第一篇:金属功能材料复习题
1.是金属功能材料,分类。
答:(1)能量与信息的显示、转换、传输、储存等方面,具有独特功能的一类材料,这些特殊功能是以它们所具有优良的电学、磁学、光学、热学、声学等物理性能为基础的;(2)主要包托:贮氢合金、梯度功能材料、磁性材料、金属薄膜材料、环境材料、纳米金属材料、非晶态金属材料、信息材料、超导材料和智能金属材料等。
2.是超导体,超导体的种类,简述YBCO的制备原理。
(1)在一定低温情况下导体的电阻为0的导体叫做超导体,按照人们的认识分为两种, 一种是简单的超导体, 利用BCS理论可以描述.另一种是高温超导体, 研究发现与能带的p-波有关, 又称p-波超导体.(2)2.1烧结法
选用氧化物或碳酸盐为原材料,首先将各种原材料要纯、细,配料时严格按照YBa2Cu3O7(简称123相)配比,然后研磨使得原料均匀混合,将材料预合成单
一均匀的123相合成料,再次将粉末研磨3~4小时,通过压制将样品压制成紧密结构,最后将有压制好的样品放入瓷坩埚中,并放入炉内烧结。烧结工艺是制备YBCO超导陶瓷的最关键步骤,由于YBa2Cu3O7较难烧结,在高温下不一致熔融,O呈现分解熔融,当温度升高到1000C左右时,有部分液相产生。一般为了提高
难烧结物质的烧结性,往往加入少量的烧结助剂,但这种方式,会使得超导陶瓷的特性变差,所以有必要改善粉末体的特性和选择适当的烧结制度。实际烧结时要得到纯粹的Y123相是不容易的,即存在组成的不均匀性。在这种情况下,为得到异相析出尽量少的Y123烧结体,有效的方法之一是降低烧结温度[3]。另外烧结条件下的氧分,升降温制度也是非常重要的方面。研究结果表明,为得到具有良好超导性的烧结体,必须在适当的氧压分气氛下从高温缓慢冷却,在500~600OC保温且维持该氧气氛。
2.2共沉淀法
利用以硝酸钇、硝酸钡和硝酸铜为反应原料溶于水中,而后加入草酸作为沉淀剂,获得相应的草酸盐共沉淀产物,经过滤分离后,将沉淀物在800~900OC加热分解和固态反应可得到组成均匀的YBa2Cu3O7多晶体粉体。在粉末预烧结过
程中,在850OC烧结,即能完成123相转变,在915OC能得到杂相含量非常少123的单相粉。采用共沉淀法获得的粉末具有含杂质少、颗粒细、组成均匀、无第二相分布的YBCO块状多晶的优点,共沉淀粉烧结样品晶粒边界附近约有2~5nm厚的富铜、贫氧和贫钇层,这一非化学计量层和样品中的疏孔、裂纹等构成了样品的弱连接区 ,并导致低临界电流密度[4]。但是共沉淀法存在的问题是投入料的组成与共沉淀物的组成间有偏离,而偏离相的组成较大时,最后的成分中可能出现不同的相,这些相将直接影响YBCO材料的特性。
2.3熔融法
[5]1987贝尔实验室采用熔融冷却工艺得到了块体超导陶瓷材料(YBa2Cu3O7),其临界电流密度已达到7800A/cm2(77K,0T),甚至77K,1T时,临界电流密度仍大于1000 A/cm2,这被认为是由于无弱连接且晶界极其洁净的缘故。
熔融法实验方法是首先在红外、X光分析基础上制备高品质的Y123的超导体粉和Y2BaCuO4(Y211)粉体,掺与10%的Wt Ag2O以及不同比例的Y211相粉末后,OO在880C烧结24h,再压块成形,经920C X 24h+970OC X 24h烧结后,富40%mol的Y211的样品,体密度达到5.4g/cm3左右;最后在具有一定温度梯度的管式炉
中,进行熔融慢冷生长,慢冷速度为1 OC/h,样品两侧的温度为1.5 OC/cm,这样
就可以获得YBCO超导材料。此方法中Y123以籽晶(Sm123)为中心向四周生长
出较大尺寸的晶粒,这样一来,不仅能控制晶粒生长方向,而且还能减小大角度
晶界的产生[6]。由于这类晶体的尺寸较大,在退场时冻结磁通能力很强,对永久
磁体可产生较大的吸引力,主要用于磁悬浮力中。
2.4定向凝固法
目前制备 YBCO块材的熔化工艺虽然有多种, 但其实质都是在高温下21
1固相与富钡铜的液相通过包晶反应定向凝固成片层排列的YBCO。利用定向凝固
技术制备 YBCO可使材料显微结构按择优生长方向规整排列, 获得定向组织[7]。
采用固相反应法,首先将Y2O3,BaCO3和CuO三种粉末按原子比 1:2:3的比例混合、研磨,在玛瑙研钵中研磨10h左右,然后在热处理炉中900OC下烧结
20h,再研磨、烧结,直到得到纯 Y123相。Y211粉末的制备与 Y 123粉末的制
备原理相同。将所制备的 Y123和 Y 211粉末按一定比例混合研磨后装入模具中,在一定压力下将其压制成 2mmX2mmX12mm的棒材, 并在热处理炉中900OC下热处
理 12h,得到定向凝固需要的棒状预制体。定向凝固试验在自制的氧化物定向生
长装置上进行,炉体加热方式为立式双区加热利用定向凝固技术获得的YBCO超
导棒材具有高度取向排列片层组织、颗粒细小等特点。
3记忆合金的特性,应用领域。
记忆合金是一种原子排列很有规则、体积变为小于0.5%的马氏体相变合金。这种合金在外
力作用下会产生变形,当把外力去掉,在一定的温度条件下,能恢复原来的形状。由于它具
有百万次以上的恢复功能,因此叫做“记忆合金”。当然它不可能像人类大脑思维记忆,更准
确地说应该称之为“记忆形状的合金”。此外,记忆合金还具有无磁性、耐磨耐蚀、无毒性的优点,因此应用十分广泛。科学家们现在已经发现了几十种不同记忆功能的合金,比如钛-
镍合金,金-镉合金,铜-锌合金等。
(1)利用单程形状记忆效应的单向形状恢复。如管接头、天线、套环等。
(2)外因性双向记忆恢复。即利用单程形状记忆效应并借助外力随温度升降做反复动作,如热敏元件、机器人、接线柱等。
(3)内因性双向记忆恢复。即利用双程记忆效应随温度升降做反复动作,如热机、热敏元
件等。但这类应用记忆衰减快、可靠性差,不常用。
(4)超弹性的应用。如弹簧、接线柱、眼镜架等。
4.的制备方法。
答:制备金属薄膜的方法大体可分为两大类:化学方法和物理方法。化学方法包括:化学气
相沉积法、液相生成法、氧化法、扩散法、电镀法等。物理方法包括:真空热蒸发法、直流
溅射、磁控溅射法、射频溅射、脉冲激光沉积、分子束外延生长法等薄膜的制备方法。
5.钢提高耐腐蚀性和韧性的方法是什么?
