导学案:有理数的乘方2

时间:2019-05-15 13:07:59下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《导学案:有理数的乘方2》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《导学案:有理数的乘方2》。

第一篇:导学案:有理数的乘方2

导学案:有理数的乘方(2)

学习目标:

1、熟练进行有理数的混合运算

2、及时纠正运算中的错误,进一步培养学生正确迅速的运算能力,培养学生严谨的学习态度

重难点:有理数的四则混合运算

一、自主学习:

(一)复习回顾:

1、有理数的加、减、乘、除及乘方的运算法则

2、加入乘方后,有理数的混合运算的顺序如何?

(二)导学:

有理数的混合运算顺序:(1)先,再,最后;(2)同级运算,从左到右进行;(3)如有括号,先做的运算,按小括号、中括号、大括号依次进行。

方法规律:

(1)有理数运算分三级运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第级运算。

运算顺序是:先算高级运算,再算运算;同级运算,再按从左至右的顺序运算。

(2)在运算过程中注意运算律的运用

(三)完成P43例3及P44的练习

二、合作探究

1、计算:

114(1)×(2)311÷(2)÷ 425

33(2)121(12)÷6×(-3 47

33519143(3)(-3()22(1)3()2()3 25194925222、观察下面行数:

①-3,9,-27,81,-243,729,…

② 0,12,-24,84,-240,732,…

③-1,3,-9,27,-81,243,…

(1)第①行数有什么规律?

(2)第②行数与第①行数有什么关系?

(3)第③行数与第①行数有什么关系?

(3)取每行数的第10个数,计算这三个数的和

三、学习致用:

332211×23÷3(3)3÷(1、计算:2)

2、x、y为有理数,且x12(y3)20,求x23xy2y2的值;

3、(0.25)

2009×420104、一根1米长的绳子,第一次剪去11,第二次剪去剩下的,如此剪下去,第22

六次后剩下的绳子还有1厘米长吗?为什么?

四、能力提升 已知ab2(b1)20,值。

试求111ab(a1)(b1)1(a2)(b2)a(3)(b的3)

第二篇:《有理数》导学案

1.2.1《有理数》导学案

□ 自学导读

【学习目标】

1、理解有理数的意义,正确理解整数、分数与有理数之间的关系.2、能将有理数按要求分类,了解0在有理数分类的作用.【重、难点】

有理数的概念及分类.其中有理数的二种分类既是重点,也是难点.【读书思考】

1、有理数及其相关概念

________、________和________统称为整数。________和________统称为分数。________和________统称有理数。

〔注〕因为有限小数和无限循环小数都可以化为分数,所以有限小数和无限循环小数也都是有理数。

2、有理数的分类

(1)按定义分:(2)按符号分:

----------有理数--------

----------有理数------------〔注〕分类要按同一个标准,做到不重复不遗漏。

【典题解析】例1.判断.(1).比0大的数是正数,比0小的数是负数,0不是正数也不是负数。()

(2).温度计中显示0℃时,表示没有温度。((3).有理数分为正有理数和负有理数。((4).有理数分为整数和分数。((5).1是最小的正数。()))))(6).-1是最大的负整数,没有最小的负整数。(2317

例2:把有理数6.4,-9,3,+10,4,-0.021,-1,3,-8.5,25,0,100按正整数、负整数、正分数、负分数分成四个集合。

正整数集合

正分数集合,负整数集合,负分数集合 

□ 达标检测

【基础训练】

1、选择题:-100不是()A.有理数;B.自然数;C.整数;D.负有理数。

2、下列说法中,正确的是()

A.0是最小的整数B.1是最小的正整数C.1是最小的整数

个有理数不是正数就是负数 D.一

183.填空:在-7,10.1,-,89,0,-0.67,这些有理数中,65

(1)整数是;

(2)分数是.4.填空:在-45,1,0,8.9,-6,-3.2,+108,-0.05,28,-9这些有理75

数中,(1)正整数是;

(2)负整数是;

(3)正分数是;

(4)负分数是.5、下列说法中正确的是〔〕

A、有最小的自然数,也有最小的整数B、没有最小的正数,但有最小的正整数

C、没有最小的负数,但有最大的负数D、0是有理数中最小的数.6、有公共部分两个数集是〔〕

A、正整数集合与负整数集合B、整数集合与分数集合C、负数集合与整数集合D、负分数集合与正分数集合7、、按某种规律在横线上填上适当的数:1,-4,9,-168、某种商品的标准价格是400元,但随着季节的变化,商品的价格可浮动±5%.(1)±5%的含义分别是什么?

