也就是说,统计学作为一门方法论科学,其研究领域要比数理统计宽广得多。试图用数理统计取代统计学的观点显然是不正确的,同样试图用大统计学取代数理统计的观点也不正确,毕竟数理统计作为一门数学学科有其自身的不可替代的特点。因此,数理统计在统计内容中的地位,也只能主要体现在统计分析方面。1.统计数据收集方法的研究仍然是现代统计学的主要内容之一。正如前所述,在我国现阶段如何获得大量真实有效的统计数据,是我们所面临的迫切任务之一。不真实、不全面的统计数据,使国家的宏观管理"经济理论’经济模型和经济政策的统计检验,以及企业的生产经营预测、决策,都不能有效地进行。可见,“统计数据的质量是统计全部工作的生命”的观点的正确性。而数理统计在统计数据收集方面的影响仅体现在统计数据调查方式方法方面,即抽样调查如何组织实施的方式方法,在统计数据收集方法中得以突出和强调。
2.相同的原始统计数据,采用不同的整理方法所获得的整理资料可以完全不同,并由此对其采用相同的方法进行分析所得的结论,可能完全相反。这足以说明统计整理的重要性。但是数理统计在统计整理方面却难以发挥有效的作用,毕竟,数理统计研究的依据是小样本,而统计学研究的依据的是大样本。假如统计学不是以大样本或总体的全部个体为研究依据,统计学也许就真的沦为数理统计了。
3.数理统计对统计数据分析方法的影响是显著的。不仅体现在对大样本总体参数估计、非参数估计、相关与回归分析、总体分布型态的判断、一个总体参数与两个总体参数的假设检验、方差分析和正交设计等许多内容上,而且体现在描述统计学中最基本指标:平均数、相对数的计算原理等方面。也许真不可想象,若在现代统计方法的内容体系中缺少了数理统计的关于大样本的分析方法原理,将是怎样一种景象。
三、统计学传播理念的转变
对数理统计与统计学的特点作了比较研究,以及对数理统计在统计学中的地位作了分析之后,让我们再回到统计学知识传播的现实实践中来,可以更清楚地看到我们现在正在做什么、在哪些方面还需要改进、今后该怎样把工作做得更好。
(一)统计学知识传播理念的转变主要体现在如下三个方面:
1.统计是什么。这是对统计的最基本的认识,可以通过加强对统计知识的宣传达到。在现代统计工作中,尽管“统而计之”仍有非常重要的现实意义,但是在我们的统计学教学与其它途径的统计知识的传播中,绝不能仅限于此。不仅要让不同阶层的人,认识到统计对现实社会生活的巨大认识作用,而且要让他们了解统计在国家宏观管理、企业经营预测、决策,以及对经济理论#经济模型、经济政策检验中的重要性,从而使各个阶层的人民群众自觉地参与和配合各级统计机构所开展的统计调查活动,以保证统计数据的真实完整。这就要求我国必须加强统计知识普及教育及统计法规的宣传教育!开辟多途径多手段的统计知识传播途径。这是统计学传播的基础理念。
2.统计为什么,即让统计活动的直接参与者懂得为什么要这样做。显然,这是对统计学传播的较高层次要求。知道为什么要这样做!即要知道统计的原理,这并不需要所有的公民都知晓。事实上,只能是具有一定知识基础的人才可能真正理解,且其途径主要是通过高等学校的统计教学活动。由此就对高校的统计学教学理念提出了挑战:统计学课堂上应向学生教授什么。笔者从事高校统计学教学多年,认为高校统计学课堂上应向学生解释统计方法的原理。高校统计学教学课堂不应过分地强调对统计知识的宣传和如何具体地从事统计活动,而应强调重视统计方法机理教学的传播理念,但这在我国现实的高校统计学教学中并没有真正地形成。
3.怎么做统计,这是统计方法具体应用的问题。可以说当前我国高校统计学教学实质上就是教会学生如何做实际统计工作。如何收集、整理数据,如何用公式去计算某些指标等。显然,这样的工作中学生就可以胜任。而真正为什么要那样组织实施数据的调查、整理,为什么要那样计算。不仅老师介绍的不够!而且教材编写的深度也不够。