1、让含碳量减少,提高铬镍合金的含量。Cr:显著提高强度、硬度和耐磨性,但同时
降低塑性和韧性。提高钢的抗氧化性和耐腐蚀性。使A3和A1温度升高,GS线向左上方
移动。铬为中强碳化物形成元素。1降低C的含量
一般情况下,钢的强度随着碳含量的增加而上升,因此,高强钢的含碳量较高。但是,碳的增加首先影响的是钢板的焊接性,这对于船板制造是极为重要的。其次,含碳量越低,钢板的冲击韧性就越好,但是碳含量降低到一定程度后,转炉终点氧含量必然会大幅度升高,导致钢中的夹杂物增多,从而又会降低钢的低温冲击韧性。固降低碳含量也有下限规定,应
该不低于0.09%。中国船级社规定(GB/T712—2OO0),各级别船板的含碳量都有上限,钢材级别A、B、D、E的含碳量分别小于0.21%、021%、0.21%和0.18%;高强度结构
钢的含碳量不高于0.16%,各生产厂家的内控指标还要低一些。
2钢水的纯净化与均匀化
纯净化手段也是均匀化的根本保证,如果钢水的成分不能保证均匀,将直接影响合金
元素的分布,进而在钢板的轧制过程中出现偏析,严重时出现带状组织,导致缺陷的产生。
钢的组织均匀化和纯净化后,钢中的夹杂物必然减少,弥散分布的氧化物、氮化物等如果呈
球形,大大降低对基体的割裂作用。通过向钢中加入稀土元素,改善夹杂物的形貌和分布。
3两阶段轧制过程中钢板组织的细化
粗轧和精轧是组织的细化的关键工序,直接它和随后的控制冷却一起,直接决定了船
板的最终力学性能。简言之,就是在粗轧阶段,尽量使每道次变形都能够超过临界变形量,保证奥氏体组织的充分再结晶,从而反复细化高温奥氏体;在精轧阶段,由于处于未再结晶
区,不必强调每道次的压下量,累积的变形量同样可以达到目的,一般而言,道次压下量不
低于12%,特别是最后三道次,每道次压下量应大于l5%。
提高船板的强度不是很难,而配以相当高的韧性,即保持低温下良好的冲击韧性和抗
冷弯性能,才复合高级船板钢的要求。组织细化方法是目前既提高强度,又不降低韧性的唯
一手段,钢水的纯净化和均匀化,严格的成分控制,最终都是为组织细化服务的。钇钡铜氧的超导原理;
答案:传统超导理论(BCS理论)
1957年美国人巴丁、库柏和施瑞弗在电子和声子相互作用的基础上建立了低温超
导的微观理论(即BCS理论),解释了超导电性的起源,阐明了超导的本质。所
谓BCS理论,是解释常规超导体的超导电性的微观理论。该理论以其发明者巴丁
(J.Bardeen)、库珀(L.V.Cooper)施里弗(J.R.Schrieffer)的名字首字母命
名。BCS是典型的弱耦合理论,把超导现象看做一种宏观量子效应,认为电子间如果存在电子与晶格相互作用产
生的吸引力大于电子间的库伦排斥力而使电子间呈现一种净的吸收作用,那么它
们就能够形成一个束缚态,这种束缚态时两个电子组成电子对偶,称之为库珀对,库柏对对超导电流的形成起决定性作用。在BCS理论提出的同时,尼科莱•勃格
留波夫(Nikolai Bogoliubov)也独立的提出了超导电性的量子力学解释持不同
见解的大概分为费米液体派和非费米液体派,前面所探讨过的BCS理论是在费米
液体正常态的框架上建立起来的机制。
电声子机制:该机制认为,在超导体内两电子间由于交换声子而产生了吸引作用,当这种吸引作用大于电子本身的库伦排斥作用时,两电子就形成电子对引起超导
电性。
同位素效应对探索超导机制有特殊意义。高温铜氧化物超导体的同位素效应指数
远小于0.5,这使得许多人提出了非电声超导机制或混合超导机制。
激子机制:所谓激子,是指由于一直电子系统的极化所导致的能量激发。勒特耳认为超导体内的净吸引力是使两电子间交换激子而产生吸引作用而不是之前所说的利用交换声子使两电子产生吸引。如果这种激子机制能产生两电子间的净吸引力,那么将可以预期出现超导态。尽管理论上做了很多设想,但迄今为止还没有试验事实能够肯定激子超导机制。
美国的P.M.Anderson是反对用费米液体描写高温超导体的代表之一,他提出了共价键态理论来说明高温超导机制。
共振价键理论(RVB态)
这一理论是基于高温氧化物的低维性、反铁磁的邻近性和载流子密度低等特点提出的。该理论认为电荷与自旋自由度分离,这与费米液体的基本点不同,在相邻原子上,自旋相反的两轨道电子形成共价键,而这些共价键可以在两个以上的位置之间共振。
“共振价键理论”(RVB)是一种由实空间定域配对转变为能量空间的非局域配对机制。共振价键理论中,无电子型的准粒子,而电子的强关联是导致系统电荷和自旋自由度相分离的原因,从而有空穴子和自旋子两种元激发。
双成分理论【2】:我国著名物理学家章立源提出的双成分理论认为,巡游载流子形成的库珀对与近局域对彼此相互相干作用从而诱导增进了超导态中的有效配对位势,从而形成高温超导。
其他理论
其他超导理论如Nesting模型、反铁磁费米液体模型、自旋口袋(spin bag)模型、任意子模型等等理论也是著名的超导理论但如前所说,这些众说纷纭的理论都能在一定程度上说明一些超导现象,但也没能给人足够的证据其适用于钇钡铜氧高温超导机理,可见,目前已存在的理论要么是在传统的BCS理论的框架上进行扩展,要么另辟蹊径发展一种全新理论。但至今仍未见一种能够解释高温超导如钇钡铜氧足以令人信服的理论,看来钇钡铜氧的高温超导机理的探索还需要进一步发展。
通过什么方法实现结构材料钢的金属功能性?利用表面工程,例如焊接,热喷涂,等离子喷涂,化学喷涂,激光熔覆等技术在金属表面覆盖上耐磨 耐腐蚀层。利用颗粒,纤维,等二次增强相提高金属结构材料的力学性能。利用纳米晶,细晶,位错强化等技术结束提高金属结构材料的断裂韧性,和耐疲劳断裂能力。将金属制备成金属泡沫材料,金属泡沫材料是一种物理功能与结构一体化的新型工程材料。
第二篇:金属切削复习题
一、名词解释
1、过渡表面:工件上由切削刃正切削着的表面,处在待加工表面与已加工表面之间;
2、待加工表面:工件上即将被切除的表面,也称加工表面或切削表面。
3、进给量:主运动的一个循环或单位时间内刀具和工件沿进给运动方向的相对位移量;
4、自由切削:只有一个切削刃参加切削的情况;宽刃刨刀刨削工件就属于自由切削;
5、非自由切削:由非直线切削刃或多条直线切削刃同时参加切削的情况;车外圆、铣键槽属于非自由切削。
二、填空题
1、刀具磨损到一定限度就不能继续使用。这个磨损限度称为(磨钝标准)。
2、刀具由刃磨后开始切削,一直到磨损量达到刀具(磨钝标准)所经历的总的切削时间称为(刀具耐用度)。
3、前角γo是(前刀面)与(基面)之间的夹角;后角αo是(后刀面)与(切削平面)之间的夹角。
4、高速钢是一种加入了较多的钨、(钼)、(铬)、(钒)等合金元素的高合金工具钢。
5、一般情况下,当前角增大时,剪切角随之增大,变形(减小),当摩擦角增大时,剪切角随之减小,变形(增大)。
6、目前应用较广而且比较成熟又简单可靠的测量切削温度的方法,是(自然热电偶法)和(人工热电偶法),也常有用半人工热电偶法的。
7、通常刀具磨损的形态有(前刀面磨损)、后刀面磨损和(边界磨损)。
8、在一定切削条件下,对工件材料进行切削加工的难易程度,称为(工件材料切削加工性)。
9、所谓切削用量是指(切削速度)、(进给量)和(背吃刀量)。
10、主偏角是指主切削刃的投影与(进给方向)的夹角。副偏角是指副切削刃的投影与(进给方向)的夹角。楔角是(前刀面)与(后刀面)的夹角。
11、硬质合金是由难熔金属碳化物WC、(TiC)、TaC、(NbC)等和金属粘结剂经(粉末冶金)方法制成的。
12、切削热的来源就是(切屑变形功)和(前、后刀面的摩擦功)。
13、工件材料的强度越高,切削力就(越大),切削温度(越高),刀具磨损加剧。
14、钢的锰含量在11%-14%时,称为(高锰钢),它全部都是(奥氏体组织)时,可获得较好的使用性能。
15、加工塑性材料时,应选择(较大)的前角;加工脆性材料时,应选择(较小)的前角。
16、砂轮的特性主要由(磨料)、粒度、(结合剂)、硬度、组织及形状尺寸等因素所决定。
17、非水溶性切削液主要是切削油,它主要起到(润滑)作用,水溶性切削液具有良好的(冷却)作用,清洗作用也很好。
三、简答题
1、试分析加工不锈钢、奥氏体耐热钢、淬硬钢、高锰钢、钛合金时刀具材料的选择。
答:YW类硬质合金:主要用于加工高锰钢、不锈钢等难加工材料; 奥氏体耐热钢 :细晶粒硬质合金; 易造成崩刀,宜采用韧性较好的YG合;
钛合金:可选用YG类合金。
2、加工钢料等塑性材料和加工铸铁等脆性材料时,前刀面和后刀面的哪一方面切削温高? 答:加工钢料塑性材料时:前刀面的切削温度高;
加工铸铁脆性材料时:后刀面的切削温度高。淬硬钢:由于切削力很大,切削与前刀面接触长度很短,切削力集中在切削附近,3、通常刀具磨损的原因主要有哪些?它们的磨损形式是什么? 答:刀具磨损的原因:硬质点磨损、粘结磨损、扩散磨损、化学磨损;
刀具磨损的形态:前刀面磨损、后刀面磨损、边界磨损。
4、刀具破损有哪几种形态?刀具材料对破损形态有什么影响?
答:刀具破损的形态:1)刀具脆性破损的形态有:崩刃、碎断、剥落、裂纹破损;
2)刀具的塑性破损。刀具材料对破损形态的影响:
1)陶瓷和硬质合金刀具断续切削时常出现崩刃,出现小块碎断或大块断裂的情况; 2)硬质合金和陶瓷刀具断续切削时时常发生碎断,一般情况下可以重磨修复再使用; 3)陶瓷刀具的端铣和硬质合金低速断续切削时发生剥落;
4)刀具材料在长时间断续切削时会由于疲劳引起裂纹不断扩展,引起切削刃的碎断或断裂。
5)刀具材料硬度越高,越不容易发生塑性破坏,因而高速钢刀具因其耐热性较低常发生塑性破损。
5、刀具磨损的主要原因是什么?刀具材料不同,其磨损原因是否相同,为什么? 答:
1、刀具磨损的主要原因是:机械磨损和热、化学磨损;
2、其磨损原因不同;机械磨损是由工件材料中硬质点的刻化作用引起的磨损;热、化学磨损是由粘结、扩散、腐蚀等引起的磨损。
6、为什么一般均采取减小副偏角而不采取减小主偏角的方法来减小表面粗糙度?