(2)请你算出商品的最高价和最低价;

(3)某商家将该商品的零售价格定在450元,受到物价部门的处罚,请分析处罚原因.探索创新

9、小明说:“整数和分数统称有理数,也可以说成有限小数和无限循环小数统称有理数,因为整数可以看成分母为1的分数,所以任何一个有理数都可以化成分数”小明的说法对吗?你能帮助他解释吗?

10、如果课桌的高度比标准高度高2㎜记作+2㎜,那么比标准高度低3㎜记作什么?现有5张课桌,量得它们的尺寸与标准高度比较分别是+1㎜,-1㎝,0㎜,+3㎜和-1.5㎜,若规定课桌的高度比标准的高度最高不能超过2㎜,最低不能低于2㎜才算合格,那么上述5张课桌有几张合格?

第三篇:有理数乘方说课稿

有理数乘方说课稿 各位领导、各位老师:

上午好!非常高兴有机会和大家共同交流,谨此向各位评委、各位老师学习。

今天我说课的内容是人教版七年级数学上册“有理数乘方”第一课时的内容。根据新课程标准提出的“让学生亲身经历将实际问题抽象成数学模型并进行解释和运用的过程,从而使学生在对数学理解的同时,在思维能力、情感态度和价值观等方面得到进步和发展”的理念。我在设计中力求“自主探索、动手实践、合作交流”成为学生学习的主要方式。接下来我将对本节课的设计从以下四个方面加以说明。

一、教材分析

1、教材的地位与作用:

有理数乘方是有理数的一种基本运算。从教材编排的结构上看,共需四个课时,本课为第一课时,是在学生学习加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广与延续,又是后面继续学习有理数混合运算、科学记数法和开方的基础,起到承前启后、铺路架桥的作用。

2、教学目标: 根据新课标的要求及七年级学生的认知水平,我将制定本节课的教学目标如下: ⑴、知识与技能:

让学生理解并掌握有理数的乘方,幂,底数,指数的概念及意义;能够正确进行有理数的乘方运算。⑵、过程与方法:

在生动的情景中让学生获得有理数乘方的初步体验;培养学生观察、分析、归纳、概括的能力;经历从乘法到乘方的推导过程,从中感受转化的数学思想。⑶、情感、态度和价值观:

让学生通过观察、推理,归纳出有理数乘方的符号法则,增进学生学好数学的自信心;让学生经历知识的拓展过程,培养学生的探究能力与动手操作能力,体会与他人合作交流的重要性。

3、教学重点与难点:

有理数乘方的意义及运算是本节课的教学重点,而有理数乘方中幂,指数,底数的概念及其相互间关系的理解是本节课的教学难点。

二、教法学法

1、学情分析:

在知识掌握方面,由于学生刚学完有理数的加、减、乘、除运算,对许多概念、法则的理解不一定很深刻,容易造成知识的遗忘与混淆。所以在本节课的学习中应全面系统的加以讲述。在知识障碍方面,学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象。所以在本节课的教学中应予以简单明白,深入浅出的分析。

在学生特征方面:由于七年级学生具有好动、好问、好奇的心理特征。所以在教学中应抓住学生这一特征,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终在课堂上;另一方面要创造条件与机会,让学生发表见解,发挥学生学习的主动性。

2、教学策略:

