第一篇:关于避免烧芯片的总结
关于避免烧芯片的总结
一、现用的大多数芯片都是小电流型,目的是降低使用功耗,电流稍大,芯片就会烧毁。一般集成芯片(非功率芯片)的电流I<<1mA,电流很小,所以我们在做实验的过程中就必须注意芯片的用法。
1、使用中严格遵守芯片额定的工作电压,额定的工作电流。
2、电源线路接口规范,电源线与地线要分明。
3、接入、接出线使用电流不能超出其额定值。
二、实验室不是理想恒压源,会有一些对芯片冲击很大的交流脉冲和频率很丰富的交流噪声。
1、功率非低噪声芯片接入电源需要耦合来减小交流脉冲和交流噪声的影响。
2、芯片的上电顺序应该是先接芯片然后接电源。如果先上电后接芯片,会在接触的一瞬间产生很大的可以将芯片击穿的脉冲电流。
3、芯片的输入输出测试应该尽量在远离芯片的电源引脚和地线引脚的情况下进行。
4、芯片引脚接线布局要合理、规范、清晰、明了。
5、电源的正负极接反芯片会烧毁,有时候极性接错会产生爆炸,所以接电源时要特别的注意。
三、现就避免烧毁芯片提出几点建议:
1、先接线后上电,在第一次上电之前用万用表档检测电源正负极。
2、上电注意电源的正负极,特别是负电源的连接。
3、不能直接用探针探测芯片引脚,应该先取掉探针套,然后集中注意力,单点接触。
但是一般情况下不要使用探针,应该专设探测点,避免在探测的过程中将电源与信号线短接。
4、对于电流很大的线路应该加接过流保护模块或扼流圈。
5、第一次上电电源电压应小于额定电压值。
6、实验过程中特别注意直流电压源电流指示,电流大于额定电流值,应立即关掉电源。
7、电源线布线正负极要明显区分,方便识别。地线要粗,接地要规范。
8、电源要做好去耦电路,特别是模块的电源接入端。
9、注意芯片的操作,详细了解芯片的功能,绝对避免将电源作为信号接入
10、在换芯片之前必须关闭电源、绝不容许带电操作。
第二篇:常用芯片总结
常用芯片总结
1.音频pcm编码DA转换芯片cirrus logic的cs4344,cs4334
4334是老封装,据说已经停产,4344封装比较小,非常好用。还有菲利谱的8211等。
2.音频放大芯片4558,LM833,5532,此二芯片都是双运放。
3.244和245,由于244是单向a=b的所以只是单向驱动。而245是用于数据总线等双向驱动选择。同时245的封装走线非常适合数据总线,它按照顺序d7-d0。
4.373和374,地址锁存器,5.max232和max202,max3232 TTL电平转换
6.网络接口变压器。需要注意差分信号的等长和尽量短的规则。
7.amd29系列的flash,有bottom型和top型,主要区别是loader区域设置在哪里?bottom型的在开始地址空间,top型号的在末尾地址空间,我感觉有点反,但实际就是这么命名的。
8.74XX164,它是一个串并转换芯片,可以把串行信号变为并行信号,控制数码管显示可以用到。
9.网卡控制芯片CS8900,ax88796,rtl8019as,dm9000ae当然这些都是用在isa总线上的。24位AD:CS5532,LPC2413,ADS1240,ADS1241效果还可以仪表运放:ITL114,不过据说功耗有点大
音频功放:一般用LM368
音量控制IC: PT2257,Pt2259.PCM双向解/编码 :/ CW6691.cirruslogic公司比较多
2.4G双工通讯IC CC2500
1.cat809,max809,这些是电源监控芯片,当低于某一电压以后比如3.07v等出现一个100ms的低电平,实现复位功能。当然这个要求是低复位。max810,cat810等就是出现一个100ms的高电平。还有一些复位芯片,既有高又有低复位输出,同时还有带手动触发复位功能,型号可以查找一下。
2.pericom的pt7v(pi6cx100-27)压控振荡器,脉冲带宽调制。
1、语音编解码TP3054/3057,串行接口,带通滤波。
2、现在用汉仁的网卡变压器HR61101G接在RTL8019AS上,兼容的有VALOR的FL1012、PTT的PM24-1006M。
3、驱动LED点阵用串行TPIC6B595,便宜的兼容型号HM6B59
5交换矩正: mt 88168*16
双音频译码器: 35300