答:因为减小副偏角的效果比减少主偏角的效果更明显;减小主偏角意味着切削抗力增大,易使工件产生振动;
7、影响切削温度的主要因素有哪些?随着这些因素的变化切削温度如何变化? 答:主要影响因素有:1)切削用量的影响2)刀具几何参数的影响3)工件材料的影响4)刀具磨损的影响5)切削热的影响;
切削温度的变化:
1、切削用量:1)随切削速度的增加,切削热带走热量的比率增大,切削温度的提高越缓慢;2)随进给量的增大,切削带走的剪切热和摩擦热越多,切削温度提高的越缓慢;3)背吃刀量对切削温度影响较小;
2、刀具几何参数:1)切削温度随前角的增大而降低;2)切削温度随主偏角的减小使切削温度下降;3)负倒棱及刀尖圆弧半径对切削温度影响很小;
3、工件材料强度硬度增大时,产生的切削热增多,切削温度升高;
4、刀具后刀面的磨损值达到一定数值后,对切削温度的影响增大;
5、切削液能够降低切削温度。
8、提高切削用量的途径有哪些?(184)
答:
1、采用切削性能更好的新型刀具材料,采用耐热性和耐磨性高的刀具材料是提高切削用量的主要途径;
2、改善工件的加工性,采用添加硫、铅的易切钢;
3、改进刀具结构和选用合理刀具几何参数;
4、提高刀具的刃磨及制造质量;
5、采用新型的性能优良的切削液和高效率的冷却方法。
9、试分析刀具材料对加工粗糙度的影响。(149)
答:
1、刀具材料不同,与工件材料的亲和力不同,产生积屑瘤的难易程度不同,因而导热系数及前刀面摩擦系数不同,粗糙度不同;
2、刀具材料与工件材料间摩擦系数越大,粘结情况越严重,工件加工表面粗糙度就越大;
10、什么是易切削钢?它的易切削原理是什么?
答:易切削钢:在钢中加入一定数量的一种或一种以上的硫、磷、铅、钙、硒、碲等易切削元素,以改善其切削加工性的合金钢。
由于钢中加入的易切削元素,使钢的切削抗力减小,同时易切削元素本身的特性和所形成的化合物起润滑切削刀具的作用,易断屑,减轻了磨损,从而降低了工件的表面粗糙度,提高了刀具寿命和生产效率。
11、加工硬化产生的原因,以及影响加工硬化的的因素有哪些? 加工硬化产生的原因,以及影响加工硬化的的因素有哪些?P150 原因:已加工表面的形成过程中,表层金属经受了复杂的塑性变形。加工表面严重变形层内金属晶格拉长、挤紧、扭曲、碎裂,使表层组织硬化。影响加工硬化的因素
1、刀具方面:前角越大,硬化层深度越小;切削刃钝圆半径越大,加工硬化越大;刀具后刀面磨损量VB越大,加工硬化越大。
2、工件方面: 塑性越大,强化越大,熔点越高不易弱化,则硬化越严重。
3、切削条件:随切削速度的增加加工硬化先是减小(变形小),随后又随切速的增加而增加(温度高,发生相变,遇急剧冷却,产生淬火);很高切速下,进给量增大,加工硬化增大;背吃刀量对加工硬化的影响不显著。
四、论述题
1、试简述积屑瘤是如何产生的?它对切削过程有哪些影响?防止积屑瘤的方法有哪些?
如何产生的:当切屑与刀具前刀面的接触面达到一定温度,同时压力又较高时,会产生粘结现象,亦即一般所谓:冷焊。这时切屑从粘在刀面的底层上流过,形成内摩擦,如果温度与压力适当,底层上面的金属因内摩擦而变形,也会发生加工硬化,而被阻滞在底层,粘成一体。这样粘结层就逐步长大,直到该处的温度与压力不足以造成粘附为止。一般,塑性材料的加工硬化倾向愈强,愈易产生积屑瘤;温度与压力太低,不会产生积屑瘤;反之,温度太高,产生弱化现象也不会产生积屑瘤。影响:
1、实际前角增大,切削力减小;
2、增大切削厚度,引起振动;
3、使加工表面粗糙度增大;
4、刀具耐用度降低。
方法:(1)降低切削速度,使温度降低,使粘结现象不易发生;
(2)采用高速切削,使切削温度高于积屑瘤消失的相应温度;
(3)采用润滑性能好的切削液,减小摩擦;
(4)增加刀具前角,以减小刀屑接触区压力;
(5)提高工件材料硬度,减小加工硬化倾向。
2、怎样通过分析影响工件材料切削加工性的因素,来探讨改善工件材料切削加工性的途径?
因素:工件材料硬度,工件材料强度,工件材料塑性和韧性,工件材料导热系数,工件材料化学成分,工件材料金属 组织,切削条件等。
途径:调整工件材料的化学成分,以改善切削加工性,在大批量生产中,通过调整工件材料的化学成分来改善切削性,如加入S、Pb 等,能使钢的切削加工性得到改善,切削力小,容易断屑,且刀具耐用度高,加工表面质量好。通过热处理改变工件材料的金相组织和物理力学性能以改善切削加工性。
3、工件材料切削加工性为什么是相对的?用什么指标来衡量工件材料切削加工性?怎么评价工作材料切削加工性?
加工设备不同,生产方式不同,切削状态不同等等,都使衡量切削加工性的指标不相同,因此切削加工性是一个相对的概念。以加工质量、刀具耐用度和断屑性能衡量金属材料的切削加工性。当刀具耐用度为T时(一般情况下可取T=60min),切削该种工件材料所允许的切削速度VT越高,则工件材料的切削加工性越好。生产中通常使用相对加工性来衡量工件材料的切削加工性,所谓相对加工性是以45钢的V60J作为基准,其它被切削的工件材料的V60与之相比的数值,记作kv,即相对加工性。
4、提高难切削材料切削加工性的途径有哪些?并简要说明。
1)选择合适的刀具材料,刀具材料的性能会影响切削的效率,同时切削的对象不同选用不同的刀具材料; 2)对工件材料进行相应的热处理,尽可能在最适宜的组织状态下进行切削; 3)提高机床-夹具-刀具-工件这一工艺系统的刚性,提高机床的功率;
4)刀具表面应该仔细研磨,达到尽可能小的粗糙度,以减小粘结,减小因冲击造成的微崩刃; 5)合理选择刀具几何参数,合理选择切削用量; 6)对断屑、卷屑、排屑和容屑给予足够的重视; 7)注意使用切削液,以提高刀具耐用度;
5、简述残余应力产生的原因及其影响因素。原因:
1)机械应力引起的塑性变形,表层金属产生残余压应力; 2)热应力引起的塑性变形,表层金属产生残余拉应力;
3)相变引起的体积变化,相变体积增大时,表层金属产生残余压应力,里层产生残余拉应力。体积减小则相反。影响因素:
1)刀具的影响,当前角由正值变为负值时,表层的残余拉应力逐渐减小,但残余应力层的深度增大。后刀面的磨损加剧,则使表面残余拉应力增大,应力层深度增加;
2)工件的影响,塑性大的材料表面容易产生残余拉应力,而且塑性越大残余拉应力越大。对于脆性材料表面产生残余压应力;
3)切削条件的影响,切削速度增加时,切削温度增大,表面残余拉应力增大,但残余拉应力层的深度却减小,这是因为随着切削速度的增大切削力减小,从而塑性变形区随之减小;进给量的增大,表面残余拉应力增大,应力层深度增大。
第三篇:金属工艺学复习题
金属工艺学复习题
1.铸造、锻造、冲压、焊接的概念与优缺点?
铸造:将液态金属浇注到具有与零件形状、尺寸相适应的铸型型腔中,待其冷却凝固,以获得毛坯或零件的生产方法。优点:(1)可制造形状复杂,特别是内腔复杂的铸件,如:复杂的机箱、阀体、汽缸等。
(2)铸件大小不受限制,几克~数百吨。
(3)铸造适用范围广,几乎凡能熔化的金属材料均可用于铸造。缺点:成型的铸件内部致密性较低,易出现如缩孔、缩松等缺陷,力学性能较低。锻造:利用冲击力或压力使金属在抵铁间或锻模中变形,从而获得所需形状和尺寸的锻件的工艺方法。自由锻优点:(1)所用设备简单,可锻零件重量1kg~100T(2)通用性强,易于单件、小批量生产 缺点:(1)生产率低,锻件精度、光洁度差(2)只能锻形状很简单的零件(3)操作技术要求高 模锻优点:(1)精度高
(2)生产率高(可达几十倍)(3)可锻重量0.5~150kg的工件 缺点:只适合大量生产 胎模锻优点:(1)与自由锻比较,生产率高,消耗金属少,质量好;
(2)与模锻相比,胎膜锻制造成本低,使用设备简单,适合中小批量生产; 缺点:表面质量不如模锻,胎膜容易损坏。
板料冲压/冷冲压:利用冲模使板料产生分离或变形的加工方法。(热冲压:板料厚度超过8~10mm)优点:(1)可以冲压出形状复杂的零件,且废料较少
(2)产品具有足够高的精度和较低的表面粗糙度值,冲压件的互换性较好(3)能获得重量轻、材料消耗少、强度和刚度都较高的零件
(4)冲压操作简单,工艺过程便于机械化和自动化,生产率很高。故零件成本低。缺点:(1)冲模制造复杂、成本高,只有在大批量生产条件下有优越性(2)适用材料:塑性好的材料,如低碳钢,有色金属等
焊接:利用加热或加压力等手段,借助金属原子的结合与扩散作用,使分离的金属材料牢固地连接起来的工艺方法。优点:(1)制造大型结构件或复杂机器部件(2)化大为小、化复杂为简单来准备坯料(3)对不同材料进行焊接,制成双金属构件
1.什么叫液态合金的充型能力?充型能力不足会导致什么 缺陷?影响合金充型能力的主要因素是什么?