由此可见,统计知识的传播理念应大致界定在三个层面上:一是统计基本常识的传播。二是如何开展具体的统计活动。三是为什么那样开展统计活动可以达到预期的目的。不同层面的传播对象是有差别的。知道统计是什么、怎么做统计,相对于懂得为什么要那样做统计,其要求是相当低的。也许只要会记数、会写字的居委会大妈,就可以从事数据的收集工作,而会套用公式的一个中学生就可以计算服从X*2分布的统计量的样本数值。而知道为什么要这样做,没有相应的数理统计知识是万万不行的。另一方面,随着计算机的普及及统计数据处理软件的开发,利用计算机对数据进行分析已变得异常简单,甚至一个孩童都可以教会使用统计处理软件,在这种情况下。是否让学生懂得统计为什么就变得不重要了呢?正相反,在统计学的高校课堂上让学生懂得为什么就更重要了。
四、我国统计学教材改革的方向
从对统计学传播理念的不同层次的要求,及数理统计在统计学中的地位和学生的知识结构来看,改革现行高校统计学教材内容体系及教学理念势在必行。
1.去除现行统计学教材中与数理统计相重复的内容,加强关于大样本的数理统计内容,即增加大样本统计分布的数理基础的内容。
2.强调大数定律及中心极限定理内容的教学。尽管这两个定理是纯数理统计的问题,但由于其在数理统计的教学中,教师通常重视不够,因为小样本问题才是数理统计研究的主要问题,因此,可能一带而过,而它们恰恰是联系数理统计与统计学的重要纽带。因此,在统计学教材中必须增加并突出其内容。
3.增加统计方法机理的内容。不仅表现在统计推断方法的数理统计机理!而且也包括统计数据收集方法、整理方法的机理。
4.编写适用于特定专业需求的统计学教材,即在强化介绍各种统计方法机理的前提下,结合不同专业学生所学专业的实际,介绍、说明统计方法在相应学科中的具体应用,以便于所有专业的学生都能熟练地把统计的数量分析方法准确地应用于未来的实际工作之中。
第三篇:概率论与数理统计
概率论与数理统计,运筹学,计算数学,统计学,还有新增的应用数学,每个学校情况不太一样,每个导师研究的方向也不太一样。看你报的哪个学校了~~ 赞同
数学的方向还是比较多的,比如金融,计算机,理科的方向 赞同
参看08年该校硕士招生简章中的专业目录及参考书目,先做到心里有数 09年的在08年7、8月份才能出 每年新的招生简章都是在上一年的研究生招生录取工作结束之后才能公布的 所以不要急 最早也要等到7月份 现在不要急 先按照08的看 一般两三年之内不会有什么变化 即使有 也是在原有基础上 增加或改动一两本参考书的版本 不会有实质性的变动 而且 你如果现在就开始准备考研复习那就算比较早的了 一般从暑假开始复习就可以的 所以这个时期是基础段复习可把精力主要放在英语上 强化英语考研词汇是非常必要的 至于专业课 可以先按08的指定参考书初步复习等新的招生简章出来 再进行有针对性地复习不用担心万一改动了我会不会白白看了 以一个过来人的经验 知识储备的越多越好 名校的试题往往不局限于指定参考书的范围(楼主既然这么问了,这要好好慢慢的回答)
建议楼主考清华的经济学研究生,清华的工科类要强于北大(个人意见);2,清华现在要考考A版的数学对你的有点好处,但影响不大,复试对你有利。3,清华的专业课考的难都因人而异,初试复试考一样的专业课,包括金融学(含国际金融、证券投资、投资市场、保险精算等,本专业所招人数最多)、国际经贸(研究生阶段叫做世界经济)、西方经济学、财政学、政治经济学专业;报考时可以随意报考自己喜欢的专业,录取时先全院统一录取(按分数高低),再按分数与志愿选择;专业课考的不是很难;(建议楼主去看下金融学基础,复旦大学出版社简称白皮书,或许对你有帮助)4,清华经济就业形势就目前环境下就业非常棒,中国才处于开始阶段,每年毕业生到各大银行、金融机构、保险机构、证券公司、财政货币机关、国家机关及高校任职,待遇非常之高!
