第一篇:探索勾股定理学案
1.1探索勾股定理 同步练习
注意:如果用勾股定理的逆定理判定一个三角形是否是直角三角形
(1)首先确定最大边(如:C,但不要认为最大边一定是C)
222222(2)验证c与a+b是否具有相等关系,若c=a+b,则△ABC是以∠C为直角的三角形
222222(若c>a+b则△ABC是以∠C为钝角的三角形,若c 一、填空选择题 1、在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则S△ABC=________。 2、三角形的三边满足a2=b2+c2,这个三角形是______三角形,它的最大边是_____.3、如图,厂房屋顶的人字架是等腰三角形,若跨度 BC=16米,上弦长AB=10米,则中柱AD=米,面积是_________米 4、四个三角形的边长分别是①3,4,5②4,7,8 1④31,41,51其中是直角三角形的是()③7,24,25 2A上弦柱BD跨度C222 2A、①②B、①③C、①④D、①②③ 5、如果线段a、b、c能组成直角三角形,则它们的比可以是() A、1:2:4 B、1:3:5 C、3:4:7 D、5:12:136、一个圆柱状的杯子,由内部测得其底面直径为4cm,高为10cm,现有一支12cm的吸管任意斜放于杯中,则吸管_露出杯口外.(填“能”或“不能”) 二、解答题 7、如图,已知等边三角形△ABC的边长为2,AD⊥BC于D,求BC边上的高AD和△ABC的面积。 DCA8、在△ABC中,CD是AB边上的高,AC=4,BC=3,DB= 9.5A (1)求AD的长;(2)△ABC是直角三角形吗?请说明理由.9、甲、乙两轮船于上午8时同时从A码头分别向北偏东23°和北偏西67°的方向出发,甲轮船的速度为24海里/时,乙轮船的速度为32海里/时,则下午1时两轮船相距多少海里? 10、如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积.C DB 11.如图,小红用一张长方形纸片ABCD进行折纸,已知该纸片宽AB为8cm,长BC为10cm。当小红折叠 F 时,顶点D落在BC边上的点F处(折痕为AE),想一想,此时EC有多长?用你学过的方法进行解释.(提示:AF多长?BF呢?FC?EF?) ADE B 思考题:如图:△ABC中,AD是角平分线,AD=BD,AB=2AC。求证:△ACB是直角三角形。 C D A C B 1.2 能得到直角三角形吗 一、基础达标: 1.小红要求△ABC最长边上的高,测得AB=8cm,AC=6cm,BC=10cm,则可知最长边上的高是() A.48cmB.4.8cmC.0.48cmD.5cm.2.满足下列条件的△ABC,不是直角三角形的是() A.b2=c2-a2B.a∶b∶c=3∶4∶ 5C.∠C=∠A-∠BD.∠A∶∠B∶∠C=12∶13∶15.3.在下列长度的各组线段中,能组成直角三角形的是() A.5,6,7B.1,4,9C.5,12,13D.5,11,12.22 24.若一个三角形的三边长的平方分别为:3,4,x则此三角形是直角三角形的x2的值是() A.42B.52C.7D.52或7.5.如果△ABC的三边分别为m2-1,2 m,m2+1(m>1)那么() A.△ABC是直角三角形,且斜边长为m2+1; B.△ABC是直角三角形,且斜边长为2m; C.△ABC是直角三角形,但斜边长需由m的大小确定; D.△ABC不是直角三角形.6.以下数据为边长的三角形中,不是直角三角形的是() A.3,4,5B.8,10,6 C.13,12,5D.3,6,7.7.如果把直角三角形的两条直角边同时扩大到原来的2倍,那么斜边扩大到原来的() A.1倍B.2倍C.3倍D.4倍 8.在下列说法中是错误的() A.在△ABC中,∠C=∠A一∠B,则△ABC为直角三角形.B.在△ABC中,若∠A:∠B:∠C=5:2:3,则△ABC为直角三角形.43C.在△ABC中,若a=c,b=c,则△ABC为直角三角形.55 D.在△ABC中,若a:b:c=2:2:4,则△ABC为直角三角形.9.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为() A.2,4,8B.4,8,10C.6,8,10D.8,10,12.10.将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数,.11.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为12.在△ABC中,∠C=90°,D为BC上的一点,且BD=AD=10,AC=6,求△ABC的面积.二、综合发展: 13.在边长为c的正方形中有四个斜边为c的全等直角三角形,已知它们的直角边长为a、b.你能利用这 个图形验证勾股定理吗? 14.铁路上A、B两站(视为直线上两点)相距25 km,C、D 两村庄(视为两 个点)DA⊥AB于A,CB⊥AB于B,已知DA=15 km,CB=10 km,现在要在铁路上建一个土特产收购站E使得C、D两村到E站的距离相等,则E站应建在距A站多少千米处? 图- 215.如图,南北向MN以西为我国领海,以东为公海.上午9时50分,我反走私A艇发现正东方向有一走私 艇C以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B.已知A、C两艇的距离是13海里,A、B两艇的距离是5海里;反走私艇测得离C艇的距离是12海里.若走私艇C的速度不变,最早会在什么时间进入我国领海? 1.3 蚂蚁怎样走最近 一、基础达标: 1.放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为()A.600米B.800米C.1000米D.不能确定 2.任意三角形的三条边必须满足________. 3.直角三角形两锐角,三边满足4.已知在Rt△ABC中,∠C=90°,①若a=14,b=48,则c=________; ②若a=8,c=17,则b=_______.5.如图,学校有一块长方形花圃,有极少数人为了避开拐花圃内走出了一条“路”.他们仅仅少走了步路米),却踩伤了花草. 6.如图,以Rt△ABC的三边为边向外作正方形,其面积分S3,且S1=4,S2=8,则S3=____. 7.在△ABC中,∠C=900,,BC=60cm,CA=80cm,一只蜗牛从C点出的速度沿CA-AB-BC的路径再回到C点,需要分的时间.8.第七届国际数学教育大会的会徽主题图案是由一连串如图所示的直角三角形发,以20cm/s 角走“捷径”,在(假设2步为 1别为S1、S2、演化而成的.设其中的第一个直角三角形OA1A2是等腰三角形,且OA1=A1A2=A2A3=A3A4=„„=A8A9=1,请你计算OA9的长.二、综合发展: 9.五根小木棒,其长度分别为7,15,20,24,25,() 7202 52024 24(D) (A) (B) A.B.C.D.10.如图,在水塔O的东北方向32m处有一抽水站A,在水塔的东南方向24m处有一建筑工地B,在AB间建一条直水管,则水管的长为()A.45mB.40mC.50mD.56m.(C) 第11题 11.如图,阴影部分是一个正方形,此正方形的面积为.12.一透明的圆柱状玻璃杯,底面半径为10cm,高为15cm,一根吸管斜放与杯中,吸管露出杯口外5cm,则吸管长为___________cm.13.如图,等腰三角形ABC的腰为10,底边上的高为8,(1)求底边BC的长;(2)S△ABC. 14.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000 米处,过了 20 秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米? 15.如图,三个村庄A、B、C之间的距离分别为 AB=5km,BC=12km,AC=13km.要从B修一条公路BD直达AC.已知公路的造价为26000元/km,求修这条公路的最低造价是多少? 12C 16.