液态合金充满铸型型腔,获得形状准确、轮廓清晰铸件的能力,称为液态合金的充型能力。充型能力不足会产生:(1)浇不足:使铸件不能获得充分的形状;(2)冷隔:铸件虽获得完整的外形,但因存在未融合的部位,使力学性能严重变坏。影响合金充型能力的主要因素:(1)合金的流动性(化学成分:纯金属/共晶)(2)浇注条件(浇注温度愈高,合金粘度下降/充型压力)(3)铸型填充条件2.为什么共晶成分的合金充型能力好?浇注温度对合金的充型能力有什么影响?
(1)由于合金的流动性愈好,充型能力愈强,而影响合金流动性的因素以化学成分的影响最为显著。共晶成分合金的结晶是在恒温下进行的,此时,液态合金从表层逐层向中心凝固,由于已结晶的固体层内表面比较光滑,对金属液的流动阻力小,故流动性最好。所以共晶成分的合金充型能力好。
(2)浇注温度对合金充型能力有着决定性影响。浇注温度愈高,合金的粘度下降,且因过热度高,合金在铸型中保持流动的时间长,故充型能力强;反之,充型能力差。但浇注温度过高,铸件容易产生缩孔、缩松粘砂、析出性气孔、粗晶等缺陷,故在保证充型能力足够的前提下,浇注温度不宜过高。
3.铸件凝固过程中,断面上一般存在哪几个区域?铸件的凝固方式是根据什么来划分的?
(1)铸件凝固过程中,其断面上一般存在三个区域,即固相区、凝固区和液相区。(2)铸件的“凝固方式”是依据凝固区的宽窄来划分的。
4.铸件的凝固方式有哪几种?哪一种凝固方式的充型能力最好?为什么?其代表性合金是什么?
(1)凝固方式:逐层凝固;糊状凝固;中间凝固(2)逐层凝固的充型能力最好。因为纯金属或共晶成分合金在凝固过程中不存在液、固并存的凝固区,故断面上外层的固体和内层的液体有一条界限(凝固前沿)清楚地分开。随着温度的下降,固体层不断加厚,液体层不断减少,直达铸件的中心,所以这样的凝固方式充型能力最好。代表合金:铝硅合金。
5.铸件的收缩经历哪几个阶段?“缩孔”和“缩松”在那个阶段产生?如何防止?“变形”和“裂纹”在哪个阶段产生?如何防止?(1)收缩三个阶段:液态收缩——凝固收缩——固态收缩(2)“缩孔”和“缩松”产生于液态收缩和凝固收缩两个阶段。为了防止“缩孔”和“缩松”,可使铸件实现顺序凝固,所谓顺序凝固就是在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固,然后是靠近冒口部位凝固,最后才是冒口本身的凝固。按照这样的凝固顺序,使铸件各个部位的收缩均能得到补充,而将缩孔转移到冒口之中,冒口是多余部分,可切除。(3)“变形”和“裂纹”产生于固态收缩阶段。为防止铸件产生变形,设计时尽可能使铸件的壁厚均匀、形状对称,铸造工艺上采用同时凝固原则,以便冷却均匀;对于长而易变性的铸件,还可采用“反变形”工艺,即在模样上预先作出相当于铸件变形量的“反变形”以抵消铸件的变形;对于不允许发生变形的重要件必须进行时效处理,从而消除内应力,防止变形。裂纹分热裂和冷裂两种,为防止热裂可采用结晶温度范围窄的合金,减小液、固两相区的绝对收缩量,降低钢铁中硫的含量,采用退让性较好的铸型等方法;为防止冷裂,可使用塑性较好的合金。
6.灰口铸铁可分为哪几种?灰铸铁具有什么特点?影响石墨化的主要因素是什么?
(1)灰口铸铁:灰铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁(2)灰铸铁的抗拉强度低,塑形、韧性差,不能锻造和冲压,焊接性能很差,裂纹倾向较大,但具有优良的减振性,耐磨性好,缺口敏感度小,铸造性能优良,切削加工性好。
(3)影响石墨化的主要因素是化学成分和冷却速度。
7.可锻铸铁生产具有什么特点?应用场合是什么?为什么? 可锻铸铁具有相当高的塑形和韧性,但并不能真的用于锻造;可锻铸铁的生产过程复杂,退火周期长,能源耗费打,铸体的成本较高。通常用于制造形状复杂、承受冲击载荷的薄壁小件。因为这些小件若用一般铸钢制造困难较大;若改用球墨铸铁,质量又难保证。
8.球墨铸铁生产具有什么特点?
(1)制造球墨铸铁所用的铁液含碳、硅要高,但硫磷含量要低,出炉的铁液温度须高达1450℃以上
(2)要进行严格的球化处理和孕育处理。球化剂是稀土镁合金,作用是使石墨呈球状析出;孕育剂是硅含量75%的硅铁,作用是促进石墨化,防止球化元素所造成的白口倾向。(3)铸型工艺上,由于球墨铸铁较灰铸铁易产生缩孔,缩松,皮下气孔和夹渣,因此采用顺序凝固;增加铸型刚度;降低铁液的含硫量和残余镁量以防止皮下气孔;加强挡渣措施以防产生缺陷。
(4)多数球铁件铸后要进行热处理,保证力学性能,常用热处理方法是退火和正火。
9.铸造工艺图上包括哪些内容?
浇注位置,铸型分型面,型芯的数量、形状、尺寸及其固定方法,加工余量,收缩率浇注系统,起模斜度,冒口和冷铁的尺寸和布置等。
10.铸型分型面的选择原则是什么?
(1)应尽量使分型面平直、数量少。
(2)应避免不必要的型芯和活块,以简化造型工艺。(3)应尽量使铸件全部或大部分置于下箱。
对于具体铸件来说,上述诸原则难以全面满足,有时甚至互相矛盾。因此,必须抓住主要矛盾、全面考虑,至于次要矛盾,则应从工艺措施上设法解决。
11.铸件工艺参数选择时应注意哪些? 为了绘制铸造工艺图,在铸造工艺图方案初步却确定之后,还必须选定铸件的机械加工余量、起模斜度、收缩率、型芯头尺寸等工艺参数。
(1)要求的机械加工余量和最小铸孔。余量过大,机械加工费工且浪费金属;余量过小,铸件将达不到加工面的表面特征与尺寸精度要求。铸件上的孔、槽是否铸出,不仅取决于工艺上的可能性,还必须考虑其必要性。
(2)起模斜度。为使型砂便于从模样内腔中取出,内壁起模斜度应比外壁大。(3)收缩率。为保证铸件应有尺寸,模样尺寸必须比铸件放大一个该合金的收缩量。
(4)型芯头。芯头必须留有一定的斜度α 12.怎样合理设计铸件的壁厚?
(1)铸件应有适合的壁厚,应选择合理的截面形状或采用加强筋,以便采用较薄的结构
(2)铸件的壁厚也应防止过薄,应大于所规定的最小壁厚,以防浇不到或冷隔缺陷
(3)铸件的内壁散热慢故应比外壁薄些,以防缩孔及裂纹的产生(4)铸件的壁厚应尽可能均匀,以防厚壁处金属聚集,产生缩孔、缩松等缺陷。
13.铸件壁的联接有什么特点?为什么?
(1)铸件壁间转角处一般应具有结构圆角,因为直角连接处的内侧较易产生缩孔、缩松和应力集中。通常使转角处内接圆直径小于相邻壁厚的1.5倍
(2)为减小热节和内应力,应避免铸件壁间锐角连接,而改用先直角接头后再转角的结构。当接头间壁厚差别很大时,为减少应力集中,应采用逐步过渡方法,防止壁厚的突变。
14.塑性变形对金属的组织和性能有什么影响?
(1)金属在常温下经过塑形变形后,内部组织将发生变化:晶粒沿最大变形的方向伸长;晶格与晶粒均发生扭曲,产生内应力;晶粒间产生碎晶。
(2)金属的力学性能随其内部组织的改变而发生明显变化。变形程度增加时,金属的强度及硬度升高,而塑形和韧性下降。在冷变形时,随着变形程度的增加,金属产生加工硬化现象,即金属材料的所有强度指标(弹性极限、比例极限、屈服点和强度极限)和硬度都有所提高,但塑形和韧性有所下降。
15.什么叫金属的可锻性?常用什么来衡量?影响金属可锻性的因素有哪些?(1)金属的可锻性是材料在锻造过程中经受塑性变形而不开裂的能力。
(2)可锻性的优劣常用金属的塑性和变形抗力来综合衡量。塑形越好,变形抗力越小,则金属的可锻性越好;反之则越差。
(3)金属的可锻性取决于金属的本质和加工条件。金属的本质受化学成分和组织的影响。加工条件受变形温度、应变速率和应力状态的影响。
16.锻造过程中,碳钢的锻造温度范围是如何确定的?若确定不当,会产生什么问题?