网站,你可以试试去这里看看。在页面中部的对话框输入学校或专业就可以任意查。在这里,你还可以查到任意学校的招生简章,复习指导,网上报名及其它重要信息。全国各校公布分数线的时间也在这里最早发布。你可以试试,相信不会让你失望。。
因你是转专业,再给你一点个人建议吧
一、慎重选择:不要轻易下决定
不断地学习不同领域的知识,是所有有求知欲的人们的美好愿望,然而,这同样会成为朝三暮四的借口。
其实,很多考研人本来就存有逃避现实社会的压力,而选择继续呆在学校的心理;而在跨专业考研的人中,更有许多人根本就没有好好学过原来的专业,甚至从没认真考虑过是否自己适合它,只为了逃避,才选个看起来容易的专业去考。
如果是这样,请先停下来想想自己到底想要什么再说。因为一颗对待生活从不认真的心,是不会因为换了个专业就能有起色的。
如果不是这样,那么,也请三思。就因为一直认真,这次更要谨慎。
首先,考研复习将是艰巨的历程。隔行如隔山——这句古谚将贯穿之后的整个求学过程。自己原来的专业,再不济也学了三四年,耳濡目染,基础知识一定比没学过的扎实,细节也许没钻研,但大的格局和概念、思维方式是存在于脑海中的,即使是每次考前一个月的突击,突击了四年,也不是没有用的。这就是本专业对于外专业的一大优势。反过来,即是跨专业者相对于本专业者的劣势。
复习的时候,要花更多的时间在专业课上,使得基础课很容易就被搁置了,而任何一科的掉队,都会影响整个复习过程的心态和考试结果。
其次,备考中可能出现意想不到的困难。
不熟悉专业试题的答题惯例,会莫名其妙丢掉不该丢的分。而且,笔试通过了,复试中存在的不确定性因素,使跨专业者总是难以拥有“尽在掌握”的自信,而它确实也是难以“尽在掌握”的。
最后,也是最重要的,考上之后三年的研究生生活。
不管是面对基本功扎实的同学们,还是面对有一定要求和标准的导师,还是面对也许让自己一时找不到坐标点的新求学生涯——如何给自己定位,如何重拾自信,如何建立对新专业的“新感情”,如何规划以后的职业和人生,这都是需要付出比别人更多心力去克服的问题。所以,是否要转变方向,换一个专业,需要尖锐严格地审视自身,而不是盲目跟风,可以考虑以下几点:
是否真正热爱将要为之付出心血的新专业?
长远来看,这个新领域是否有自己的天赋和性格发挥的空间?
是否可以肯定学习三年之后真能丰富完善自己的知识结构,而不是剃头担子两头塌?最后也是最基本最当前的问题:基础课是否有自身优势?没有优势怎么拨得出更多的时间给专业课的复习?