如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿∠CAB的角平分线AD 折叠,使它落在斜边AB上,且与 AE重合,你能求出CD的长吗? BA 探索勾股定理说课稿 林银花 课题:“勾股定理”第一课时 内容:教材分析、教学过程设计、设计说明 一、教材分析 (一)教材所处的地位 这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)根据课程标准,本课的教学目标是: 1、能说出勾股定理的内容。 2、会初步运用勾股定理进行简单的计算和实际运用。 3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。 4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。 (三)本课的教学重点:探索勾股定理 本课的教学难点:以直角三角形为边的正方形面积的计算。 二、教法与学法分析: 教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。 学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。 三、教学过程设计 (一)提出问题: 首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来 6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?” 的问题。学生会感到困难,从而教师指出学习了今天这一课后就有办法解决了。这种以实际问题为切入点引入新课,不仅自然,而且反映了数学来源于实际生活,数学是从人的需要中产生这一认识的基本观点,同时也体现了知识的发生过程,而且解决问题的过程也是一个“数学化”的过程。 (二)实验操作: 1、投影课本图1—1,图1—2的有关直角三角形问题,让学生计算正方形A,B,C的面积,学生可能有不同的方法,不管是通过直接数小方格的个数,还是将C划分为4个全等的等腰直角三角形来求等等,各种方法都应予于肯定,并鼓励学生用语言进行表达,引导学生发现正方形A,B,C的面积之间的数量关系,从而学生通过正方形面积之间的关系容易发现对于等腰直角三角形而言满足两直角边的平方和等于斜边的平方。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。 2、接着让学生思考:如果是其它一般的直角三角形,是否也具备这一结论呢?于是投影图1—3,图1—4,同样让学生计算正方形的面积,但正方形C的面积不易求出,可让学生在预先准备的方格纸上画出图形,在剪一剪,拼一拼后学生也不难发现对于一般的以整数为边长的直角三角形也有两直角边的平方和等于斜边的平方。这样设计不仅有利于突破难点,而且为归纳结论打下了基础,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题和解决问题的能力在无形中得到了提高,这对后面的学习及有帮助。 3、给出一个边长为0.5,1.2,1.3,这种含小数的直角三角形,让学生计算是否也满足这个结论,设计的目的是让学生体会到结论更具有一般性。 (三)归纳验证: 1、归纳 通过对边长为整数的等腰直角三角形到一般直角三角形再到边长含小数的直角三角形三边关系的研究,让学生用数学语言概括出一般的结论,尽管学生可能讲的不完全正确,但对于培养学生运用数学语言进行抽象、概括的能力是有益的,同时发挥了学生的主体作用,也便于记忆和理解,这比教师直接教给学生一个结论要好的多。 2、验证 为了让学生确信结论的正确性,引导学生在纸上任意作一个直角三角形,通过测量、计算来验证结论的正确性。这一过程有利于培养学生严谨、科学的学习态度。然后引导学生用符号语言表示,因为将文字语言转化为数学语言是学习数学学习的一项基本能力。接着教师向学生介绍“勾,股,弦”的含义、勾股定理,进行点题,并指出勾股定理只适用于直角三角形。最后向学生介绍古今中外对勾股定理的研究,对学生进行爱国主义教育。 (四)问题解决: 让学生解决开头的实际问题,前后呼应,学生从中能体会到成功的喜悦。完成课本“想一想”进一步体会勾股定理在实际生活中的应用,数学是与实际生活紧密相连的。 (五)课堂小结: 主要通过学生回忆本节课所学内容,从内容、应用、数学思想方法、获取新知的途径方面先进行小结,后由教师总结。 (六)布置作业: 课本P6习题1.1 1,2,3,4一方面巩固勾股定理,另一方面进一步体会定理与实际生活的联系。另外,补充一道开放题。 四、设计说明 1、本节课是公式课,根据学生的知识结构,我采用的教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。 2、探索定理采用了面积法,引导学生利用实验由特殊到一般再到更一般的对直角三角形三边关系的研究,得出结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。 3、关于练习的设计,除两个实际问题和课本习题以外,我准备设计一道开放题,大致思路是在已画出斜边上的高的直角三角形中让学生尽量地找出线段之间的关系。 4、本课小结从内容,应用,数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识的意识是有很大的促进的。 探索勾股定理说课稿 探索勾股定理说课稿1 一、教材分析 (一)教材地位 这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标 1、知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。 2、过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。 3、情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。 (三)教学重点 经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。 教学难点:用面积法(拼图法)发现勾股定理。 突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。 二、教法与学法分析 学情分析: 七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。 另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强. 教法分析: 结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式, 选择引导探索法。 把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。 学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。 三、教学过程设计 (一)创设情境,提出问题 (1)图片欣赏勾股定理数形图 1955年希腊发行美丽的勾股树 20xx年国际数学的一枚纪念邮票 大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。 (2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2。5米,请问消防队员能否进入三楼灭火? 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。 (二)实验操作模型构建 1、等腰直角三角形(数格子) 2、一般直角三角形(割补) 问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系? 设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。 