锻造温度范围是锻件由始锻温度到终锻温度的温度区间。始锻温度是开始锻造时坯料的温度,终锻温度是坯料经过锻造成形,在停锻时的瞬时温度。碳钢的锻造温度范围的确定是以合金状态图为依据的。始锻温度比AE线低200℃左右,终锻温度为800℃左右。若确定不当,始锻温度过低,金属可锻性急剧变差,使加工难于进行,强行锻造,将导致加工硬化、锻坯破裂报废。
17.自由锻的工序分为哪几类?基本工序主要有哪些?
(1)自由锻工序可分为基本工序、辅助工序和精整工序三大类。(2)基本工序主要有:镦粗、拔长、冲孔、扭转、错移、切割
18.模锻模膛与制坯模膛各有什么作用?模锻模膛又分为哪两种?他们的作用和不同点分别是什么?(1)模锻模膛:由于金属在此种模膛中发生整体变形,故作用在锻模上的抗力较大。制坯模膛:为了制作形状复杂的模锻件,使坯料形状基本接近模锻件形状,使金属能合理分布和很好地充满模锻模膛,预先在制坯模膛内制坯。
(2)模锻模膛分为终锻模膛和预锻模膛两种。终锻模膛是模锻时最后成形用模膛,模膛四周的飞边槽,可增加阻力,使金属更好地充满模膛,容纳多余的金属。在不能直接获得冲孔的部位留有连皮。预锻模膛是使锻坯最终成形前获得接近终锻形状的模膛,可改善终锻时金属的流动条件。可减少对终锻模膛的磨损,延长模锻的使用寿命。两者的主要区别是,预锻模膛的圆角和斜度较大,没有飞边槽。
19.绘制模锻锻件图时应考虑哪些内容?确定锻件分模面的原则是什么?
(1)绘制模锻锻件图时应考虑余块、机械加工量、锻造公差、分模面、模锻斜度、模锻圆角半径、连皮厚度等。
(2)选定分模面的原则是:a.应保证模锻件能从模膛中取出,一般情况,分模面应选在模锻件的最大截面处;b.应使上、下两模沿分模面的模膛轮廓一致,便于调整锻模位置;c.分模面应选在能使模膛深度最浅的位置上;d.选定的分模面应使零件上所增加的余块最少;e.分模面最好是一个平面。
20.冲压生产的基本工序有哪两类?落料和冲孔时什么是成品,什么是废料?凸凹模间隙对冲裁过程有何影响?怎样确定冲裁模刃口的尺寸?(1)冲压生产的基本工序有分离工序和变形工序两大类。
(2)利用冲裁取得的一定外形的制件或坯料是落料的成品,将材料以封闭的轮廓分离开来,获得的带孔的制件是冲孔的成品。冲孔中的冲落部分为废料。(3)凹凸模间隙影响冲裁件的断面质量、模具寿命、卸料力、推件力、冲裁力和冲裁件的尺寸精度。间隙过大,造成冲裁件边缘粗糙,卸料力和推件力小;间隙过小,造成上下裂纹不能很好重合,摩擦力大,模具寿命降低。
(4)为保证冲裁件的尺寸要求,并提高磨具的使用寿命,落料时凹模刃口的尺寸应靠近落料件公差范围内的最小尺寸;冲孔时,选取凸模刃口的尺寸靠近孔的公差范围内的最大尺寸。
21.拉深过程中常产生什么缺陷?原因是什么?弯曲时经常会发生什么现象?如何预防?
(1)拉伸过程中的常见缺陷:拉穿和起皱。拉穿是由于a.凹凸模的两个圆角半径过小,易将板料拉穿;b.凹凸模的间隙过小,摩擦力增大,易拉穿工件和擦伤工件表面,且降低模具寿命;c.拉伸系数越小,拉伸件直径越小,变形程度越大,坯料被拉入凹模越困难,易产生拉穿废品;d.润滑不够,表面磨损和摩擦力过大。
起皱现象与坯料的厚度和拉伸系数有关,相对厚度越小或拉伸系数越小,越容易起皱,间隙过大,也容易使拉伸件起皱。
(2)弯曲时容易发生金属破裂。板料越厚,内弯曲半径越小,拉应力越大,越容易弯裂。为防止弯裂,最小弯曲半径应为rmin=(0.25~1)δ(δ为金属板料的厚度)。材料塑性好,则弯曲半径可小些。弯曲时还应尽可能使弯曲线与板料纤维垂直。
22.什么叫焊接?直流电弧焊中正接和反接的特点是什么?(1)焊接是通过加热或加压(或两者并用),使工件产生原子间结合的一种连接方式。
(2)正接是将工件接到电源的正极,焊条(或电极)接到负极;反接是将工件接到电源的负极,焊条(或电极)接到正极。正接时工件温度相对高一些。
23.焊接热影响区分为几部分,各具有何组织、性能特点?
焊接热影响区可分为熔合区、过热区、正火区和部分相变区等。
(1)熔合区:熔化的金属凝固成铸态组织,为熔化金属因加热温度过高成为过热粗晶。在低碳焊接接头中,熔合区强度、塑形和韧性下降,此处接头断面变化,应力集中。熔合区很大程度上决定焊接接头的性能。
(2)过热区:奥氏体晶粒粗大,形成过热组织。塑性韧性降低,对于易淬火硬化钢材,此区脆性更大。
(3)正火区:加热金属发生重结晶,转变为细小的奥氏体晶粒。冷却后得到均匀而细小的铁素体和珠光体组织,力学性能优于母材。
(4)部分相变区:珠光体和铁素体发生重结晶,转变成细小的奥氏体晶粒。部分铁素体不发生相变,但其晶粒有长大趋势。冷却后晶粒大小不均,因而力学性能比正火区稍差。
24.如何防止焊接时的变形? 当对焊件的变形有较高限定时,在结构设计中采用对称结构或大刚度结构、焊缝对称分布结构都可减小或不出现焊接变形。施焊中,采用反变形措施或刚性夹持方法,都可减小焊件的变形。正确选择焊接参数和焊接次序,对减小焊接变形也很重要。对于焊后变形小但已超过允许值的焊件,可采用机械矫正法或火焰加热矫正法加以消除。
25.普通电焊条是由什么组成?各具有什么作用?选用电焊条的原则是什么?(1)普通电焊条是由焊芯和药皮(涂料)两部分组成。焊芯起导电和填充焊缝金属的作用,药皮则用于保证焊接顺利进行并使焊缝具有一定的化学成分和力学性能。
(2)焊条通常是根据工件化学成分、力学性能、抗裂性、耐腐蚀性以及高温性能等要求,选用相应的焊条种类。a.低碳钢和低合金钢构件,一般要求焊缝金属与母材等强度;b.同一强度等级的酸性焊条或碱性焊条的选定,应依据焊接件的结构形状、钢板厚度、载荷性质和钢材的抗裂性能而定。通常对要求塑性好、冲击韧度搞、抗裂能力强或低温性能好的结构。选用碱性焊条。如果构件受力不复杂、母材质量较好,应选用较经济的酸性焊条;c.低碳钢与低合金钢焊接,可按异种钢接头中强度较低的钢材来选用相应的焊条;d.铸钢件含碳量较高,厚度较大,形状复杂,容易产生焊接裂纹,应选用碱性焊条,并采取适当的工艺措施(如加热)进行焊接;e.不锈钢和耐热钢性能特殊,应选用相应的专用焊条,以保证焊缝的主要化学成分和性能与母材相同。
26.什么叫金属的焊接性?如何衡量钢材的焊接性?