二、审时度势:了解自己,踏实去做
经过了自我的拷问,还坚定地要跨专业考研的朋友——相信你一定是个头脑清醒、梦想坚定的人。
在此,我们不得不再次强调跨专业考研的理由和标准:第一,热爱;第二,基于对自身才智和优势短处进行全面评估而做出的决定;第三,要自信,更要不怕苦不怕累。
可以举个例子。一个在学校并非不认真对待自己学业的考研人,在经过四年的学习之后,发现仍然不喜欢自己所学的数学专业,而爱好文史哲。如果基础课英语政治还不错,那么他就具备了考虑跨专业考研的最低要求。那么,接下来怎么确定专业呢?首先,看爱好。对新闻传播、考古、文学皆有兴趣,怎么办?一个一个排除。对于新闻,多搜集资料,看作为一个新闻工作者需要什么样的素质,比如,敏锐的新闻感、强烈的争取和参与意识、健康的身体。直面自己的优缺点,如果有敏锐的新闻感,却没有强烈的争取和参与意识,甚至都无法面对需要长时间的工作强度,那么放弃。对于考古,作同样评估;另外,如果这时你的父母亲反对你的考古梦想,请把他们的忧虑考虑进去,一意孤行并不可取,要考虑到家庭的实际情况;并且,父母也是了解你的人,他们对你的性格、天分其实很了解。那么如果你认为父母意见的可接受性大过你对于考古的热忱,考古这一项,也被划去。最后剩下文学,如果经过一系列评估,觉得可行,那么它之下还有很多专业细分,是中国文学还是世界、比较文学,是古代文学还是现当代文学?要根据自己平时看书的偏好、积累的多少、考试试题能否应付等等内在和外在的因素来决定。这些将和下一部分联系起来谈。
这只是一个例子,跨专业的方向转变五花八门,几页纸不可能描述详尽,我们只能通过这个例子,了解一下需要考虑和平衡的各方面因素。
当然,请牢记,内心的热爱和对自己学习能力的自信在选择中最为重要。有了这两点,相
信你的选择会是对你而言最好的选择。这将是一个美丽的决定,决定之后,一定有云开见日的感觉。方向确定了,就朝着那儿毫不回头地走吧。
三、报考准备:眼观六路,耳听八方
让我们直接进入主题。
第一,细分专业和学校,确定报考目标。一定要看自己喜欢哪个城市,既然想借助这次的考研改变现状开始一段新的求学历程,一直想去哪个(或哪些)城市念书就不要将就。圈出大致范围,再找到那里学校的招生简章、专业招生表——网上查找或动用一切关系。特别要注意的是,你有意向的专业是否拒绝跨专业考生。在进行认真细致的对比之下确定两到三个你想去的名校和你喜欢的专业。这一步可以和前面确定城市同时进行,每个人情况不同,自行制定每一步适合自己的计划是必要的,而且能从中得到极大的充实感,总之,它让我们感到:一切都在自己的控制之下。
然后,尽可能地多找一些这几个可选学校可选专业的历年试题,仔细研究,看看哪一类的试题自己更有把握。这一步至关重要,这一步不可省略也不可推后,它将直接影响到以后的考试发挥。经过这一步,学校和细分专业几乎都能定下来了。
这一阶段什么时候进行呢?越早越好。我们不提倡把战线拉得太长,真正有效的复习从4月到次年1月足矣;然而跨专业不同,需要“酝酿”。可以不用过早开始真正的复习,但至少要比别人早两个月到半年开始寻找学校、涉猎与新专业相关的期刊、书籍、寻找对于新专业的亲近感和对于新学校新未来的向往感——这是真正复习开始的前站,用这段时间弥补跨专业的不足,在真正的战役打响时,我们将更加坚定更有信心。
第二,专业课教材到位。前面把工作真正做到细致,4月份到5月份一定要定下最终要考的学校和专业。定下之后,就要相信自己的判断,不要犹疑,快去买专业课教材!按照学校列出的书目买全专业课教材,还要找出一两个能帮上忙师兄师姐、找同学、找亲戚,甚至找网友去打听没有列出的那些。
这里有两个问题:买书和找师兄师姐——自己能买到的书,尽量自己去买,有学校可以邮购,有书店可以搜寻,再不行,去图书馆系统或网上找出这本书的出版社,找到出版社电话,打电话、汇款去邮购。不要一开始就事事麻烦别人,自己能解决的自己找渠道解决。后面有更重要的事去麻烦他们。实在不行了,去找师兄师姐,最重要的是问题要明确。随便说:“我要考你们学校某专业,请帮助我”是没用的。要明确说出你的具体问题,要考哪些书,重点看哪些泛读看哪些,打听到哪里能买到自己却没办法,请他们帮忙——听到这么明确的问题,人人都会乐意帮忙。6月底之前,主要的专业课教材一定要到位。