问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流) 设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。 通过以上实验归纳总结勾股定理。 设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律。 (三)回归生活应用新知 让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。 (四)知识拓展巩固深化 基础题,情境题,探索题。 设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。 基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗? 设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维。 情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗? 设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。 探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。 设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。 (五)感悟收获布置作业 这节课你的收获是什么? 作业: 1、课本习题 2、搜集有关勾股定理证明的资料。 四、板书设计 探索勾股定理 如果直角三角形两直角边分别为a,b,斜边为c,那么 设计说明: 1、探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法。 2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。 图文搜集自网络,如有侵权,请联系删除。 铁树老师面试辅导,喜马拉雅app—主播—教师面试大杂烩 探索勾股定理说课稿2 一、教材分析 (一)教材地位:这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标: 知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。 教学难点:用面积法(拼图法)发现勾股定理。 突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.二、教法与学法分析: 学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强. 教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。 学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.三、教学过程设计 1.创设情境,提出问题 2.实验操作,模型构建 3.回归生活,应用新知 4.知识拓展,巩固深化 5.感悟收获,布置作业 (一)创设情境提出问题 (1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.(2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来米长的云梯,如果梯子的底部离墙基的距离是米,请问消防队员能否进入三楼灭火? 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节. 二、实验操作模型构建 1.等腰直角三角形(数格子)2.一般直角三角形(割补) 问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系? 设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流) 设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.通过以上实验归纳总结勾股定理.设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律. 三.回归生活应用新知 让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心. 四、知识拓展巩固深化 基础题,情境题,探索题.设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗? 设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维. 情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗? 设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。 探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。 设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力.五、感悟收获布置作业: 这节课你的收获是什么? 作业: 1、课本习题 2、搜集有关勾股定理证明的资料.板书设计探索勾股定理 如果直角三角形两直角边分别为a,b,斜边为c,那么 设计说明: 1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法. 2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平. 探索勾股定理说课稿3 一、教材分析 (一)教材地位 这节课是九年制义务教育初级中学教材北师大版八年级第一章第一节《探索勾股定理》第一课时,它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标 知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题. 过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想. 情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学. (三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。 教学难点:用面积法(拼图法)发现勾股定理。 突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解. 二、教法与学法分析: 学情分析:八年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强. 教法分析:结合八年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。 学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人. 三、教学过程设计 1.创设情境,提出问题 2.实验操作,模型构建 3.回归生活,应用新知 4.知识拓展,巩固深化5.感悟收获,布置作业 (一)创设情境提出问题 (1)图片欣赏 勾股定理数形图 1955年希腊发行 美丽的勾股树 20xx年国际数学 的一枚纪念邮票 大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值. (2) 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火? 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节. 二、实验操作模型构建 1.等腰直角三角形(数格子) 2.