(1)金属材料的焊接性是指在限定的施工条件下,焊接成按规定设计要求的构件,并满足预定服役要求的能力。即金属材料在一定焊接工艺条件下,表现出来的焊接难易程度。(2)可用碳当量法来衡量被焊钢材的焊接性。
当w(c)当量<0.4%~0.6%时,钢材塑性良好,淬硬倾向不明显,焊接性良好。当w(c)当量=0.4%~0.6%时,钢材塑性下降,淬硬倾向明显,焊接能力相对较差。当w(c)当量>0.6%时,钢材塑性较低,淬硬倾向很强,焊接性不好。
27.各种材料的焊接特点。(1)低碳钢:含碳量≤0.25%,塑形好,一般没有淬硬倾向,对焊接过程不敏感,焊接性好。不需采取特殊的工艺措施,焊后也不需进行热处理。厚度大于50mm的低碳钢结构,焊后应进行消除内应力退火,低温环境下,应进行焊前预热。可以用各种焊接方法进行焊接,应用最广泛的是焊条电弧焊、埋弧焊、气体保护焊和电阻焊等。
(2)中、高碳钢:含碳量为0.25%~0.6%,随着含碳量的增加,淬硬倾向越加明显,焊接性逐渐变差。中碳钢热影响区易产生淬硬组织和冷裂纹,焊缝金属产生热裂纹倾向较大,焊前必须进行预热,多采用焊条电弧焊,焊后进行相应热处理。高碳钢的焊接特点与中碳钢基本相似,但焊接性更差,预热温度更高,工艺措施更严格,高碳钢焊接一般只限于利用焊条电弧焊进行修补工作。
(3)可焊接低合金结构钢:热影响区的淬硬倾向增加,产生马氏体组织,硬度增高、塑形和韧性下降。钢材强度级别越高,焊接接头的冷裂纹倾向越大。热裂纹倾向不大。对于强度级别高的低合金碳钢,焊前一般均需预热,焊后还应进行热处理。(4)铸铁:熔合区易产生白口在组织,易产生裂纹,气孔,由于铸铁流动性好,一般只进行平焊,采用气焊、焊条电弧焊进行焊补。(5)铜和铜合金:焊前工件需预热,选用较大电流或火焰,焊接过程中易开裂。可用氩弧焊、气焊、碳弧焊、钎焊等
(6)铝和铝合金:氧化铝密度较大,易使焊缝形成夹缝缺陷;铝的导热系数较大,要使用大功率或能量集中的热源;铝的膨胀系数也较大,易产生焊接应力与变形,可能导致裂纹;在熔池凝固中易产生气孔;常需采用垫板进行焊接。常用方法有氩弧焊、气焊、点焊、缝焊和钎焊。
第四篇:金属单元复习题
金属单元复习题
1.某新型“防盗玻璃”为多层结构,每层中间嵌有极细的金属线,当玻璃被击碎时,与金属线相连的警报系统就会立刻报警。“防盗玻璃”能报警,这利用了金属的()A.延展性B.导电性C.弹性D.导热性 2.关于合金的说法正确的是()
A.合金是一种纯净物B.合金中只含有金属元素
C.合金的强度、硬度一般比组成它们的纯金属更高,抗腐蚀性能等也更好 D.铁锈是一种合金
3.铁丝在空气中灼热发红,但不能燃烧,这一事实与下列哪一因素关最密切()A.铁丝的表面积B.氧气的浓度C.燃烧区的温度D.铁的着火点
4.人类开发利用金属单质的年代与金属活动性顺序有着某种联系,因此,人类开发利用金属的年代最迟的金属是()A.铜B.铁C.铝D.铅
5.我国在春秋战国时期就懂得将生铁经退火处理得到相当铸钢的器具(如锋利的宝剑),生铁退火处理的作用是()
A.除硫、磷杂质B.适当降低了含碳量C.渗透合金元素D.改造表面结构性质 6.把一块硬币投入稀盐酸中,过一段时间后溶液变成浅绿色,说明硬币中含有()A.铝B.镁C.铁D.银
7.X、Y、Z三种金属及化合物间发生如下化学反应:Y+ZCl2===Z+YCl2X+ZCl2===Z+XCl2 Y+2HCl===YCl2+H2↑X与稀盐酸不反应。则X、Y、Z三种金属的活动性由强到弱的顺序是()A.Z>Y>XB.X>Y>ZC.Y>X>ZD.Y>Z>X
8.用实验比较铜、铁的金属活动性,直接使用下列试剂不能达到目的的是()A.硫酸亚铁溶液B.硝酸银溶液C.盐酸溶液D.硫酸铜溶液
9.在10-9~107 m范围内,对原子、分子进行操纵的纳米超分子技术往往能实现意想不到的变化。如纳米铜颗粒一遇到空气就会剧烈燃烧,甚至发生爆炸。下列说法正确的是()A.纳米铜属于化合物 B.纳米铜无需密封保存
C.纳米铜与普通铜所含铜原子的种类不同
D.纳米铜颗粒比普通铜更易与氧气发生反应
10.5角硬币的外观呈金黄色,它是铜和锌的合金,市面上有人用它制成假金元宝行骗,小明同学用一种试剂揭穿了他。小明一定不会用的试剂是()A.硫酸铜溶液B.硝酸银溶液C.盐酸D.硝酸钠溶液
11.锂电池是新型的高能电池,以质量轻、电容量大,颇受手机、手提电脑等用户的青睐。某种锂电池的总反应可表示Li+MnO2==LiMnO2。以下说法正确的是()
①该反应中Mn的化合价发生了变化 ②该反应属于化合反应 ③LiMnO2为新型的氧化物④LiMnO2为锂、锰、氧的合金
A.①②B.①③C.②③D.③④
12.向ZnSO4和CuCl2的混合溶液中加入过量的铁粉,等充分反应后,过滤、洗涤、干燥,得到滤渣,则该滤渣中含有的金属是()
A.Zn、FeB.Zn、CuC.Fe、CuD.Zn、Fe、Cu
13.常温下,下列各组物质中相互间能发生化学反应的是()A.碳和氧气 B.铜和硫酸锌溶液 C.铝和氧气 D.氧化铜和水 14.下列有关铁及其化合物的转化关系中,不能实现的是()A.Fe--Fe3O4B.Fe2O3--FeCl3C.Fe--FeSO4D.Fe(NO3)--3FeCl
315.有A、B两块等质量的铁,将A浸入稀硫酸中,将B浸入硫酸铜溶液中,过一会儿同时取出晾干,两块铁的质量mA、mB应该是()A.mA<mBB.mA>mBC.mA=mBD.mA≥mB
16.某同学想用实验证明FeCl3溶液显黄色不是Cl-造成的,下列实验无意义的是()A.观察KCl溶液没有颜色
B.向FeCl3溶液中滴加适量氢氧化钠溶液,振荡后静置,溶液黄色消失 C.FeCl3溶液中滴加适量无色硝酸银溶液,振荡后静置,溶液黄色未消失 D.加水稀释后FeCl3溶液黄色变浅
17、将等质量的ABC三中金属,同时放入三份溶质质量分数相同且足量的稀盐酸中,反应生成氢气的的质量与反应时间的关系如图所示。根据图中的信息,可以得到的正确结论是()提示:ABC三种金属在化合物中都显+2价。A:放出H2的质量是A>B>CB:金属的活动顺序是A>B>C
C:反应速率最大的是AD:相对原子质量是C>B>A18、向AgNO3,Cu(NO3)3,Zn(NO3)3的混合溶液中加入一些铁粉,反应完全后过滤,下列情况不可能存在的是()
A、滤纸上有Ag、Cu、Fe,滤液中有Zn2+、Fe2+B、滤纸上有Ag、Cu、,滤液中有Zn2+、Fe2+ C、滤纸上有Ag、Cu、,滤液中有Cu2+、Zn2+、Fe2+ D、滤纸上有Ag、Cu、Fe,滤液中有Cu2+、Zn2+、Fe2+
19.经过课外学习发现,锰(Mn)也能排入下列金属活动性顺序中:K、Ca、Na、Mg、Al、Mn、Zn、Fe、Sn、Pb、(H)、Cu、Hg、、Pt、Au ⑴用元素符号将上述金属活动性顺序补充完整。
⑵已知锰盐中锰元素显+2价。写出一个有金属锰参加的置换反应方程式:。
20.铝合金材料属于()(填“纯净物”、“混合物”或“单质”)。铝是活泼金属,生活中的铝锅却有较强的抗腐蚀性,原因是()(用化学方程式表示)。如果将铝片投入稀硫酸中,片刻之后才有气泡产生,请用化学方程式表示这一过程:()。
21.要除去FeSO4中含有的CuSO4杂质。可以在其溶液中加入__________,充分反应后,再用____________方法除去杂质;该反应的化学方程式是:__________________________。22.以铁、水、稀盐酸、氧气、稀硫酸、硫酸铜溶液为原料,根据下列化学反应类型,写出相应的化学方程式:
(1)化合反应:______________________________;(2)分解反应:______________________________;
(3)置换反应:__________________,___________________,_____________________。23.已知A、B、C、D四种物质都含有同一种元素,其中A是单质,B是黑色固体,C是红色固体。它们之间存在着如下转化关系:(1)A在不同条件下能够转化成B或C;(2)A和稀硫酸反应有D生成;
(3)在高温条件下,B、C分别和无色气体E反应,都能生成A和另一种无色气体。根据上述
信息,写出下列物质的化学式:
A;C;D;E。
24.小亮在实验室用一块生铁与稀盐酸反应,观察到生铁表面出现,同时发现充分反应后的液体中有少量黑色不溶物。
提出问题:这种黑色不溶物是什么呢? 猜想与假设:这种黑色不溶物中可能含碳。
设计方案:将黑色固体灼烧,若黑色固体中含有碳,就会有________气体生成,要想进一步确定这种气体,可以用_______________检验。
进行实验:小亮按设计方案进行实验,得到了预想的结果。
解释与结论:由此小亮得出结论:(1)生铁中___碳(含/不含);
(2)碳与稀盐酸_____反应(能/不能),铁与稀盐酸___(能/不能)反应。25.如图测所示,弹簧秤下挂着一重物A,烧杯中盛有溶液B,试根据 要求回答下列问题:(1)若A为铁块,B为稀硫酸,则将A放入B中,过一会儿,弹簧秤的读数将(填 “变大”、“变小”或“不变”,下同)_____________;(2)若A为铁块,B为硫酸铜溶液,则将A放人B中,过一会儿,弹簧秤的读数将_________。
26.如图所示,大试管底部有螺旋状的光亮的铁丝,把试管倒插入水中,放置一周后,观察到铁丝表面有______生成,试管内的水面将_______,产生以上现象的原因是__________________________。27.(2008年烟台市)置换反应是化学反应的基本类型之一。
(1)金属与盐溶液之间的置换反应,一般是活动性较强的金属可把活动性较弱的金属从其盐溶液中置换出来,如铜和硝酸银溶液反应,其化学方程式为。(2)非金属单质也具有类似金属与盐溶液之间的置换反应规律,即活动性较强的非金属可把活动性较弱的非金属从其盐溶液中置换出来,如在溶液中可发生下列反应: C12+2NaBr=2NaCl+Br2 ;I2+Na2S=2NaI+S↓+Br2;Br2+2KI=2KBr+I2由此可判断: ①S、C12、I2、Br2活动性由强到弱顺序是。②下列化学方程式书写错误的是。(A)C12+2NaI=2NaCl+I
2(B)I2+2KBr=2KI+Br2
(C)Br2+Na2S=2NaBr+S↓
(D)C12+K2S==2KCl+S↓
28.(2008年眉山市)同学们一起探究铝、铁、铜三种金属的活动性,小刚同学设计了用铜丝、铁丝、铝丝和稀盐酸,只用一只试管,取一次盐酸的探究方案。请你和他们一起完善下表的探究方案并回答有关问题。(1)
结论:金属活动性Al > Fe > Cu
(2)将铝丝插入前应进行的操作是 ;(3)小华同学认为在小刚设计的方案中,只要补充一个实验,就可得出Al > Fe > H >Cu的结论。小华要补充的实验是;
(4)小强同学认为要得到Al > Fe > H >Cu的结论,不必做补充实验,中需将小明同学方案中插入金属的顺序调整即可,你认为调整后插入金属的顺序是。
29、为了比较Ag、Cu、Fe三种金属的活动性,小明选择了三种药品来进行试验(),小芳认为还可以选择另外的三种药品,你认为是()。
30.生铁和钢都是铁的合金,生铁中碳的含量在2.0%~4.3%之间,钢中碳的含量在0.03%~2.0%之间。将一块质量为8.5 g的铁合金放入锥形瓶中,再向锥形瓶中加入91.9 g稀硫酸,恰好使铁合金中的铁完全反应(碳不溶于稀硫酸,铁合金中其它元素含量很低,可忽略不计),测得生成H2的质量为0.3 g。试根据计算回答:
(1)该铁合金是生铁还是钢?