我们原来使用单独的网络变压器,如常用的8515等。现在我们用YDS的一款带网络变压器的RJ45接口。其优点:1.体积仅比普通的RJ45稍微大一点。
2.价格单买就6元,我觉得量稍微大点应该在4-5左右或者更低。
3.连接比较方便只要把差分信号注意就可以了。
缺点:用的人不多,不知道是因为是新,还是性能不好,我们用了倒没什么问题。不过没有做过抗雷击等测试,我觉得既然YDS做了这样的产品,性能应该问题不大。我觉得最好再加一点典型电路的原理图等。比如说网络接口,串口232,485通讯,I2C级连,RAM连接,FLASH连接,电压转换,时钟电路,打印接口电路,以及如何在没有典型电路的时候,把芯片和已有系统有效连接等。首先要有开关电源需求,额定电流,功率,几路输出,主路设计等等如何测试其性能指标达到要求。
便宜的液晶驱动芯片HT1621
要求一般的485芯片SN308
2CH375A USB主控芯片 南京沁恒的数据采集,我用tlc2543, AD7656,AD976
运放OP27,很好用,经受住时间考验,连续3年
我介绍一下我现在用的光耦,就是光电隔离:
TLP521-1 TLP521-2 TLP521-4 线性光耦hcr210不错
其实我只用过TLP521-1,很好用的,TLP521-2 的价格比 TLP521-1要贵两倍多,不只为什么,恩 LED导通电流是小了一点,它们由于速率有点低所以推荐高速光耦
6N1361M
6N13710M
单通道HDLC协议控制器:MT8952;
音频放大器LM2904;
512k*8带软件保护可段/整片擦除的flah28SF040;
关于电压转换芯片的一点体会:AD7865做电机控制的使用很不错,四路350K,14位精度,单电压,+/-10V输入,推荐使用AD7864的升级用。掉电保存可以选择NVRAM,带电池的,maxim有很多
74ALVC164245,电平转换芯片,3.3V电平和5V电平总线接口用
74HCT14:复位隔离缓冲
ULN2003:达林顿输出的驱动芯片,带继电器灭弧的二极管,驱动继电器不错
MAX708:复位芯片,带高低电平和手动复位功能
CPU:虽然不推荐选用***货,但是多一个选择也不错,SuperH系列的CPU性能不错
1:usb控制器,cypress公司的cy7c63723,cy7c68013,63723是otp的建议初次搞usb接口的不要使用,调试起来很麻烦。
2:cpld,fpga用xilinx的型号很全
3:2.4g rf收发芯片nrf2401a
看门狗 813、705、706等
1、LI358/LM324 小信号放大器,通用型的当然你要求太高就的另选了。
2、24C08/24C16 EEPROM 感觉还可以!
3、MPS3100
1,可做充电器的电压升降的IC,SP34063,感觉使用起来还是听方便的2,RF IC,NRF2401,NREF2402,还有功能更强的集成增强型8051内核的好象是 NRF24E1,不过我没用过
3,音频功放TPA021
13.HT12D,是与“HT12E”对应的解码芯片。也有红外的解码芯片。
4.IRF640N,MOSFET,电力场效应管
电能(ATT7022A、SA9904B)、压力(PGA309)、温度(DS18B20、K型热电偶MAX6675)、湿度(SHT10)、液位(LM1042)、烟雾(NIS-09C+MC145018)、红外(HS0001)、距离(TDC-GP1)、转速(KM115-1),codec(AMBE-2000)、can(SJA1000)、gps(u-blox)、无线数传(nRF905、nRF9e5)
cirruslogic--cs5460计量芯片,0.1级
ADE7758三相电力计量芯片0.5级
ATT7022三相电能计量芯片0.5级,可作多功能表
24bit的有AD7712AN
温度传感器:AD592CN,环境稳定25度时精度,+/-0.5度
第三篇:FPGA芯片配置总结
FPGA芯片配置总结
[日期:2010-05-22 ] [来源:本站编辑 作者:佚名] [字体:大 中 小](投递新闻)
1.FPGA器件有三类配置下载方式:主动配置方式(AS)和被动配置方式(PS)和最常用的(JTAG)配置方式。