根据本节课的教学目标,教材内容并结合七年级学生的理解能力和思维特征。我将以多媒体为教学平台,采用启发式教学法与师生互动式教学模式。通过精心设计的问题与活动,不断创造思维兴奋点,让学生在学习过程中亲自动手操作,探索结论。教给学生多观察、勤动手、大胆猜、肯钻研的研讨式学习方法,使学生在动脑、动手、动口的过程中获得充足的体验与发展,从而调动起学生的学习主动性与积极性。

三、教学过程

1、设置游戏,引入新课:

首先借助多媒体及课前准备好的硬纸片让全体学生共同做两个折纸游戏。

游戏一是把面积为1的长方形硬纸片沿中间对折,使两边能够完全重合。引导学生思考:如此折叠五次后所得长方形的面积是多少?得出算式: × × × ×;游戏二是让学生把长方形纸片对折后再沿折痕剪开,将得到的所有纸片重合放置后再对折、剪开。如此操作五次之后共有多少张硬纸片?得出算式:2×2×2×2×2;最后引导学生思考这两个算式的特点,引入新课。

这个环节通过学生动手操作,使其从直观上理解了乘方运算的特点,并为后续学习起到了导航作用。

2、合作交流,探索新知:

先让学生分组讨论下面算式特点:① × × × ×,②2×2×2×2×2,③(-3)×(-3)×(-3)×(-3),④(-0.3)×(-0.3)×(-0.3)接着让学生思考正方形面积与边长a的关系,正方体体积与棱长a的关系,得出:a·a=a ,a·a·a=a。然后让学生类比出上面四个算式的记法与读法,最后引导学生猜想:a·a·……·a的结果,总结出幂、底数与指数的概念。n个a这个环节的设计意图是让学生从游戏结果出发,通过正方形面积与正方体体积的表示方法,类比出乘方的表示形式,总结出相关概念。既体现了学生思维的过程,又渗透了转化思想。

3、迁移训练,总结规律:

在这个环节中,我首先要求学生把算式①﹙-4﹚×﹙-4﹚×﹙-4﹚,②﹙-2﹚×﹙-2﹚×﹙-2﹚×﹙-2﹚,③﹙-﹚×﹙-﹚×﹙-﹚,④﹙-﹚×﹙-﹚写成乘方的形式,并说出其底数和指数分别是多少?接着评析例1,结合例1的解题结果,总结出负数的幂的正负的规律。然后启发学生思考将例1各题的底数换为正数或0,结果会怎么样呢?在学生练习讨论的基础上总结出有理数乘方的符号规律。即:负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何正整数次幂都是0。最后结合例2,要求学生掌握计算器的用法,并运用计算器完成课本上的练习,进一步理解有理数乘方的符号规律。本环节的设计意图是通过变换例1的条件让学生加以练习,进而归纳出结论。有利于调动学生学习的兴趣,使其初步接触到数学的奇妙,提高其积极性与主动性。

4、应用新知,尝试练习:

本环节我主要设计了两组练习,第一组练习是以运用符号规律为目的,让学生通过计算﹙-2﹚、-2、﹙ ﹚,进一步掌握有理数乘方符号规律的运用方法,并使其在对比﹙-2﹚ 与-2,﹙ ﹚ 与 的基础上总结出:当底数为负数和分数时,一定要用括号把底数括起来。第二组练习是以乘方的实际应用和综合应用为目的而设计的,共两个习题。希望借助第一题帮助学生学会运用所学的乘方知识解决实际问题,促使其树立一个学数学、用数学的思想。而第二题则是乘方与有理数大小比较的综合应用,可帮助学生提高数学分析能力和综合解题能力。

5、归纳小结,形成体系:

首先鼓励学生畅所欲言的总结本节课的收获与体会;然后帮助学生自主建构知识体系;接着布置本节课的课内与课外作业;最后说一下本节课的板书设计。

四、设计说明

本节课的教学设计,依据了《新课程标准》的要求,立足于学生的认知基础来确定适当的起点与目标。内容安排是从引入概念出发,到有理数乘方符号规律的发现与应用,逐步展示知识的过程,使学生的思维层层展开、逐步深入。在教学中利用多媒体及学具辅助教学,展示图片与动画,使学生体会到数学无处不在,运用数学无时不有,并能从数学的角度发现和提出问题。如从简单的折纸游戏中就可得出不同类型的运用乘方问题,并能运用所学的数学知识和方法去探索、研究和解决。体现了新课标的教学理念。

以上是我对本节课的设想,不足之处还请各位领导,各位老师多批评指正!谢谢!