一般直角三角形(割补) 问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系? 设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想. 问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流) 设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高. 通过以上实验归纳总结勾股定理. 设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律. 三.回归生活应用新知 让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心. 四、知识拓展巩固深化 基础题,情境题,探索题. 设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华. 基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗? 设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维. 情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗? 设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。 探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。 设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力. 五、感悟收获布置作业: 这节课你的收获是什么? 作业: 李景萍《探索勾股定理》第一课时说课稿 1、课本习题2.1 2、搜集有关勾股定理证明的资料. 板书设计 探索勾股定理 如果直角三角形两直角边分别为a,b,斜边为c,那么 李景萍《探索勾股定理》第一课时说课稿 设计说明::1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法. 2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平. 探索勾股定理说课稿4 一、教材分析 教材所处的地位与作用 “探索勾股定理”是人教版八年级《数学》下册内容。“勾股定理”是安排在学生学习了三角形、全等三角形、等腰三角形等有关知识之后,它揭示了直角三角形三边之间的一种美妙关系,将数与形密切联系起来,在几何学中占有非常重要的位置。同时勾股定理在生产、生活中也有很大的用途。 二、教学目标 综上分析及教学大纲要求,本课时教学目标制定如下: 1、知识目标 知道勾股定理的由来,初步理解割补拼接的面积证法。 掌握勾股定理,通过动手操作利用等积法理解勾股定理的证明过程。 2、能力目标 在探索勾股定理的过程中,让学生经历“观察——合理猜想——归纳——验证”的数学思想,并体会数形结合以及由特殊到一般的思想方法,培养学生的观察力、抽象概括能力、创造想象能力以及科学探究问题的能力。 3、情感目标 通过观察、猜想、拼图、证明等操作,使学生深刻感受到数学知识的发生、发展过程。 介绍“赵爽弦图”,让学生感受到中国古代在勾股定理研究方面所取得的伟大成就,激发学生的数学激情及爱国情感。 三、教学重难点 本课重点是掌握勾股定理,让学生深刻感悟到直角三角形三边所具备的特殊关系。由于八年级学生构造能力较低以及对面积证法的不熟悉,因此本课的难点便是勾股定理的证明。 四、教学问题诊断 本 节主要攻克的问题就是本节的难点:勾股定理的证明。我打算采用面积法来讲解,但这种借助于图形的面积来探索、验证数学结论的数形结合思想,对于学生来说, 有些陌生,难以理解,又加之数学课本身的课程特征,在讲解时,没有文科那么深动形象,所以针对这一现状,我在教法和学法上都进行了改进。 五、教法与学法分析 [教学方法与手段] 针对八年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深,由特殊到一般地提出问题,引导学生自主探索,合作交流,并利用多媒体进行教学。 [学法分析] 在教师组织引导下,采用自主探索、合作交流的方式,让学生自己实验,自己获取知识,并感悟学习方法,借此培养学生动手、动口、动脑能力,使学生真正成为学习的主体。让学生感受到自己是学习的主体,增强他们的主动感和责任感,这样对掌握新知会事半功倍。 六、教学流程设计 1、创设情境,引入新课 本节课开始利用多媒体介绍了在北京召开的20xx年 国际数学家大会的会标,其图案为“赵爽弦图”,由此导入新课,是为了激发学生的兴趣和民族自豪感,它是课堂教学的重要一环。“好的开始是成功的一半”,在 课的起始阶段迅速集中学生注意力,把他们的思绪带进特定的学习情境中,激发学生浓厚的学习兴趣和强烈的求知欲。多媒体展示这一有意义的图案,可有效开启学 生思维的闸门,激励探究,使学生的学习状态由被动变为主动,在轻松愉悦的氛围中学到知识。 2、观察发现,类比猜想 让学生仔细观察毕达哥拉斯朋友家的瓷砖(图1), 从而得到特殊的等腰直角三角形三边关系,紧接着由特殊到一般,让学生合理猜测:是否任意直角三角形都符合这个“三边关系”的结论?同学们很轻易的得到了结 论。最后对此结论通过在网格中数格子进行验证,让学生经历了“观察——合理猜测——归纳——验证”的这一数学思想。在数格子的验证过程中,发现任意直角三 角形(图2)斜边上长出的正方形中网格不规则,没法数出。通过同学们的讨论,发现数不出来的原因是格子不规则,从而想到了用补或割的方法进行计算,其原则就是由不规则经过割补变为规则。 3、实验探究,证明结论 因为勾股定理的出现,使数学从单一的纯计算进入了几何图形的证明,所以为了让学生感受数形结合这一数学思想,让学生亲自动手,互相协作,拿一块由a2和b2组成的不规则的平面图形经割补,变为规则的c2,又因两块割补前后面积相等,从而得到勾股定理:a2+b2= c2,也因此引入了“等积法”证明勾股定理。 4、练兵之际 这是“总统证法”,此时让学生自己探索,然后讨论。选用“总统证法”,第一是为了让同学们熟悉“等积法”,第二让学生感受数学的地位之高,第三在没有讲解的情况下,学生自己得出了“总统证法”,大大增强了学生的自信心和自豪感。 5、自己动手,拼出弦图 让同学们拿出了提前准备好的四个全等的边长为a、b、c的 直角三角形进行拼图,小组活动,拼出自己喜爱的图形,但有一个前提是所拼出的图形必须能够用等积法证明勾股定理。此时已经是把课堂全部还给了学生,让他们 在数学的海洋中驰骋,提供这种学习方式就是为了让孩子们更加开阔,更加自主,更方便于他们到广阔的海洋中去寻找宝藏,学生们拼得很好,并且都给出了正确的 证明,在黑板上尽情地展示了一番。 6、总结反思 通 过这一堂课,我认为数学教学的核心不是知识本身,而是数学的思维方式,而培养这种数学思维方式需要丰富的数学活动。在活动中学生可以用自己创造与体验的方 法来学习数学,这样才能真正的掌握数学,真正拥有数学的思维方式,这一课的学习就是通过让学生自主探索知识,从而将其转化为自己的,真正做到了先激发兴 趣,再合作交流,最后展示成果的自主学习,教学模式也从教师讲授为主转为了学生动脑、动手、自主研究,小组学习讨论交流为主,把数学课堂转化为“数学实验 室”,学生通过自己活动得出结论,使创新精神与实践能力得到了发展。 七、设计说明 1、根据学生的知识结构,我采用的数学流程是:创设情境引入新课——观察发现类比猜想——实验探究证明结论——自己动手拼出弦图——总结反思这五部分。这一流程体现了知识的发生、形成和发展的过程,让学生经历了观察——猜想——归纳——验证的思想和数形结合的思想。 2、探索定理采用了面积法,引导学生利用实验由特殊到一般的数学思想对直角三角形三边关系进行了研究,并得出了结论。这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好的思维品质的形成有重要作用,对学生终身发展也有很大作用。 