(2)反应后所得溶液的溶质质量分数。
31.小娟想测定Cu—Zn合金和Cu—Ag合金中铜的质量分数,实验室只提供了一瓶末标明溶质质量分数的稀盐酸和必要的仪器。
(1)你认为她能测出铜的质量分数的合金是合金。
(2)小娟取该合金的粉末32.5 g,与足量该盐酸充分反应后,经测定产生了0.4 g气体,请你帮助她计算出该合金中铜的质量分数?
(3)若想测出该盐酸的溶质质量分数,你认为实验时必须提供和测出的数据是(选填序号)A.参加反应的合金质量B.参加反应的稀盐酸质量 C.生成的气体质量D.参加反应的稀盐酸的体积和密度
第五篇:功能材料复习题
(试卷)周根柱功能材料
一、名词解释(共21分,每个3分)
1.电导率:电阻率的倒数或它是表征材料导电能力大小的特征参数)。
2.铁电性:某些晶体在一定的温度范围内具有自发极化(其极化方向可以因外电场的反向而反向)晶体的这种性质称为铁电性。
3.居里温度:铁电体失去自发极化使电畴结构消失的最低温度(或晶体由顺电相到铁电相的转变温度)。
4.介电常数:介电常数是衡量电介质储存电荷能力的特征参数。
5.功能材料:是一大类具有特殊电、磁、光、声、热、力、化学以及生物功能的新型材料,是信息技术、生物技术、能源技术等高技术领域和国防建设的重要基础材料,同时也对改造某些传统产业,如农业、化工、建材等起着重要作用。
6.超导体临界磁场Hc:超导电性可以被外加磁场所破坏。对于温度为T(T<Tc)的超导体,当外磁场超过某一数值Hc(T)的时候,超导电性就被破坏了,Hc(T)称为临界磁场。7.正压电效应:压电效应(piezoelectriceffect)是指对材料施加压力,张力或切向力时,发生与应力成比例的介质极化以及在晶体的两端出现正负电荷的现象.这种由于应力诱导而极化,称正压电效应.8.气敏陶瓷:气敏陶瓷对某一种或某几种气体特别敏感,其阻值将随该种气体的浓度(分压力)作有规则的变化,检测灵敏度通常为百万分之一的量级,个别可达十亿分之一的量级,故有“电子鼻”之称。
9.纳米量子尺寸效应:当纳米粒子的尺寸下降到某一值时,金属粒子费米面附近电子能级由准连续变为离散能级;纳米半导体微粒存在不连续的最高被占据的分子轨道能级和最低未被占据的分子轨道能级,使得能隙变宽的现象,被称为纳米材料的量子尺寸效应。10.逆压电效应:在晶体上施加电场而引起介质极化时,如果产生了与电场强度成比例的变形或机械应力时,称其为负压电效应.11.高温超导:具有高临界转变温度(Tc)能在液氮温度条件下工作的超导材料。12.快淬技术:它是将熔化的液态合金急速冷却至室温,制得非晶态或纳米晶态合金。13.燃烧电池:是一种将燃料和氧化剂之间的化学能持续地转变为电能而电极、电解质体系基本保持不变的系统。
14.光生伏特效应:当光量子的能量大于半导体禁带宽度的光照射到结区时,光照产生的电子-空穴对在结电场作用下,电子推向n区,空穴推向p区;电子在n区积累和空穴在p区积累使P-n结两边的电位发生变化,p-n结两端出现一个因光照而产生的电动势,这一现象称为光生伏特效应。(二)填空(共30个空)(1)世界上第一块气敏陶瓷是用二氧化锡和氯化钯混合再研得极细,在高温炉中烧结而成的.它颗粒极细,吸附气体能力很强,此外,它又能显半导体性质,随吸附气体多寡,可改变导电率,所以,气敏陶瓷又被称作“电子鼻”。
(2)将超导体冷却到某一临界温度(TC)以下时电阻突然降为零的现象称为超导体的零电阻现象。
3.这种由于形变而产生的电效应,称为压电效应。材料的压电效应取决于晶体结构的不对称性,晶体必须有极轴,才有压电效应。
4.制造透明陶瓷的关键是消除气孔和控制晶粒异常长大。
5.常见的功能材料制备方法有溶胶-凝胶法,快淬火快凝技术,复合与杂化 6.功能材料的表征方法有材料组成表征、材料结构表征、材料性能表征。7.电热材料的种类繁多,根据用途主要分为金属型和非金属性两种。8.电热材料就是电流通过导体将放热,利用电流热效应的材料。
9.热敏电阻按其基本性能的不同可分为负温度系数NTC型热敏电阻、正温度系数PTC型热敏电阻、临界温度CTR型热敏电阻三类。
10.热释电系数除与温度有关外,还与晶体所处状态有关。11.气敏元件有多种形式,但广泛使用的是半导体式和接触燃烧式。
12.超导体有3个基本的临界参数分别是临界温度Tc、临界磁场Hc、临界电流IC。13.超导材料的基本物理性质有零电阻现象、完全抗磁性。
14.在超导应用中,一般分为低温超导材料和高温超导材料应用两大方面。
15.物资的磁性来源于原子的磁性,原子的磁性来源于电子的轨道运动及自旋运动,它们都可以产生磁矩。
16.在原子系统中,在外磁场作用下,感生出与磁场方向相反的磁矩现象称为抗磁性。17.铁氧体是将铁的氧化物与其他某些金属氧化物用制造陶瓷的方法制成的非金属磁性材料。
18.从铁氧体的性质和用途来看,可将其分为软磁、永磁、旋磁、矩磁和压磁铁氧体等五大类。
19.有机磁性材料可分为结构型和复合型两大类。
20.黏接磁材的制备通常采用压延、注塑、挤压、压缩成形这四种工艺,其中前三种工艺采用热塑性混炼物,压缩成形则主要采用热固性黏接剂。
21.太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。
22.硅基材料太阳能电池按结晶状态可分为单晶硅太阳能电池、多晶硅太阳能电池和非晶硅太阳能电池三类。
23.按化学电源的工作性质及储存方式,可将化学电池分为:原电池、蓄电池、储备电池和燃料电池。
24.热电材料是一种能将热能和电能相互转换的功能材料。
25.一般情况下智能材料由基体材料、敏感材料、驱动材料和信息处理器四部分构成。26.光功能材料包括光学、光电子学、光子学材料。(三)判断题
(1)光学材料主要是指光介质材料,还有光功能材料,光纤材料是光介质材料,而激光材料是光功能材料。(正确)
(2)按致晶单元与高分子的连接方式,可分为主链型液晶和侧链型液晶。主链型液晶大多数为高强度、高模量的材料,侧链型液晶则大多数为功能性材料。(正确)
(3)光化学反应的可表示为光化学反应中起反应的分子数与吸收的光量子数之比,在光化学反应中,量子收率φ值的变化范围极大,大可至上百万,小可到很小的分数。φ≤1时是直接反应;φ>1时是连锁反应。(正确)
(4)根据分离膜的分离原理和推动力的不同,可将其分为微孔膜、超过滤膜、反渗透膜、纳滤膜、渗析膜、电渗析膜、渗透蒸发膜等。(正确)
(5)激光材料是光介质材料,光纤材料而是光功能材料。(错误)两者互换
(6)在一个原子体系中,在光和原子体系的相互作用中,自发辐射、受激辐射和受激吸收总是同时存在的。是否能得到光的放大就取决于高、低能级的原子数量之比。(正确)(7)与超导合金材料相比,元素超导体具有塑性好、易于大量生产、成本低等优点。(错误)
(8)与实用高温超导材料相比,低温超导材料的最大优势在于它可能应用于液氮温区。(错误)
(9)铁氧体主要应用于高频技术,例如无线电、电视、自动控制等很多方面。(正确)(10)硬磁铁氧体是铁氧体中发展最早的材料。(错误)(11)永磁铁氧体是六角晶系铁氧体,又称M型铁氧体。(正确)(12)光生伏特效应是光照引起P-N结两端产生电动势的效应。(正确)
(13)化学电源是将物质化学反应所产生的能量直接转化成电能的一种装置。(正确)(14)储氢合金不仅具有安全可靠、储氢能耗低、单位体积储氢密度高等优点,还有将氢气纯化、压缩的功能,是目前最常用的储氢材料。(正确)
1、常用的红外探测器材料有哪些?