AS由FPGA器件引导配置操作过程,它控制着外部存储器和初始化过程,EPCS系列.如EPCS1,EPCS4配置器件专供AS模式,目前只支持Cyclone系列。使用Altera串行配置器件来完成。Cyclone期间处于主动地位,配置期间处于从属地位。配置数据通过DATA0引脚送入 FPGA。配置数据被同步在DCLK输入上,1个时钟周期传送1位数据。(见附图)
PS则由外部计算机或控制器控制配置过程。通过加强型配置器件(EPC16,EPC8,EPC4)等配置器件来完成,在PS配置期间,配置数据从外部储存部件,通过DATA0引脚送入FPGA。配置数据在DCLK上升沿锁存,1个时钟周期传送1位数据。(见附图)
JTAG接口是一个业界标准,主要用于芯片测试等功能,使用IEEE Std 1149.1联合边界扫描接口引脚,支持JAM STAPL标准,可以使用Altera下载电缆或主控器来完成。
FPGA在正常工作时,它的配置数据存储在SRAM中,加电时须重新下载。在实验系统中,通常用计算机或控制器进行调试,因此可以使用PS。在实用系统 中,多数情况下必须由FPGA主动引导配置操作过程,这时FPGA将主动从外围专用存储芯片中获得配置数据,而此芯片中fpga配置信息是用普通编程器将设计所得的pof格式的文件烧录进去。专用配置器件:epc型号的存储器
常用配置器件:epc2,epc1,epc4,epc8,epc1441(现在好象已经被逐步淘汰了)等
对于cyclone cycloneII系列器件,ALTERA还提供了针对AS方式的配置器件,EPCS系列.如EPCS1,EPCS4配置器件也是串行配置的.注意,他们只适用于cyclone系列.除了AS和PS等单BIT配置外,现在的一些器件已经支持PPS,FPS等一些并行配置方式,提升配置了配置速度。当然所外挂的电路也和PS有一些区别。还有处理器配置比如JRUNNER 等等,如果需要再baidu吧,至少不下十种。比如Altera公司的配置方式主要有Passive Serial(PS),Active Serial(AS),Fast Passive Parallel(FPP),Passive Parallel Synchronous(PPS),Passive Parallel Asynchronous(PPA),Passive Serial Asynchronous(PSA),JTAG等七种配置方式,其中Cyclone支持的配置方式有PS,AS,JTAG三种.对FPGA芯片的配置中,可以采用AS模式的方法,如果采用EPCS的芯片,通过一条下载线进行烧写的话,那么开始的“nCONFIG,nSTATUS”应该上拉,要是考虑多种配置模式,可以采用跳线设计。让配置方式在跳线中切换,上拉电阻的阻值可以采用10K
3,在PS模式下tip:如果你用电缆线配置板上的FPGA芯片,而这个FPGA芯片已经有配置芯片在板上,那你就必须隔离缆线与配置芯片的信号.(祥见 下图).一般平时调试时不会把配置芯片焊上的,这时候用缆线下载程序.只有在调试完成以后,才把程序烧在配置芯片中, 然后将芯片焊上.或者配置芯片就是可以方便取下焊上的那种.这样出了问题还可以方便地调试.在AS模式下tip: 用过一块板子用的AS下载,配置芯片一直是焊在板子上的,原来AS方式在用线缆对配置芯片进行下载的时候,会自动禁止对FPGA的配置,而PS方式需要电路上隔离。
4,一般是用jtag配置epc2和flex10k,然后 epc2用ps方式配置flex10k.这样用比较好.(这是我在网上看到的,可以这样用吗?怀疑中)望达人告知.5,下载电缆,Altera下的下载电缆分为byteblaster和byteblasterMV,以及ByteBlaster II,现在还
推出了基于USB-blaster.由于BB基本已经很少有人使用,而USB-Blaster现在又过于昂贵,这里就说一下BBII和 BBMV的区别.BBII支持多电压供电5.5v,3.3v,2.5v,1.8v;
BBII支持三种下载模式:AS,可对Altera的As串行配置芯片(EPCS系列)进行编程PS,可对FPGA进行配置