探索勾股定理说课稿5 一、说教材分析: (一)本节内容在全书和章节的地位 这节课是九年制义务教育课程标准实验教科书(华东版),八年级第十九章第二节“勾股定理”第一课时。勾股定理是学生在已经掌握了直角三角形有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形的主要依据之一,在实际生活中用途很大。教材在编写时注意培养学生的动手操作能力和观察分析问题的能力;通过实际分析,拼图等活动,使学生获得较为直观的印象;通过联系比较,理解勾股定理,以便于正确的进行运用。 (二)三维教学目标: 1.【知识与能力目标】 ⒈理解并掌握勾股定理的内容和证明,能灵活运用勾股定理及其计算; ⒉通过观察分析,大胆猜想,并且探索勾股定理,培养学生动手操作、合作交流、逻辑推理的能力。 2.【过程与方法目标】 在探索勾股定理的过程中,让学生经历“观察-猜想-归纳-验证”的数学思想,并且体会数形结合和从特殊到一般的思想方法。 3.【情感态度与价值观】通过介绍中国古代勾股方面的成就,激发学生热爱祖国和热爱祖国悠久文化的思想感情,培养学生的民族自豪感和钻研精神。 (三)教学重点、难点: 【教学重点】勾股定理的证明与运用 【教学难点】用面积法等方法证明勾股定理 【难点成因】对于勾股定理的得出,首先需要学生通过动手操作,在观察的基础上,大胆猜想数学结论,而这需要学生具备一定的分析、归纳的思维方法和运用数学的思想意识,但学生在这一方面的可预见性和耐挫折能力并不是很成熟,从而形成困难。 【突破措施】: ⒈创设情景,激发思维:创设生动、启发性的问题情景,激发学生的问题冲突,让学生在感到“有趣”、“有意思”的状态下进入学习过程; ⒉自主探索,敢于猜想:充分让自己动手操作,大胆猜想数学问题的结论,老师是整个活动的组织者,更是一位参入者,学生之间相互交流、协作,从而形成生动的课堂环境; ⒊张扬个性,展示风采:实行“小组合作制”,各小组中自己推荐一人担任“发言人”,一人担任“书记员”,在讨论结束后,由小组的“发言人”汇报本小组的讨论结果,并可上台利用“多媒体视频展示台”展示本组的优秀作品,其他小组给予评价。这样既保证讨论的有效性,也调动了学生的学习积极性。 二、说教法与学法分析 【教法分析】数学是一门培养人的思维,发展人的思维的重要学科,因此在教学中,不仅要使学生“知其然”,而且还要使学生“知其所以然”。针对初二年级学生的认知结构和心理特征,本节课可选择“引导探索法”,由浅到深,由特殊到一般的提出问题。引导学生自主探索,合作交流,这种教学理念紧随新课改理念,也反映了时代精神。基本的教学程序是“创设情景-动手操作-归纳验证-问题解决-课堂小结-布置作业”六个方面。 【学法分析】新课标明确提出要培养“可持续发展的学生”,因此教师要有组织、有目的、有针对性的引导学生并且参入到学习活动中,鼓励学生采用自主探索,合作交流的研讨式学习方式,培养学生“动手”、“动脑”、“动口”的习惯与能力,使得学生真正的成为学习的主人。 三、说教学过程设计 (一)创设情景 多媒体课件演示FLASH小动画片:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来米长的云梯,如果梯子的底部离墙基的距离是米,请问消防队员能否进入三楼灭火? 问题的设计有一定的挑战性,目的是激发学生的探究欲望,老师要注意引导学生将实际问题转化为数学问题,也就是“已知一直角三角形的两边,求第三边?”的问题。学生会感到一些困难,从而老师指出学习了今天的这节课后,同学们就会有办法解决了。这种以实际问题作为切入点导入新课,不仅自然,而且也反映了“数学来源于生活”,学习数学是为更好“服务于生活”。 (二)动手操作 ⒈课件出示课本P99图: 观察图中用阴影画出的三个正方形,你从中能得出什么结论? 学生可能会考虑到各种不同的思考方法,老师要给予肯定,并且要鼓励学生用语言进行描述,引导学生发现SP+SQ=SR(此时让小组“发言人”发言),从而让学生通过正方形的面积之间的关系发现:对于等腰直角三角形,其两直角边的平方和等于斜边的平方,即当∠C=90°,AC=BC时,则 AC2+BC2=AB2。这样做有利于学生参与探索,感受数学学习的过程,也有利于培养学生的语言表达能力,体会数形结合的思想。 ⒉紧接着让学生思考:上述是在等腰直角三角形中的情况,那么在一般情况下的直角三角形中,是否也存在这一结论呢?于是再利用多媒体投影出P100图 (一般直角三角形)。学生可以同样求出正方形P和Q的面积,只是求正方形R的面积有一些困难,这时可让学生在预先准备的方格纸上画出图形,再剪一剪、拼一拼,通过小组合作、交流后,学生就能发现:对于一般的以整数为边长的直角三角形也存在两直角边的平方和等于斜边的平方。通过学生的动手操作、合作交流,来获取知识,这样设计有利于突破难点,也让学生体会到观察、猜想、归纳的数学思想及学习过程,提高学生的分析问题和解决问题的能力。 ⒊再问:当边长不为整数的直角三角形是否也是存在这一结论呢?投影例题:一个边长分别为,,这种含有小数的直角三角形,让学生计算。这样设计的目的是让学生体会到“从特殊到一般”的情形,这样归纳的结论更具有一般性。 (三)归纳验证 【归纳】通过动手操作、合作交流,探索边长为整数的等腰直角三角形到一般的直角三角形,再到边长为小数的直角三角形的两直角边与斜边的关系,让学生在整个学习过程中感受学数学的乐趣,使学生学会“文字语言”与“数学语言”这两种表达方式,各小组“发言人”的积极表现,整一堂课充分发挥学生的主体作用,真正获取知识,解决问题。 【验证】先后的三次验证“勾股定理”这一结论,期间学生动手进行了画图、剪图、拼图,还有测量、计算等活动,使学生从中体会到数形结合和从特殊到一般的数学思想,而且这一过程也是有利于培养学生严谨、科学的学习态度。 (四)问题解决 ⒈让学生解决开始上课前所提出的问题,前后呼应,让学生体会到成功的快乐。 ⒉自学课本P101例1,然后完成P102练习。 (五)课堂小结 1.小组成员从内容、数学思想方法、获取知识的途径进行小结,后由“发言人”汇报,小组间要互相比一比,看看哪一个小组表现最佳。 2.教师用多媒体介绍“勾股定理史话” ①《周髀算径》:西周的商高(公元一千多年前)发现了“勾三股四弦五”这一规律。 ②康熙数学专著《勾股图解》有五种求解直角三角形的方法,积求勾股法是其独创。 目的是对学生进行爱国主义教育,激励学生要奋发向上。 (六)布置作业 课本P104习题中的第题。目的一方面是巩固“勾股定理”,另一方面是让学生进一步体会定理与实际生活的联系。 探索勾股定理说课稿6 一、教材分析 (一)教材地位 这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标 知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。 过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。 情感态度与价值观: 激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。 (三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。 教学难点:用面积法(拼图法)发现勾股定理。 突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。 二、教法与学法分析: 学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强. 教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境————建立模型————解释应用———拓展巩固”的模式, 选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。 学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。 