红外探测器材料主要指热电材料,可依其运作温度分为三类:(1)碲化铋及其合金,是目前被广为使用于热电致冷器的材料。(2)碲化铅及其合金,是目前被广为使用于热电产生器的材料;(3)硅锗合金,以硅、锗为衬底,制备的大规格碲镉汞薄膜材料,此类材料亦常应用于热电产生器;(4)多色碲镉汞材料,即分子束外延生长的掺杂型多层异质外延薄膜材料;(5)量子阱红外探测器材料,是以GaAs作为量子阱材料,GaAlAs作为量子势垒材料,选择合适的量子阱厚度和势垒材料组分。
2、怎样理解物质分子中无不成对电子时呈抗磁性?
由于原子核外电子环流的作用使物质具有的磁特性。当所产生的磁性作用在与外加磁场相反的方向时产生屏蔽,则称为抗磁性。如物质中存在不配对电子时,则出现顺磁性,而且可超过任何的抗磁性。所以,分子中无不成对电子时,物质呈抗磁性。
3.金属贮氢材料有哪些主要系列,各有哪些特点和应用。①镁系贮氢合金。主要有镁镍、镁铜、镁铁、镁钛等合金。具有贮氢能力大(可达材料自重的5.1%~5.8%)、价廉等优点,缺点是易腐蚀所以寿命短,放氢时需要250℃以上高温。②稀土系贮氢合金。主要是镧镍合金,其吸氢性好,容易活化,在40℃以上放氢速度好,但成本高。③钛系贮氢合金。有钛锰、钛铬、钛镍、钛铁、钛铌、钛锆、钛铜及钛锰氮、钛锰铬、钛锆铬锰等合金。其成本低,吸氢量大,室温下易活化,适于大量应用。④锆系贮氢合金。有锆铬、锆锰等二元合金和锆铬铁锰、锆铬铁镍等多元合金。在高温下(100℃以上)具有很好的贮氢特性,能大量、快速和高效率地吸收和释放氢气,同时具有较低的热含量,适于在高温下使用。⑤铁系贮氢合金。主要有铁钛和铁钛锰等合金。其贮氢性能优良、价格低廉。
4.在介电陶瓷多晶体中,为什么说压电体也是铁电体,热释电体也是压电体。
介电材料,它们是绝缘体,并不存在其中载流子在电场作用下的长程迁移,但仍然有电现象。这种电现象的产生,是因为材料中也存在荷电粒子,尽管这些荷电粒子被束缚在固定的位置上,但可以发生微小移动。这种微小移动起因于材料中束缚的电荷,在电场作用下,正负束缚的电荷重心不再重合,从而引起电极化,如此将电荷作用传递开来。
介电材料的电学性质是通过外界作用,其中包括电场、应力、温度等来实现的,相应形成介电晶体、压电晶体、热释电晶体和铁电晶体,并且依次后者属于前者的大类,其共性是在外力作用下产生极化。
5、什么是功能陶瓷,功能陶瓷的分类主要有哪些? 答:功能陶瓷是指具有电、光、磁以及部分化学功能的多晶无机固体材料。其功能的实现主要来自于它所具有的特定的电绝缘性、半导体性、导电性、压电性、铁电性、磁性、生物适应性等。
主要有,电子陶瓷,超导陶瓷,磁性陶瓷,敏感陶瓷,生物陶瓷,光学陶瓷等。
6、什么是超导材料?超导材料的两个基本特征?
答:超导材料:在一定温度以下,材料电阻为零,物体内部失去磁通成为完全抗磁性的物质。
超导材料的两个基本特征:零电阻效应、迈斯纳效应。
7、什么是纳米材料?简述纳米材料的主要制备方法和工艺。
答:纳米材料:通常定义为材料的显微结构中,包括颗粒直径、晶粒大小、晶界、厚度等特征尺寸都处于纳米尺寸水平的材料。(指材料块体中的颗粒、粉体粒度在10-100nm之间,使其某些性质发生突变的材料)
主要制备方法和工艺:气相冷凝法、球磨法、非晶晶化法、溶胶-凝胶法。
8、什么是正温度系数热电材料、负温度系数热电材料?
答:正温度系数热电材料:温度升高,材料的电导率增加。这类材料多半时具有半导性的金属氧化物和过渡金属的复合氧化物。
负温度系数热电材料:温度升高,材料的电导率下降。这类材料主要是掺杂半导体陶瓷如镧掺杂钛酸钡,钛酸锶陶瓷等。
9、什么是生物陶瓷材料?它应具有哪些要求? 答:生物陶瓷材料:用于人体器官替换、修补以及外科矫形的陶瓷材料。
要求:具有良好的力学性能,在体内难于溶解,不易氧化,不易腐蚀变质,热稳定性好,耐磨且有一定的润滑性,和人体组织的亲和性好,组成范围宽,易于成形等。
10.简述什么是正压电效应?什么是逆压电效应?
答:当对压电陶瓷施加应力时,压电陶瓷收缩变形,压电陶瓷内部的剩余极化强度减小,瓷体内表面束缚电荷变少,从而在瓷体两个端面产生多余的自由电荷,就会产生放电现象这种由“压”产生“电”的效应叫正压电效应。当对压电陶瓷施加一个沿极化方向的电场时,压电陶瓷的剩余极化强度发生变化,使压电陶瓷发生伸缩变形,这种由 “电”产生“伸缩”的效应叫逆压电效应。
11.烧结型SnO2气敏陶瓷按加热方式不同可分为哪两种类型?各有什么特点?
答:可分为直热式和旁热式两种类型。直热式的特点是制备工艺简单,功耗小,但热容量小,易受环境影响,;旁热式的特点是元件热容量大同时避免了测量回路和加热回路之间的相互影响。
12.分析铁电体与反铁电体二者有何区别;为什么反铁电体可用来制作大功率储能电容器? 答:二者区别:铁电体是单电滞回线,反铁电体是双电滞回线。当施加电场撤除即E=0时,铁电体还保持较大的剩余极化,而反电体当E=0时极化同时消失。(5分)由于铁电体存在剩余极化,大部分输入的能量被储存在材料中,只有很小一部分释放出来,非铁电体不存在剩余极化,输入能量的绝大部分以电能形式释放出来。
13、什么是梯度功能材料?其主要特征是什么? 答:梯度功能材料是两种或多种材料复合成结构和组分呈连续梯度变化的一种新型复合材料。
主要特征:(1)材料的结构和组分呈连续梯度变化;(2)材料的内部没有明显的界面;(3)材料的性质也相应呈连续梯度变化
14、简述形状记忆过程。①马氏体的自适应形成
由母相中形成马氏体时,不同取向的马氏体变体的应变在母相中的方向不同。当某一变体在母相中形成时,产生某一方向的应变场,随变体的长大,应变能不断增加,变体的长大越来越困难。为降低应变能,在已形成的变体周围会形成新的变体,新变体的应变方向与已形成的变体的应变场互相抵消或部分抵消。有均匀体积变化,无明显形状改变。②马氏体的再取向
对组织为自适应马氏体的样品施加外力时,在较小的应力作用下,马氏体变体以其应变方向与外加应力相适应而再取向。即变体的应变方向与外加应力方向最接近的变体通过吞并其它应变方向与外加应力不相适应的变体而长大,直至整个样品内的各个不同取向的变体最终转变成一个变体。这时,由母相转变为马氏体所产生的相变应变不再互相抵消,而是沿外加应力方向累积起来,样品显示出宏观形状的变化。卸去应力后,变形保持下来。③马氏体的逆转变
将变形马氏体加热到As点以上,马氏体将发生逆转变,因为马氏体的对称性低,转变为奥氏体时只形成几个位向,甚至只有一个位向——母相原来的位相。逆转变完成后,便完全恢复了原来母相的晶体,宏观变形也完全恢复。