第三,复习时要注意的问题。
首先,基础课不能偏废。前面说了,基础课要有一定把握,才可能跨专业考研,否则到关键时刻就会感到分身乏术。在主攻专业课时,基础课一天都不能停。可以用早晨、吃午饭前、吃晚饭前以及睡觉前的时间去复习英语:阅读、单词、听力,一个都不能少。如果每天坚持,就是这些边边角角的时间都足够英语的复习准备。政治也一样,最好报一个秋季班,几个月上下来,有老师领着复习,比自己摸索更有效率,大致的知识脉络也会清晰起来了。请相信自己,从初中就开始学的这门课,不会差到哪里去,但也要在心里培养对它的兴趣,一讨厌它、搁置一段日子,一切都晚了;反过来,每天花两个小时,只要坚持,就会既轻松又有成就感。
跨专业考生往往把一腔热情放在专业课上,有意无意地就偏废了基础课,等发觉时间紧迫的时候,回头一看基础课落下一大截,这会大大影响后面冲刺和考试的信心。
其次,专业课复习。11月份报名之前一定要把专业书踏踏实实至少细读一遍。这一遍不要欺骗自己,质量至上,一定要全部弄通弄懂。这样在后面的两个月才会更有底。
笔记一定要做。当11月报名时间来临时,你会发现越来越多的人们讨论起复习进度。那时候本专业考生和别的跨专业考生所做的准备和进度会让你大惊失色——有那么多人准备得那么好!本来就对不熟悉的专业容易产生的“心虚”这个时候会更加强烈,那么回过头总结一下自己的成果,只有实实在在密密麻麻的几本笔记会成为自己的强心剂,数数看,几本笔记,七八万字是少不了的。加上政治英语,你会为自己所做的上10万字的笔记而惊讶的。这是积聚信心、抬头挺胸的重要来源。
四、全力复习:坚持到底,毫不畏惧
首先,研究历年试题,自己划重点。历年试题非常非常重要,报名之前即11月初,一定要把学校相关专业的历年试题弄到手。这需要积极调动网络资源,自己能下载的下载,能买到的去买,最后一招:求助师兄师姐。这时提出的请求也一样要尽可能明确。有一个女生,考某大学某专业,通过同学的同学的姐姐,找到一位师姐,打电话给她:“我知道你们学校图书馆五楼的阅览室有历年试题的专柜,可以借出来复印。请帮忙复印某年到某年某专业的„„”该师姐大惊:“我都不知道有这样一个地方,你怎么知道的?”这个女生慢慢说来,怎么从网上找到该学校专栏讨论、怎么了解到的,师姐大开眼界,兴趣高涨,帮她把相关专业能找到的试题全都复印一通寄去。
接下来就是更仔细地研究试题。只需要一个晚上时间,把历年试题全都摆在桌面,总结规律和重点难点,老师出题的习惯等等。借此可以划出下一步复习的重点(甚至是考试的重点),不再一律通读,而是有头脑的、有目标的复习。不要怕系内老师改朝换代,再改也有一脉相承的科研风格,掌握了大体,以不变应万变。
划完重点,一股“运筹帷幄”的气势油然而生,趁着这股气势,投入到更深入的复习中去,一定事半功倍。
其次,为考试做准备,掌握专业答题习惯。在剩下的两个月当中,一定要找点时间去学校的自己要考的专业宿舍混混,目的是了解专业答题有什么惯例、有什么特殊要求和需要注意的地方。随便哪个学校都行,自己方便找的、正规的大学就可以;当然,方便的话,最佳选择就是所考学校研一同专业学生宿舍,这样就不仅了解试题情况,还可以挖掘更多这两个月应该注意的问题。
考试的时候,和复习中所强调的一样——一定要自信。要相信自己经过了周密的计划、万全的准备。拿到试卷的时候,要像热爱专业书籍一样热爱它们,冷静的头脑,热情的心灵,一定战无不胜。
最后,就是复试了。关于导师是否要找,各有各的说法,能找到最好,没找过的也不用惴惴不安。相信自己最重要。
其实接到复试通知书的时候,一般都没有更多时间去扩展知识面了,这些是最初就应该做的。这时候跨专业考生常常担心自己的基础不够,再次心虚。那么与其瞎抓一把,不如把以前看过的书拿出来再翻一遍,总有用得上的,做生不如做熟。对于某些领域的熟悉或精通,比泛泛而谈更能显出自己的特色。用真诚的微笑和哪怕是使劲鼓才能鼓起的信心和勇气,去直面导师。好歹经过这一年的学习,我们也算复合型人才了,怕什么!