三、教学过程设计 1、创设情境,提出问题 2、实验操作,模型构建 3、回归生活,应用新知 4、知识拓展,巩固深化 5、感悟收获,布置作业 (一)创设情境提出问题 (1)图片欣赏 勾股定理数形图 1955年希腊发行 美丽的勾股树20xx年国际数学 的一枚纪念邮票 大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的`文化价值。 (2) 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6。5米长的云梯,如果梯子的底部离墙基的距离是2。5米,请问消防队员能否进入三楼灭火 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节。 二、实验操作模型构建 1、等腰直角三角形(数格子) 2、一般直角三角形(割补) 问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系 设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想。 问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗 (割补法是本节的难点,组织学生合作交流) 设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高。 通过以上实验归纳总结勾股定理。 设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊—— 一般的认知规律。 三。回归生活应用新知 让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心。 四、知识拓展巩固深化 基础题,情境题,探索题。 设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展。知识的运用得到升华。 基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题 你能解决所提出的问题吗 设计意图:这道题立足于双基.通过学生自己创设情境 ,锻炼了发散思维. 情境题:小明妈妈买了一部29英寸(74厘米)的电视机。小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了。你同意他的想法吗 设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。 探索题: 做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么 试用今天学过的知识说明。 设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力。 五、感悟收获布置作业: 这节课你的收获是什么 作业:1、课本习题 2、1 2、搜集有关勾股定理证明的资料。 板书设计 探索勾股定理 如果直角三角形两直角边分别为a,b,斜边为c,那么 a2 b2 c2 设计说明::1。探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法. 2、让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平。 探索勾股定理说课稿7 一、教材分析 (一)教材地位:这节课是九年制义务教育初级中学教材北师大版七年级第二章第一节《探索勾股定理》第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。 (二)教学目标: 知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题. 过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想. 情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学. (三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。 教学难点:用面积法(拼图法)发现勾股定理。 突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解. 二、教法与学法分析: 学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强. 教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式,选择引导探索法。把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。 学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人. 三、教学过程设计 1.创设情境,提出问题 2.实验操作,模型构建 3.回归生活,应用新知 4.知识拓展,巩固深化 5.感悟收获,布置作业 (一)创设情境提出问题 (1)图片欣赏勾股定理数形图1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标 设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值. (2)某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火? 设计意图:以实际问题为切入点引入新课,反映了数学来源于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节. 二、实验操作模型构建 1.等腰直角三角形(数格子)2.一般直角三角形(割补) 问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系? 设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想. 问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流) 设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高. 通过以上实验归纳总结勾股定理. 设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律. 三.回归生活应用新知 让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心. 四、知识拓展巩固深化 基础题,情境题,探索题. 设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华. 基础题:直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗? 设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维. 情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗? 设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。 探索题:做一个长,宽,高分别为50厘米,40厘米,30厘米的木箱,一根长为70厘米的木棒能否放入,为什么?试用今天学过的知识说明。 设计意图:探索题的难度相对大了些,但教师利用教学模型和学生合作交流的方式,拓展学生的思维、发展空间想象能力. 五、感悟收获布置作业: 这节课你的收获是什么? 作业: 1、课本习题2.1 2、搜集有关勾股定理证明的资料. 板书设计探索勾股定理 如果直角三角形两直角边分别为a,b,斜边为c,那么 设计说明: 1.探索定理采用面积法,为学生创设一个和谐、宽松的情境,让学生体会数形结合及从特殊到一般的思想方法. 