JTAG,可对FPGA,CPLD,即Altera配置芯片(EPC系列)编程而BBMV只支持PS和JTAG6,一般在做FPGA实验板,(如cyclone系列)的时候,用AS+JTAG方式,这样可以用JTAG方式调试,而最后程序已经调试无误了后,再用 AS模式把程序烧到配置芯片里去,而且这样有一个明显的优点,就是在AS模式不能下载的时候,可以利用Quartus自带的工具生成JTAG模式下可以利用jic文件来验证配置芯片是否已经损坏,方法祥见附件.7.Altera的FPGA可以通过单片机,CPLD等加以配置,主要原理是满足datasheet中的时序即可,这里我就不多说了,有兴趣的朋友可以看看下面几篇文章,应该就能够明白是怎么回事了.8.配置时,quartus软件操作部分:
(1).assignment-->device-->device&pin options-->选择configuration scheme,configuaration mode,configuration device,注
意在不支持远程和本地更新的机器中configuration mode不可选择,而configuration device中会根据不同的配置芯片产生pof文件,如果选择自动,会选择最小密度的器件和适合设计
(2).可以定义双口引脚在配置完毕后的作用,在刚才的device&pin option-->dual-purpose pins-->,可以在配置完毕后继续当I/O口使用
(3).在general菜单下也有很多可钩选项,默认情况下一般不做改动,具体用法参见altera configuration handbook,volume2,sectionII.(4)关于不同后缀名的文件的适用范围:
sof(SRAM Object File)当直接用PS模式下将配置数据下到FPGA里用到,USB BLASTER,MASTERBLASER,BBII,BBMV适用,quartusII会自动生成,所有其他的配置文件都是由sof生成的.pof(Programmer Object File)也是由quartusII自动生成的,BBII适用,AS模式下将配置数据下到配置芯片中
rbf(Raw Binary File)用于微处理器的二进制文件.在PS,FPP,PPS,PPA配置下有用处
rpd(Raw Programing Data File)包含bitstream的二进制文件,可用AS模式配置,只能由pof文件生成hex(hexadecimal file)这个就不多说了,单片机里很多
ttf(Tabular Text File)适用于FPP,PPS,PPA,和bit-wide PS配置方式
sbf(Serial Bitstream File)用PS模式配置Flex 10k和Flex6000的jam(Jam File)专门用于program,verigy,blank-check
参考链接:http:///news/2010-05/2141.htm
第四篇:Linux芯片总结
基于Cortex-M3内核的STM32嵌入式处理器的学习报告
一、Cortex-M3内核概述:
Cortex‐M3是一个32位处理器内核,它内部的数据路径是32位的,寄存器是32位的,存储器接口也是32位的。CM3采用了哈佛结构,拥有独立的指令总线和数据总线,可以让取指与数据访问并行不悖。Cortex-M3采用ARMv7-M构架,不仅支持Thumb-2指令集,而且拥有很多新特性。较之ARM7-TDMI,Cortex-M3 拥有更强劲的性能、更高的代码密度、位带操作、可嵌套中断、低成本、低功耗等众多优势。
CM3提供一个可选的MPU,而且在需要的情况下也可以使用外部的cache;另外在CM3中,Both小端模式和大端模式都是支持的。CM3内部还附赠了好多调试组件,用于在硬件水平上支持调试操作,如指令断点,数据观察点等。另外,它为支持更高级的调试,还有其它可选组件,包括指令跟踪和多种类型的调试接口。
二、Cortex-M3内核配置
ARMCortex-M3采用哈佛结构,并选择了适合于微控制器应用的三级流水线,但增加了分支预测功能,可以预取分支目标地址的指令,使分支延迟减少到一个时钟周期。针对业界对ARM处理器中断响应的问题,Cortex-M3首次在内核上集成了嵌套向量中断控制器(NVIC)。Cortex-M3的中断延迟只有12个时钟周期(ARM7需要24-42个周期);Cortex-M3还使用尾链技术,使得背靠背中断的响应只需要6个时钟周期(ARM7需要大于30个周期)。Cortex-M3采用了基于栈的异常模式,使得芯片初始化的封装更为简单。