说到这里,整个过程看起来完了——其实没有!拿到录取通知书的时候,是一个开始。
进入研究生阶段的学习,是一个更自主、更专业的学习过程,跨专业学生一踏入这片天地,肯定会受到冲击。不熟悉的领域,老师觉得应该是常识自己却闻所未闻的知识,难以找到的新生活定位„„这些都要有心理准备。建议在5月到8月这段天堂般的生活中也不要忘记看看与专业相关的书籍(并非专业课本),继续打基础,进入研究生生活根本没有时间给你去打基础。
总之,对于勇敢的考研人,继续用韧性和信心,在开学前调养好身心,并不放弃不断学习的好习惯,为进入一个新的求学生涯做好准备,都是必要的。相信这样贯穿始终的准备,一定会迎来新的局面,实现挑战人生充实自己的梦想。对生活认真,生活也会认真地回报你。要相信,要坚持。
第四篇:会计与数理统计
会计与数理统计
随着我国资本市场,特别是证券市场的建立,以及现代企业制度的推进,大量会计问题需要研究和分析论证。因此,盛行于西方会计界的实证会计在我国开始受到重视,并将逐步成为较成熟、较热门的学科,这为统计方法在会计领域的应用提供了广阔的前景。也正是因为如此,统计在会计领域得到了广泛的应用。
1、在财务会计中的运用。在现行财务会计核算中,静态三要素(资产、负债、所有者权益)和动态三要素(收入、费用、利润)实际上是统计所示的时点指标和时期指标;在财务会计存货计量核算时,通常采用的移动平均法,加权平均法,其原理是通过统计平均数阐述的;财务报表中关于偿债能力、营运能力、盈利能力所涵盖的各类比率,其基本原理是由统计相对数所提供的。特别是目前资本市场的发展,使统计方法广泛应用于有关证券市场问题的研究。证券市场作为我国重要的筹资渠道,与众多投资者和上市公司的利益休戚相连。上市公司公开披露的财务信息,是进行统计分析的主要数据来源。
2、在管理会计中的运用。管理会计作为企业内部的决策性会计,参与企业经营管理。统计方法在财务预测、控制分析和评价等方面的应用丰富了管理会计的实用性。预测成本和销售时采用回归分析法,评价企业财务状况时采用层次分析法,预测企业经营状况时采用具有吸收状态的马尔可夫链,财务建模时采用计算机随机模拟等等。相对财务会计而言,管理会计中所用的统计方法较多,但过程复杂,一般采用联立方程组的形式,因此要求对统计知识的了解程度较高,并运用较熟练。由此可见,统计方法是管理会计中必不可少的系统方法。
3.在审计中的运用。由于审计是对会计核算过程和会计报表进行监督和审核,因此,在审计中最常用的统计方法是抽样技术,既对不同行业,不同层次的会计状况采用适当的抽样方法,以保证审计结果的正确性。
为做好会计工作,我们必须做好统计与会计的协调与协作。要搞好协调,就要做到通用化,即彼此能把对方的资料按自己的需要整理成所需的指标数值,要想通用化,必须搞好标准化,主要包括指标口径、核算方法、分类方法的标准化。
1.原始记录与原始凭证的协调统一。原始记录和原始凭证是企业经济活动过程中的第一手资料,它们是会计核算与统计核算的依据。所以在设置原始凭证的时候,应该互相协商统一做到一证多用,满足各种核算的需求,这样可以提高核算效率。
2.指标口径的协调统一。统计核算与会计核算所使用的指标,在概念、指标范围和计算方法上应尽量一致,避免出现混乱。
3.人员分工上的协作。基层单位会统人员加强协作是非常必要的,长期以来困绕统计工作的主要难题是核算数据的真实性和准确性差。同样,会计也缺少有深度的财务分析报告。解决上述问题,一方面要求会统两家在工作上加强相互借鉴和交流,同时需要在人员分工上,加强协作,优势互补,部分职能相互替换。
