第一篇:2.5有理数的减法导学案
第二章有理数及其运算
第五节 有理数的减法
【学习目标】
1.经历探索有理数的减法法则的过程,并熟练地进行有理数减法运算;
2.培养观察、分析、归纳及运算能力,通过把减法转化为加法,;
【学习方法】自主探究与合作交流相结合。
【学习重难点】重难点:有理数减法法则
【学习过程】
模块一预习反馈
一、学习准备
1.如果两个数只有______不同,那么称其中一个数为另一个数的________,也称这两个数____________.特别地,0的相反数是____。如,负数的相反数是_______________。
2.在数轴上,一个数所对应的点与原点的______正数的绝对值是_______;负数的绝对值是___________;____的绝对值是7.|a|+1____1.3.有理数加法法则:
⑴同号两数相加,______;⑵异号两数相加,绝对值相等时,;绝对值不等时。⑶一个数同0相加。
4.请同学们阅读教材p40—p42,第5节《有理数的减法》
二、教材精读
5.有理数减法法则
(1)如果成都某一天的最高温度为33摄氏度,最低温度为24摄氏度,这天的温差是多少?你是怎样算的?
(2)如果乌鲁木齐某一天的最高温度为7摄氏度,最低温度为—3摄氏度,这天的温差是多少?你是怎样算的?
利用类似方法计算下列各式:
15—6=______,15+(—6)=______,→15—6=15+(—6)=______,19—7=______,19+(—7)=______, →_______________________
12—(—3)=______,12+(+3)=______,→_______________________
10—(—5)=______,10+5=______,→_______________________
9—0=_______,9+0=_______,→_______________________
思考:减法与加法之间是怎样转化的?
归纳:减法法则:减去一个数,等于加上这个数的_______.表示:a—b=a+(—b)
实践练习:计算下列各题:(1)9—(—3)(2)(—5)—2(3)0—7(4)(—7)—0分析:把减法变加法时,被减数不变,减号变成加号,减数变成它的相反数。
解:(1)原式=9+__=__(2)(3)(4)
注意:在进行有理数的减法运算时,关键是如何正确解决符号问题:改变两个符号:(1)运算符号,“减号”变为“加号”,(2)是减数的符号。
三、教材拓展
6.例 世界上最高的山峰是珠穆朗玛峰,其海拔高度大约是8845米,吐鲁番盆地的海拔高度大约是-155米.两处高度相差多少米?(提示:用高海拔米数减低海拔米数。)
实践练习:全班学生分为五个组进行游戏,每组的基本分为100分,答对一题加50分,答错一题扣50分。游戏结束时,各组的分数如下: 第1组
100第2组150第3组-400第4组350第5组-100
(1)第三名超出第四名多少分?(2)第四名超出第五名多少分?
模块二合作探究
7.选择:1)较小的数减去较大的数,所得的差一定是()
A.零B.正数C.负数D.零或负数
2)下列结论中,正确的是()
A.有理数减法中,被减数不一定比减数大B.减去一个数,等于加上这个数 C.零减去一个数,仍得这个数D.两个相反数相减得0
3)下列结论不正确的是()
A.两个正数之和必为正数B.两数之和为正,则至少有一个数为正
C.两数之和不一定大于某个加数D.两数之和为负,则这两个数均为负数
8.填空:(1)()-(-10)=20,-8-()=-15.(2)3°C比-9°C高;(3)温度-6°C比-2°C低__ ;(4)海拔-200米比-300米高 __;
模块三形成提升 1.计算(1)(-72)-(-37)-(-22)-17(2)(-16)-(-12)-24-(-18)
(3)23-(-76)-36-(-105)(4)(-
2.已知a =-111)-(-)-(+)234311,b =-,c = ,求代数式a -b -c的值.(提示:注意解题格式和符号。)84
4模块四小结评价
一、本课知识:1.有理数的减法法则:__________________________________________
2.减法转化为加法:二变:(1)减号变_______,(2)减数的符号________。
二、本课典例:有理数的减法计算及实际应用
三、我的困惑:(你一定要认真思考哦!请把它写在下面,好吗?)
附:课外拓展思维训练:(2011江西)计算—2—1=__________.