第四篇:有理数的乘法导学案

有理数的乘法导学案(第1课时)

学习目标

1、知识与技能目标:掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。

2、能力与过程目标:经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。

3、情感与态度目标:通过学生自己探索出法则,让学生获得成功的喜悦。学习重点、难点

重点:运用有理数乘法法则正确进行计算。

难点:有理数乘法法则的探索过程,符号法则及对法则的理解。

教学过程

一、导课:在小学里我们已经学习了正有理数和零的乘法运算,比如3×2 = 6 我们知道:3×2 = 3 + 3= 6

计算下列各式的值:(-2)+(-2)=(-2)+(-2)+(-2)=

(-2)+(-2)+(-2)+(-2)=(-2)+(-2)+(-2)+(-2)+(-2)= 猜想下列各式的值:(-2)×2=(-2)×3=(-2)×4=(-2)×5=

二、设疑自探: 利用以上结论计算下面的算式,你能发现有什么规律?(-3)×3=(-3)×2=(-3)×1=(-3)×0=按照上述的规律,下面的空格里可以各填什么数?从中可以归纳出什么结论?(-3)×(-1)=(-3)×(-2)=(-3)×(-3)=

三、探究归纳:

我们已经知道两个正数相乘结果是正数,现在我们从符号和绝对值两个方面来研究一下三组,看看他们有什么特点

第一组:(-3)×3=-9(-3)×2=-6(-3)×1=-3

第二组:(-3)×(-1)=3(-3)×(-2)=6(-3)×(-3)= 9

第三组:(-3)× 0 =0

有理数乘法法则:两数相乘,得正,得负,并把相乘。任何数与0相乘得。

非0两数相乘,关键(步骤)是什么?

(1)确定积的;(2)求出之积。

例1计算:⑴(-3)×9=⑵(-5)×(-7)=

(3)9×(-1)=(4)(-9)×(-1)=

(5)(-6)×(-1)=(6)6×(-1)=

归纳:一个数乘以(-1)得到

例2计算(-111)×(-2)=3× =(-3)×(-)=233

归纳:乘积是1的两个数互为。

四、课堂练习: 30页练习题

五、运用拓展:

1、自编习题

第1、2题:正整数相乘、正分数相乘;第3、4题:负整数相乘、负分数相乘

第5、6题:与

1、-1相乘;第7、8题:正数、负数分别于0相乘

第9题:正整数与正分数相乘;第10题:负整数与负分数相乘

2、填空(用“>”或“<”号连接):

(1)如果a<0,b<0,那么ab0;(2)如果a<0,b > 0,那么ab0;

(3)如果 a > 0,b > 0,那么ab0

(4)如果ab<0,那么a0,b0或者a0,b0

(5)如果 ab > 0,那么a0,b0或者 a0,b0

(6)如果 ab = 0,那么___________

3、计算:(1).(-6)×(-4+1-6)(2).(-3.7+1.3)×

3(3).(16-26+5)×(-3.4-1.6)(4).︳-21-19︳×(-2.9+1.1)

六、小结:

1、本节课你学到了什么?

2、本节课你印象最深的是什么?