总之,对于一个企业而言,统计是手段,会计是方法
第五篇:概率论与数理统计
《概率论与数理统计》公共基础课教学实践
1012502-31 汤建波
概率与数理统计在现实的牛产和生活中有着广泛的应用,因此,《概率论与数理统计》作为公共课是很多专业所必修的。但是,由于这门课的学习方法与《微积分》《线性代数》等其他课程有着极大的差异,很多学生在学习过程中感到难以把握概念与理论,在遇到问题时不知如何人手。因此,笔者在总结这几年教学实践的基础上,提出以下思考。
一、适度引入案例。形成生动教学及启发性教学
概率论源于博弈,是赌博中的很多问题催生了概率论这门数学学科。在开课伊始,教师就适度引入触发概率论的一些问题,如“De.mere”问题,“分赌金问题”等等,使学生在故事中不仅得到r课本里所没有的历史知识,而且无形中可以提高学习兴趣,消弭一部分同学的畏难情绪。另外,再在随后的教学过程中引入“彩票中奖问题”“蒙特卡罗法求订法”“保险付赔问题”等等,引导学生了解、探索这门学科在现实中的应用,使学乍实现由知识向能力的转化,从而增强学,F利用概率统计解决实际问题的“欲望”,促使他们更好地认识现实世界。
概念是概率课程中最基本的内容,对概念的理解程度直接影响学生对这门课程的学习与掌握程度。在教学中,应尽量从实际问题入手,先提出问题,接着在问题的分析和解决中抽象出概念,让学生清楚概念的来龙去脉,而不是硬性给出定义,让学生死记硬背。例如,在讲述“事件”这个定义时,引入“卫瞿嫦娥二号将于2010年10月1日发射”这一现实中的“事件”在概率论中应该是“实验”,而其结果“发射成功”才能算是概率论所定义的“事件”,这样,在区别现实的“事件”与概率论所研究的“事件”基础上,学生加深了对“事件”这一定义的理解。在阐明相互独立和互不相容之间的区别有P(A)>0,P(B)>0时,A、B相瓦独屯与互不相容是不能同时成立的,直观上可以这样解释:相互独立意味这
4、B其中一方发生与否并不影响另一方的发生,而互不相容意味着A、B只要其中一方发生了,另一方就一定不发生,所以这两个关系不能同时存在。从公式上解释是:P(A)>0,P(B)>0且A、B相互独立,则P(AB)=P(A)P(B)>0,而如果A、B互不相容,则P(AB)=P(西)=0。但是只要有一方的概率为0,如,如果A=西,则A与B既相互独立又互不相容,因为此时P(AB)=P(A)P(B)=0。综上所述,相互独立与互不相容并没有必然的联系。
而在区别“不相关”与“相互独立”的区别时,可以通过举例得知J]|f、y不相关不一定就独立,因为X、l,之间有可能存在其他的函数关系,但是存在函数关系的随机变量是否就不独立了呢?答案是未必,例子如下:
考察随机变量X、l,和Z:假定x与l,独立月.都服从参数为P的(0—1)分布,令z为x与y的函数:
可以得到当P=1/2时,Z与X相互独立。转载于 无忧论文网 http://www.xiexiebang.com
通过这些举例,避免了学生将“独立”和“互不相容”等同起来,又说明了“独立”与“函数关系”之间的联系。
二、课堂教学中注重数学思想的教育。培养学生建模能力
概率统计中的很多问题都可以归结为同一类问题,数学模型就是这类事物共同本质的抽象。“数学建模”是指对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到一个数学结构。数学模型在概率统计中的应用随处可见,模型化方法贯穿本课程全过程,因此,在教学过程中应该注意培养学生抽象出问题的本质以建立起一般的数学模型的能力。