2.让学生人人参与,注重对学生活动的评价,一是学生在活动中的投入程度;二是学生在活动中表现出来的思维水平、表达水平. 《探索勾股定理》教学设计 嘴角上翘 一、教材分析 勾股定理历史悠久,是初中数学中非常重要的一个结论,称为“几何学的基石”,在数学学习中有重要的地位。它是平面几何有关度量的最基本定理,它从边的角度进一步刻画了直角三角形的特征,学习勾股定理是进一步认识和理解直角三角形的需要,也是后续有关几何度量运算和代数学习的必要基础。因而勾股定理具有学科的基础性和广泛的应用。 二、学情分析: 八年级学生已经学习了三角形的一些基本知识;也经历过利用图形面积来探求数学公式过程。如探求乘法公式、单项式乘多项式法则、多项式乘多项式法则等。本节课在学生这些原有的认知水平基础上,探求直角三角形的又一重要性质——勾股定理。让学生的知识形成知识链,使学生已具有的数学思维能力得以充分发挥和发展。 但是这个年龄的孩子的思维偏重于直观。而勾股定理的探究方法虽然很多,但对于八年级的学生,如果直接让探究直角三角形三边之间的关系,学生大多会思考三边之间的一次关系,而较难想到三边之间的平方关系,可能会陷入较长时间的困惑,而且没有教师的指引可能最终都不能走到正确道路上来,为此,从特殊的等腰直角三角形入手,提出问题,课堂中,注重学生的动手操,引导学生从具体到一般,层层递进,引导学生亲历定理的产生和验证过程,作为以后相关知识的继续学习奠定良好的基础。 让学生经历勾股定理的探究过程,进一步丰富学生的数学活动经验,发展学生的推理能力,以及分析问题、解决问题的能力,同时感受勾股定理的文化价值。 三、教学目标: 1、让学生亲历“发现问题—提出问题—一解决问题”、从“特殊到一般”的过程,体会类比、转化、数形结合的数学思想和方法。 2、让学生经历实践操作、计算分析、拼图实验的过程,在过程中养成独立思考、合作交流的学习习惯;让各类型的学生在这些过程中发挥自己特长,通过解决问题增强自信心,激发学习数学的兴趣;通过老师的介绍,感受勾股定理的文化价值。 3、能说出勾股定理,并能用勾股定理解决简单问题 四、教学重点:勾股定理的探索过程和简单的应用 五、教学难点:勾股定理的探索过程 六、教学方法:小组合作、教师点拨 七、教学资源:教材、多媒体 八、教学准备:已剪好的若干个边长为整数的直角三角形、方格纸、几何画板课件 九、教学过程 教学环节 教师活动 学生活动 设计意图 一、发现问题 老师:同学们,我们在七年级已经学习过三角形的一些基本知识,我们也了解了一些特殊的三角形,你知道的特殊的三角形有哪些? 对于等腰三角形和等边三角形你知道些什么?直角三角形呢?边与边的关系呢?(课件出示) 老师提出问题,学生独立思考,同桌两人交流讨论,再由代表公布。 这是对特殊的两类三角形的回顾,从学生从原有的认知水平出发,揭示这节课产生的根源,符合学生的认知心理,也自然地引出本节课的目标。 二、提出问题 Rt△ABC中,∠C=90°,请问:边a、b、c之间有何关系? 该如何研究? (教师板书今天的研究目的) 提出问题,学生思考,该如何研究呢?测量?还是其他方法呢? 以问题串的形式,引发学生思考,测量后学生不能发现规律,进而引出研究问题的方法:可以从简单的特殊的入手。 三、如何解决 三、如何解决 三、如何解决 1、特殊入手——简单的问题1.已知Rt△ABC,∠C=90° 若 a=b=1,你能写出含c的等式吗? 若 a=b=2,你能写出含c的等式吗? 若 a=1, b=2呢? 思考: (1)(2)的条件有什么共同点?(3)的条件与(1)(2)有什么区别? (1)(2)的结果有什么共同点?c2=2,c2=8能让我们想起什么? 学生难以得出时,老师给予适当的提示,可以从面积入手。 学生思考,并畅所欲言。 学生不难得出平方和正方形的面积有关系,所以引导学生利用面积来探求关系。 当老师拥有完美的方法解决问题的时候,学生好奇的不仅是老师解决问题的方法,学生更加关心的是老师是如何想到这一方法的,从特殊的简单的入手,是学生容易接受的。 让学生体会到当一般性的问题不好解决时,可以先将一般问题转化为特殊问题来研究。 从学生认知基础、已有的学习经验出发,将探求边长之间的关系转化为探求面积之间的关系,让学生觉得解决今天问题的方法并不陌生,增强探索问题的信心和欲望。 2、分析方法 问题: 如何验证以c为边长的正方形的面积是否为2 ? 方法2.用网格1帮助 你能用上述方法验证问题(2)的结论吗? 思考:你有哪些方法知道正方形的面积为8? 问题:你能用上述方法帮助解决问题(3)吗? 思考:你有哪些方法知道正方形的面积为5? 教师引导,学生观察不难得出。 类比边长为1的等腰直角三角形在网格中得出斜边的平方为2的方法,学生不难想到在方格纸中利用面积得到。 当学生在方格纸上画出这个正方形后,采用补、拼、割的办法得出。 对于问题(3),当学生在方格纸上画出这个正方形后,让学生小组讨论交流,选代表发言。学生类比前面方法,采用割或者补的办法得出。 引导学生求这个正方形面积的方法可以又多种,拓展学生的思维。 让学生在问题(1)的启发下,得出方法,自己动手实践,体会成功的喜悦,激发内驱力。 展示学生的方法:割的方法,补的方法,平移的方法,旋转的方法,(旋转的方法是正确的,但是它只适应于斜边是整数的情况,况且学生在此时还不会计算斜边的长,因此这种方法没有一般性,如果学生有提到,教师应予以解释。)肯定学生的研究成果,进而让学生进行总结,把图形进行割和补,即把不能利用网格线直接计算面积的图形转化为可以利用网格线直接计算面积的图形。让学生体会数学的转化思想。 3、应用方法 问题1.(4)若a=2,b=3.你能求c2吗? 思考:你有哪些方法知道正方形的面积为13? 让学生自己在方格纸上画出直角边分别为2和3的直角三角形,类比前面的方法,得出c的平方。 通过此活动锻炼了学生动手能力,体现了活动数学的思想。同时也是对割、补方法计算正方形面积做了加深理解。 4、观察归纳 问题2.梳理上述四个问题的边长,并思考a、b、c之间有什么联系? 5、。验证结论 问题3.(1)在网格中能验证a2+b2=c2吗? 活动:在网格纸上任意画一个顶点都在格点上的直角三角形,并分别以这个直角三角形的各边为边向外做出三个正方形,求出此时三个正方形的面积。 学生通过观察表格,初步得出猜想:a2+b2=c 2学生活动时,教师要积极的参与到学生活动中去,其中以斜边为边向外作正方形时,另两个顶点位置的确定是这一活动的难点,教师巡视是如果有学生在这两处存在问题的话,教师就以中国象棋马走日,连续走四次所形成的线路图给学生启发。 梳理四个问题,学生归纳总结,得出猜想,让学生初步得到直角三角形三边之间的关系猜想,为进一步的探索明确方向。 此活动是一个学生全面经历探究的过程,也是割和补的方法的再次应用,让全体学生再次感受转化思想,体验成功的乐趣。此时要给学生充分的时间,相信在同学们计算中学生会得到更多的一般情形,由此为归纳定理奠定基础。这样归纳的结果也更具一般性,学生们的印象也更加深刻。 让学生体会到更多的特殊情形,从而为归纳提供基础,这样归纳的结论更具有一般性,学生的印象也更深刻。 6、。结论一般化 (1)通过以上的实验、操作、计算,我们发现以直角三角形的各边为边所作的正方形的面积之间有什么关系呢?同学们还有什么疑问吗? (2)网格有局限性,对于非整数边长的直角三角形,结论是否成立? a、插入几何画板: 提问:在老师拖动的过程中,仔细观察,变化的是什么?不变的是什么? b、学生拿出四个全等的直角三角形拼图。 学生留下思考时间,提出问题:我们画的都是格点三角形,直角边的长度都是整数,如果不是整数会不会成立? 问题激发学生进一步探究的兴趣。 让学生仔细观察,从而得出结论。 通过学生观察几何画板、亲自动手拼图、运算推演、互相交流,发现以直角三角形的各边为边所作的正方形面积之间的关系,由特殊到一般,使学生印象深刻,对于勾股定理的得出就水到渠成了,并让学生体会成功的乐趣。 引导学生从特殊到一般,发现直角三角形三边之间的数量关系。这一问题的结论是本节课的点睛之笔,应充分让学生总结,交流,表达。 四、归纳应用 1、归纳 (1)我们这节课是探索直角三角形三边数量关系。