第二篇:《有理数》导学案
1.2.1《有理数》导学案
□ 自学导读
【学习目标】
1、理解有理数的意义,正确理解整数、分数与有理数之间的关系.2、能将有理数按要求分类,了解0在有理数分类的作用.【重、难点】
有理数的概念及分类.其中有理数的二种分类既是重点,也是难点.【读书思考】
1、有理数及其相关概念
________、________和________统称为整数。________和________统称为分数。________和________统称有理数。
〔注〕因为有限小数和无限循环小数都可以化为分数,所以有限小数和无限循环小数也都是有理数。
2、有理数的分类
(1)按定义分:(2)按符号分:
----------有理数--------
----------有理数------------〔注〕分类要按同一个标准,做到不重复不遗漏。
【典题解析】例1.判断.(1).比0大的数是正数,比0小的数是负数,0不是正数也不是负数。()
(2).温度计中显示0℃时,表示没有温度。((3).有理数分为正有理数和负有理数。((4).有理数分为整数和分数。((5).1是最小的正数。()))))(6).-1是最大的负整数,没有最小的负整数。(2317
例2:把有理数6.4,-9,3,+10,4,-0.021,-1,3,-8.5,25,0,100按正整数、负整数、正分数、负分数分成四个集合。
正整数集合
正分数集合,负整数集合,负分数集合
□ 达标检测
【基础训练】
1、选择题:-100不是()A.有理数;B.自然数;C.整数;D.负有理数。
2、下列说法中,正确的是()
A.0是最小的整数B.1是最小的正整数C.1是最小的整数
个有理数不是正数就是负数 D.一
183.填空:在-7,10.1,-,89,0,-0.67,这些有理数中,65
(1)整数是;
(2)分数是.4.填空:在-45,1,0,8.9,-6,-3.2,+108,-0.05,28,-9这些有理75
数中,(1)正整数是;
(2)负整数是;
(3)正分数是;
(4)负分数是.5、下列说法中正确的是〔〕
A、有最小的自然数,也有最小的整数B、没有最小的正数,但有最小的正整数
C、没有最小的负数,但有最大的负数D、0是有理数中最小的数.6、有公共部分两个数集是〔〕
A、正整数集合与负整数集合B、整数集合与分数集合C、负数集合与整数集合D、负分数集合与正分数集合7、、按某种规律在横线上填上适当的数:1,-4,9,-168、某种商品的标准价格是400元,但随着季节的变化,商品的价格可浮动±5%.(1)±5%的含义分别是什么?
(2)请你算出商品的最高价和最低价;
(3)某商家将该商品的零售价格定在450元,受到物价部门的处罚,请分析处罚原因.探索创新
9、小明说:“整数和分数统称有理数,也可以说成有限小数和无限循环小数统称有理数,因为整数可以看成分母为1的分数,所以任何一个有理数都可以化成分数”小明的说法对吗?你能帮助他解释吗?
10、如果课桌的高度比标准高度高2㎜记作+2㎜,那么比标准高度低3㎜记作什么?现有5张课桌,量得它们的尺寸与标准高度比较分别是+1㎜,-1㎝,0㎜,+3㎜和-1.5㎜,若规定课桌的高度比标准的高度最高不能超过2㎜,最低不能低于2㎜才算合格,那么上述5张课桌有几张合格?
第三篇:人教版七年级数学上册《有理数的减法》导学案
有理数的减法
一,预习目标:
1、经历探索有理数减法法则的过程.理解并掌握有理数减法法则.2、会正确进行有理数减法运算.3、体验把减法转化为加法的转化思想.预习重点:有理数减法法则和运算
预学习难点:有理数减法法则的推导
预习指导
二,自主学习
1、世界上最高的山峰珠穆郎玛峰海拔高度约是8844米,吐鲁番盆地的海拔高度约为 —154米,两处的高度相差多少呢?
试试看,计算的算式应该是.能算出来吗,画草图试试
2、长春某天的气温是―2°C~3°C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:°C).显然,这天的温差是3―(―2).想想看,温差到底是多少呢?那么,3―(―2)=.3,有理数的减法法则()
4、计算:
(1)(-3)―(―5);(2)0-7;(3)7.2―(―4.8)
三,谈谈预习这一讲的收获?
第四篇:有理数的乘法导学案
有理数的乘法导学案(第1课时)
学习目标
1、知识与技能目标:掌握有理数乘法法则,能利用乘法法则正确进行有理数乘法运算。
2、能力与过程目标:经历探索、归纳有理数乘法法则的过程,发展学生观察、归纳、猜测、验证等能力。
3、情感与态度目标:通过学生自己探索出法则,让学生获得成功的喜悦。学习重点、难点
重点:运用有理数乘法法则正确进行计算。
难点:有理数乘法法则的探索过程,符号法则及对法则的理解。
教学过程
一、导课:在小学里我们已经学习了正有理数和零的乘法运算,比如3×2 = 6 我们知道:3×2 = 3 + 3= 6
计算下列各式的值:(-2)+(-2)=(-2)+(-2)+(-2)=
(-2)+(-2)+(-2)+(-2)=(-2)+(-2)+(-2)+(-2)+(-2)= 猜想下列各式的值:(-2)×2=(-2)×3=(-2)×4=(-2)×5=
二、设疑自探: 利用以上结论计算下面的算式,你能发现有什么规律?(-3)×3=(-3)×2=(-3)×1=(-3)×0=按照上述的规律,下面的空格里可以各填什么数?从中可以归纳出什么结论?(-3)×(-1)=(-3)×(-2)=(-3)×(-3)=
三、探究归纳:
我们已经知道两个正数相乘结果是正数,现在我们从符号和绝对值两个方面来研究一下三组,看看他们有什么特点
第一组:(-3)×3=-9(-3)×2=-6(-3)×1=-3
第二组:(-3)×(-1)=3(-3)×(-2)=6(-3)×(-3)= 9
第三组:(-3)× 0 =0
有理数乘法法则:两数相乘,得正,得负,并把相乘。任何数与0相乘得。
非0两数相乘,关键(步骤)是什么?