如“将n只球随机地放入Ⅳ(N大于等于n)个盒子中去,求每个盒子至多有一只球的概率”与“班级同学生日各不相同”具有相同的数学模型。另外,还有古典概型、贝努利概型、正态分布等等这些都是生产生活中抽象出来的,在很多问题中都可以归结为以上的模型。如以下两个
:
例1,设有80台同类型设备,各台工作是相互独立的,发生故障的概率都是0.01,且一台设备的故障能由一个人处理。考虑两种配备维修工人的方法,其一是由4人维护,每人负责20台;其二是由3人共同维护80台。试比较这两种方法在设备发生故障时不能及时维修的概率的大小。
例2,保险公司在一天内承保了5000张相同年龄、为期1年的寿险保单,每人一份。在合同有效期内若投保人死亡,则公司赔付3万元。设在一年内,该年龄段的死亡率为0.0015,且各个投保人是否死亡相互独立。求该公司对于这批投保人的赔付总额不超过30万元的概率。
以上两个例子虽然不同,但都可以归结为伯努利概型,利用二项分布解决。对这类模型,不应简单地给出它的结果,而应注秀模型的建立、模型的应用范围以及如何把实际问题转化为有关的数学模型去解决。
三、适度引入多媒体教学及数据处理软件。促进课堂教学手段多样化
在概率统计教学中,实际题目信息及文字很多,“一支粉笔、一块黑板,以讲授为主”的传统教学方法显然已经跟不上现代化的教学要求,不利于培养学生的综合素质和创新能力。因此,有必要借助于现代化媒体技术和统计软件,制作内容、图形、声音、图像等结合起来的多媒体课件。~方面,采用多媒体教学手段进行辅助教学,能够将教师从很多重复性的劳动中解脱出来,教师可以将更多的精力和时间投入到如何分析和解释问题,以提高课堂效率,与学生有效地进行课堂交流。另一方面,用图形动画和模拟实验等多媒体作为辅助教学手段,便于学生对概念、图形等的理解。如投币试验、高尔顿板钉实验等小动画在不占用太多课堂时间的同时,又增添了课堂的趣味性。又如在利用Mathematica软件演示大数定律和中心极限定理时,就能将抽象的定理化为形象的直观认识,达到一定的教学效果。在处理概率统计问题中,教师也会面对大量的数据,另外,集数学计算、处理与分析为一身的数据处理软件如:Excel,Matlab,Mathematic,SAS,SPSS等,在计算一些冗长数据时可以简化计算,降低理论难度。而且,在教师的演示过程中,能让学生初步了解如何应用计算机及软件,将所学的知识用于解决生产生活中的实际问题,从而激发他们学习概率知识的热情,提高他们利用计算机解决问题的能力。
最后,在教学过程中,教师应该考虑到各个专业的学生今后学习与发展的需要,在满足教学大纲的要求下,选择与其专业关系紧密的知识点进行重点讲授。同时,在讲授过程中,本着以人为本的教学理念,注意多种方法灵活应用,建立积极的互动教学模式,尽量避免教师在课堂上满堂灌、填鸭式地教学,充分调动学生学习的主动性,挖掘学生的学习潜能,最大限度地发挥和发展学生的聪明才智,使学生能理解概率统计这一学科领域思想方法的精髓。
论文参考文献:
[1]盛骤,谢式千。潘承毅.概率论与数理统计[M].北京:高等教育出版社,2009.
[2] 姜启源.数学模型[M].北京:高等教育出版社。2003:4—7.
[3] 徐钟济.蒙特卡罗方法[M].上海:上海科学技术出版社,1985:171—188.
[4] 郝晓斌,董西广.数学建模思想在概率论与数理统计课程教学中的应用[J].经济研究导刊,2010,90(16):244—245.
[5]徐荣聪,游华.(概率论与数理统计)课程案例教学法[J].宁德师专学报(自然科学版),2008(2):145—147.