第五篇:有理数除法导学案7

有理数的除法导学案

学习目标:

1、使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。

2、让学生理解有理数倒数的意义,了解有理数除法也可分为商的符号确定和绝对值运算两部分组成。

3、知道除法是乘法的逆运算,0不能作除数,培养学生的逆向思维。

学习重难点:

重点:有理数的除法法则和倒数概念。

难点:对0不能作除数与0没有倒数的理解,以及乘法与除法的互换。

自学指导

一、预习课文53----54页有关知识填空

1、倒数:

(注意:一个正有理数的倒数仍是正有理数;一个负有理数的倒数仍是负有理数;0没有倒数。即:a(a≠0)的倒数是1/a,0没有倒数。)

2、除以一个不等于零的数,等于乘以这个数的,用字母表示为:a÷b=。(注意:这表明除法可以转化为乘法来进行)

3、同号两数相除得,异号两数相除得,零除以任何一个不等于零的数都得。合作探究

1.写出下列各数的倒数:

(1)5/6;(2)3/7;(3)–5;(4)1;(5)–1;(6)0.22、计算下列各题:

(1)(-18)÷6;(2)(-1/5)÷(-2/5);(3)6/25÷(-4/5)。

注意:先确定符号,再算数值。

3、简下列分数:

(1)-12-24(2)4-16

解:

4、算下列各题:

(1)(解:-17417473-)÷(-6);(2)-3.5÷×(-)。6846

能力提升

6733.5246784

1、计算:(1)(2)

2、下列计算正确吗?为什么?

3÷11 ÷44

=3÷1

=3

达标测评

1、若ab<0,则a/b的值是()

A、大于0B、小于0C、大于或等于0D、小于或等于02、下列说法正确的是()

A、任何数都有倒数B、-1的倒数是-1

C、一个数的相反数必是分数D、一个数的倒数必小于13、若x=1/x,则x=。

4、倒数等于它本身的数是。

5、若a、b互为倒数,则ab=。

6、计算:

(1)((3)(-

3.化简下列分数:-3618)÷6(2)(-18)÷(-12)÷(-)55395)÷3(4)(-6)÷(-4)÷(-)44

(1)212547(2)(3)(4)1871

2我的收获:

1、有理数的除法是乘法的逆运算,会求一个数的倒数。

2、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。

3、0不能作除数。

下载导学案:有理数的乘方2word格式文档
下载导学案:有理数的乘方2.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    有理数乘方第2课时 教案3

    ! 2.5 有理数乘方(第2课时) 【教学目标】 知识目标:1.学生掌握科学记数法,会用科学记数法来表示一个数; 2.了解乘方在生活实际中的简单应用,初步学会对含有较大数字的信息作出合理......

    有理数的乘方说课稿

    《有理数的乘方》说课稿 各位领导、老师上午好,很高兴有机会在这里与大家进行交流。 今天我说课的内容为人教版义务教育教科书七年级数学第一章有理数 第5节 有理数的乘方 第......

    第一章 有理数乘方教案

    第周第节 §1.5.1有理数乘方(2)教案 备课人:李冶 学习目标:1、掌握有理数混合运算的顺序,能正确的进行有理数的加,减,乘除,乘 方的混合运算。 2、培养学生观察,归纳,猜想,推理的能力。......

    《有理数乘方》教学反思

    有理数乘方教学反思 有理数乘方是初中数学教学的重点之一,也是初中数学教学的一个难点。所以教师在教这一节课的教学中要从有理数乘方的意义。有理数乘方的符号法则,有理数乘......

    有理数的乘方教案

    有理数的乘方教案 (一)教学目标 知识技能:在现实背景中,理解有理数乘方的意义.能进行有理数的乘方运算,并会用计算器进行乘方运算.掌握幂的符号法则. 数学思考:培养观察.类比.......

    有理数的乘方的教案

    有理数的乘方一、 学什么1、 知道乘方运算与乘法运算的关系,会进行有理数的乘方运算。2、 知道底数、指数和幂的概念,会求有理数的正整数指数幂。二、 怎样学归纳概念n个a相乘......

    导学案2

    ☆库车二中 高二历史一周复习知识整理及试题精选☆ (第八期)高考一轮复习题目:《新中国的民主政治建设》本期知识点归纳整理:杨倩华使用日期:2014年4月7日——2014年4月13日试题......

    2.5有理数的减法导学案

    第二章有理数及其运算 第五节 有理数的减法【学习目标】 1.经历探索有理数的减法法则的过程,并熟练地进行有理数减法运算; 2.培养观察、分析、归纳及运算能力,通过把减法转化为......