(1)确定积的;(2)求出之积。
例1计算:⑴(-3)×9=⑵(-5)×(-7)=
(3)9×(-1)=(4)(-9)×(-1)=
(5)(-6)×(-1)=(6)6×(-1)=
归纳:一个数乘以(-1)得到
例2计算(-111)×(-2)=3× =(-3)×(-)=233
归纳:乘积是1的两个数互为。
四、课堂练习: 30页练习题
五、运用拓展:
1、自编习题
第1、2题:正整数相乘、正分数相乘;第3、4题:负整数相乘、负分数相乘
第5、6题:与
1、-1相乘;第7、8题:正数、负数分别于0相乘
第9题:正整数与正分数相乘;第10题:负整数与负分数相乘
2、填空(用“>”或“<”号连接):
(1)如果a<0,b<0,那么ab0;(2)如果a<0,b > 0,那么ab0;
(3)如果 a > 0,b > 0,那么ab0
(4)如果ab<0,那么a0,b0或者a0,b0
(5)如果 ab > 0,那么a0,b0或者 a0,b0
(6)如果 ab = 0,那么___________
3、计算:(1).(-6)×(-4+1-6)(2).(-3.7+1.3)×
3(3).(16-26+5)×(-3.4-1.6)(4).︳-21-19︳×(-2.9+1.1)
六、小结:
1、本节课你学到了什么?
2、本节课你印象最深的是什么?
第五篇:有理数除法导学案7
有理数的除法导学案
学习目标:
1、使学生了解有理数除法的意义,掌握有理数除法法则,会进行有理数的除法运算。
2、让学生理解有理数倒数的意义,了解有理数除法也可分为商的符号确定和绝对值运算两部分组成。
3、知道除法是乘法的逆运算,0不能作除数,培养学生的逆向思维。
学习重难点:
重点:有理数的除法法则和倒数概念。
难点:对0不能作除数与0没有倒数的理解,以及乘法与除法的互换。
自学指导
一、预习课文53----54页有关知识填空
1、倒数:
(注意:一个正有理数的倒数仍是正有理数;一个负有理数的倒数仍是负有理数;0没有倒数。即:a(a≠0)的倒数是1/a,0没有倒数。)
2、除以一个不等于零的数,等于乘以这个数的,用字母表示为:a÷b=。(注意:这表明除法可以转化为乘法来进行)
3、同号两数相除得,异号两数相除得,零除以任何一个不等于零的数都得。合作探究
1.写出下列各数的倒数:
(1)5/6;(2)3/7;(3)–5;(4)1;(5)–1;(6)0.22、计算下列各题:
(1)(-18)÷6;(2)(-1/5)÷(-2/5);(3)6/25÷(-4/5)。
注意:先确定符号,再算数值。
3、简下列分数:
(1)-12-24(2)4-16
解:
4、算下列各题:
(1)(解:-17417473-)÷(-6);(2)-3.5÷×(-)。6846
能力提升
6733.5246784
1、计算:(1)(2)
2、下列计算正确吗?为什么?
3÷11 ÷44
=3÷1
=3
达标测评
1、若ab<0,则a/b的值是()
A、大于0B、小于0C、大于或等于0D、小于或等于02、下列说法正确的是()
A、任何数都有倒数B、-1的倒数是-1
C、一个数的相反数必是分数D、一个数的倒数必小于13、若x=1/x,则x=。
4、倒数等于它本身的数是。
5、若a、b互为倒数,则ab=。
6、计算:
(1)((3)(-
3.化简下列分数:-3618)÷6(2)(-18)÷(-12)÷(-)55395)÷3(4)(-6)÷(-4)÷(-)44
(1)212547(2)(3)(4)1871
2我的收获:
1、有理数的除法是乘法的逆运算,会求一个数的倒数。
2、有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
3、0不能作除数。