Cortex-M3加入了类似于8位处理器的内核低功耗模式,支持3种功耗管理模式:通过一条指令立即睡眠、异常/中断退出时睡眠和深度睡眠,使整个芯片的功耗控制更为有效。
CM3 拥有通用寄存器R0‐R15以及一些特殊功能寄存器。R0‐R12是最通用的,但是绝大多数的16位指令只能使用R0‐R7(低组寄存器),而32位的 Thumb‐2指令则可以访问所有通用寄存器,特殊功能寄存器有预定义的功能,而且必须通过专用的指令来访问。Cortex‐M3中的特殊功能寄存器包括:程序状态寄存器组(PSRs或xPSR)、中断屏蔽寄存器组、控制寄存器(CONTROL)。
三、Cortex-M3的性能与特点
① Cortex-M3的许多指令都是单周期的——包括乘法相关指令。并且从整体性能上看,Cortex-M3基于ARMv7-M架构优于绝大多数的内核;
② 支持Thumb-2指令集,为编程带来了更多的灵活性,Cortex-M3的代码密度更高,对存储器的需求更少;
③ Cortex-M3有先进的中断处理功能,其内建的嵌套向量中断控制器支持多达240条外部中断输入,向量化的中断功能剧烈地缩短了中断延迟,因为不需要软件去判断中断源,而且中断的嵌套也是在硬件水平上实现的,不需要软件代码来实现; ④ Cortex-M3需要的逻辑门数少,所以先天就适合低功耗要求的应用,CM3的设计是全静态的、同步的、可综合的,所以任何低功耗的或是标准的半导体工艺均可放心使用;
⑤ Cortex-M3支持传统的JTAG基础上,还支持更新更好的串行线调试接口;
四、基于Cortex-M3的STM32F103ZET6嵌入式开发板
国内Cortex-M3市场,ST(意法半导体)公司的STM32无疑是最大赢家,作为 Cortex-M3内核最先进的两个公司之一,ST 无论是在市场占有率,还是在技术支持方面,都是远超其他对手。在Cortex-M3芯片的选择上,STM32无疑是我们学习使用Cortex-M3的首选开发板。
作为初学者来学习使用Cortex-M3内核其实会很困难,而通过运用功能强大的集成开发板stm32,则能够加深我们对内核运用的了解;每一套开发板都会配套一个固件库,这个固件库函数可以是我们不完全了解Cortex-M3内核寄存器的工作方式前提下,通过调用库函数实现对寄存器的控制,而且寄存器版本的STM32开发指南能够帮助我们更进一步认识寄存器的工作。
STM32F103ZET6属于中低端的32位ARM微控制器,有512K的片内Flash存储、64K字节的SRAM等高性价比的配置。作为一款常用的增强型系列微控制器,STM32F103ZET6适用于电力电子系统方面、电机驱动、应用控制、医疗、手持设备、PC游戏外设等。
我之前参加的一位工程学院研究生导师的课题项目----“风送式智能喷雾技术”就利用到STM32F103ZET6作为嵌入式控制器。我首先将STM32F103ZET6的模块化功能与项目要求匹配之后,再集成运用到这个项目实际当中;比如驱动蠕动泵,我就使用到pwm输出模块,之后我就学习STM32F的有关库函数以及相应定时器、GPIO的配置;又比如比例阀的控制开度运用到A/D转换模块,我除了知道对应的库函数参数设置,同时也要学习了解ADC控制寄存器,每个要转换的通道以及转换速率的计算;这样保证了在接触嵌入式处理器的学习之中不至于生活实际脱节,又能很好去了解内核的寄存器工作情况。
第五篇:74LS192芯片总结
74LS192引脚图管脚及功能表
74LS192是同步十进制可逆计数器,它具有双时钟输入,并具有清除和置数等功能,其引脚排列及逻辑符号如下所示:
(a)引脚排列
(b)逻辑符号 图中:为置数端,为加计数端,为减计数端,为非同步进位输出端,计数器输入端,为非同步借位输出端,P0、P1、P2、P3为为清除端,Q0、Q1、Q2、Q3为数据输出端。
其功能表如下:
例如:用74LS192芯片设计出三十进制计数器
用 192 采用级联法
做成 3*10 的一个芯片满十进一
另一个芯片到3 即0011的时候提供清零脉冲
恢复到0000
详见图