至此,你对直角三角形三边的数量关系有什么发现? (2)直角三角边的两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c.那么(板书勾股定理内容,进而给出字母表达式,并给出勾股定理的几种表达式。) 我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,所以这个结论称为勾股定理。(如图1---5所示)(板书)其实这个结论早在公元前1000年被我国的商高发现并应用于测量土地,在国外,由于是古希腊的毕达哥拉斯于公元前500年发现的,所以此定理又称为毕达哥拉斯定理。 点出本节研究内容,也就是本节课题——探索勾股定理。 回顾思考: 1.怎样探索获得勾股定理的? 2.你体会到的数学方法有哪些? 之后教师梳理。 思考: (1)勾股定理的使用条件是什么? (2)有什么用? 给学生留有思考时间。 由学生用自己的语言概括自己所发现的规律。 学生突破本节学习目标。 课堂小结,让学生畅所欲言。 先让同桌之间相互说一说,再找同学分享给全班同学,其他同学不断补充,同学谈完后,老师梳理,强调:勾股定理只有在直角三角形中才成立。 让学生自己总结归纳,培养学生的语言表达能力,并了解学生所学。 渗透勾股定理的历史,让学生了解勾股定理历史渊源深厚,激发学生的爱国情怀和民族自豪感。 以这样方式引出本节课题,回扣了一开始提出的研究目的:直角三角形三边之间的关系,渗透勾股定理研究的是直角三角形三边之间的关系。 这样不仅引导学生回顾本节所学,并培养学生的语言表达和归纳能力,同时也让学生对本节的探索流程有了更深的理解和认识,为下一节课勾股定理的证明做好铺垫。 2、应用 (1)求下列图形中未知数x,y,z的值。 (2)求下列三角形未知边的长。 (3)已知等边三角形ABC的边长是6cm.求: (1)高AD的长;(2)△ABC的面积。 学生独立完成,然后小组交流,每组派代表给出本组结论。 展示答案,学生互相评价,总结类型、方法。 充分利用课本上的习题,巩固新知。 通过对勾股定理的基本应用,让学生知道已知直角三角形三边中的任意两边,可以求第三边。 让学生有将知识内化为自己的知识结构的过程,教师巡视,对有困难的同学给予帮助,促进全班同学共同进步,体现面向全体的教学原则。 让学生有将知识内化为自己的知识结构的过程,教师巡视,对有困难的同学给予帮助,促进全班同学共同进步,体现面向全体的教学原则。 拓宽学生的思维,体会数学知识之间的联系,认识数学的转化思想。 一段紧张的探究和简单应用之后,给出一段关于勾股定理验证方法和文化价值的拓展,这样既激发了同学们的兴趣,又增加了课堂的愉快气氛。让学生感受到勾股定理的历史并了解一定的证明方法,增加了学生学习数学的兴趣。 五、达标检测 六、拓展视野 A组:(填空题)已知在直角三角形ABC中,∠C=90° ①若a=3,b=4,则c=________;②若a=6,c=10,则b=_______;③若c=25,b=15,则a=_______.B组:学了勾股定理后,小明和小丽遇到这样一个问题:“在Rt△ABC中,如果a=3,b=4,则c=5.”小明认为这个说法正确的,小丽觉得有问题,你觉得呢?并说明理由。 1、验证方法:古今中外,勾股定理的验证方法达500多种,上至总统下至数学爱好者。 2、文化价值: (1)2002年国际数学家大会会标 (2)目前世界上许多科学家正在试图寻找其他星球的“人.为此向宇宙发出了许多信号。如地球上人类的语言。音乐。各种图形等。我国数学家华罗庚曾建议。发射一种反映勾股定理的图形。如果宇宙人是”文明人.那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。 对于A组,采用学生独立完成,出示答案,同位互换,互批,小组计分,当堂反馈。 B组,根据情况,可以适当引导学生解此题的思路。 一段紧张的探究之后,结尾给出一段优美的音乐,配以老师的解说,让学生的情感再次升华。 设计两组题目,尊重学生的个体差异。 B组题目可以拓宽学生的思维,体会分类讨论思想。 学生独立完成,出示答案,同位互换,互批,小组计分,当堂反馈。便于老师及时了解学生对知识的掌握情况,如果出现共性问题,老师要拿出解决方案,对于个别学生的问题可以在课后进行补差。 激发学生利用网络资源,课下继续探讨学习和研究,提高学生学习数学的兴趣。同时也活跃了课堂气氛,展现了勾股历史,激发学生热爱祖国悠久历史文化,激励学生发奋学习的情感.激发学生的民族自豪感,教师寄语 给我最大快乐的,不是已懂得知识,而是不断的学习;不是已有的东西,而是不断的获取;不是已达到的高度,而是继续不断的攀登。 ——高斯 同学们,学习知识的过程就是不断挑战,不断攀登的过程,相信我们通过自己的勤奋探索,一定会达到知识的最高峰! 第一课时 探索勾股定理 (一)教学目标: 1、经历用数格子的办法探索勾股定理的过程,进一步发展学生的合情推力意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。 2、探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。重点难点: 重点:了结勾股定理的由来,并能用它来解决一些简单的问题。难点:勾股定理的发现 教学过程 一、创设问题的情境,激发学生的学习热情,导入课题 出示投影1(章前的图文 p1)教师道白:介绍我国古代在勾股定理研究方面的贡献,并结合课本p5谈一谈,讲述我国是最早了解勾股定理的国家之一,介绍商高(三千多年前周期的数学家)在勾股定理方面的贡献。 出示投影2(书中的P2 图1—2)并回答: 1、观察图1-2,正方形A中有_______个小方格,即A的面积为______个单位。 正方形B中有_______个小方格,即A的面积为______个单位。 正方形C中有_______个小方格,即A的面积为______个单位。 2、你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问: 3、图1—2中,A,B,C 之间的面积之间有什么关系? 学生交流后形成共识,教师板书,A+B=C,接着提出图1—1中的A.B,C 的关系呢? 二、做一做 出示投影3(书中P3图1—4)提问: 1、图1—3中,A,B,C 之间有什么关系? 2、图1—4中,A,B,C 之间有什么关系? 3、从图1—1,1—2,1—3,1|—4中你发现什么? 学生讨论、交流形成共识后,教师总结: 以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。 三、议一议 1、图1— 1、1— 2、1— 3、1—4中,你能用三角形的边长表示正方形的面积吗? 2、你能发现直角三角形三边长度之间的关系吗? 在同学的交流基础上,老师板书: 直角三角形边的两直角边的平方和等于斜边的平方。这就是著名的“勾股定理” 也就是说:如果直角三角形的两直角边为a,b,斜边为c 那么a2b2c2 我国古代称直角三角形的较短的直角边为勾,较长的为股,斜边为弦,这就是勾股定理的由来。 3、分别以5厘米和12厘米为直角边做出一个直角三角形,并测量斜边的长度(学生测量后回答斜边长为13)请大家想一想(2)中的规律,对这个三角形仍然成立吗?(回答是肯定的:成立) 四、想一想 这里的29英寸(74厘米)的电视机,指的是屏幕的长吗?只的是屏幕的款吗?那他指什么呢? 五、巩固练习 1、错例辨析: △ABC的两边为3和4,求第三边 解:由于三角形的两边为3、4 所以它的第三边的c应满足c23242=25 即:c=5 辨析:(1)要用勾股定理解题,首先应具备直角三角形这个必不可少的条件,可本题 △ ABC并未说明它是否是直角三角形,所以用勾股定理就没有依据。 (2)若告诉△ABC是直角三角形,第三边C也不一定是满足a2b2c2,题目中并为交待C 是斜边 综上所述这个题目条件不足,第三边无法求得。 2、练习P6 §1.1 1 六、作业 1、1、课本P6 §1.1 2、3、4 2、选用作业。第二篇:探索勾股定理说课稿
第三篇:探索勾股定理说课稿
第四篇:《探索勾股定理》教学设计
第五篇:探索勾股定理教学设计一