勾股定理教案

时间:2019-05-12 19:52:47下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《勾股定理教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《勾股定理教案》。

第一篇:勾股定理教案

勾股定理

教学目标

1、了解勾股定理的推理过程,掌握勾股定理的内容,会用面积法证明勾股定理;

2、从实际问题中抽象出数学模型,利用勾股定理解决,渗透建模思想和数形结合思想;

3、通过研究一系列富有探究性的问题,培养在实际生活中发现问题总结规律的意识和能力.

知识梳理

1.勾股定理

(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于_____的平方.

222如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a+b=c.(2)勾股定理应用的前提条件是在___三角形中.

222222222222(3)勾股定理公式a+b=c 的变形有:a=c﹣b,b=c﹣a及c=a+b.

2222(4)由于a+b=c>a,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.

2.直角三角形的性质

(1)有一个角为90°的三角形,叫做直角三角形.

(2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:

性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理). 性质2:在直角三角形中,两个锐角___.

性质3:在直角三角形中,斜边上的___等于斜边的一半.(即直角三角形的外心位于斜边的中点)

性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积.

性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的___;

在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于___. 3.勾股定理的应用

(1)在不规则的几何图形中,通常添加辅助线得到直角三角形.

(2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型:

①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度.

②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为边长的多边形的面积等于以直角边为边长的多边形的面积和.

③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题.

④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.

4.平面展开-最短路径问题

(1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,_________.在平面图形上构造直角三角形解决问题.(2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型.

典型例题

1.勾股定理.

【例1】(2014•临沂蒙阴中学期末)已知△ABC中,AB=17,AC=10,BC边上的高AD=8,则边BC的长为()

A.21 B.15C.6 D.以上答案都不对.

练1.(2014秋•绥化六中质检)在△ABC中,AB=15,AC=13,BC上的高AD长为12,则△ABC的面积为()

A.84 B.24 C.24或84 D.42或84 练2.(2014春•江西赣州中学期末)如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=()

A.1 B. C. D.2 2.等腰直角三角形.

【例2】(2014•鹰潭中学校级模拟)已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是()

A.2 B.2 C.2 D.2

练3.将一等腰直角三角形纸片对折后再对折,得到如图所示的图形,然后将阴影部分剪掉,把剩余n﹣2n﹣1n

n+1部分展开后的平面图形是()A. B.

C.

D.

3.等边三角形的性质;勾股定理.

【例3】(2014•福建泉州中学一模)以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的边长是()A.2×()厘米 B.2×()厘米 109

C.2×()厘米 D.2×(10)厘米

9练4.等边三角形ABC的边长是4,以AB边所在的直线为x轴,AB边的中点为原点,建立直角坐标系,则顶点C的坐标为

. 4.勾股定理的应用. 【例4】(2014•福建晋江中学月考)工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B.C.80cm或 D.60cm 练5.现有两根铁棒,它们的长分别为2米和3米,如果想焊一个直角三角形铁架,那么第三根铁棒的长为()A.米 B.米 C.米或米 D.米 5.平面展开-最短路径问题. 【例5】(2014•贵阳八中期中)如图A,一圆柱体的底面周长为24cm,高BD为4cm,BC是直径,一只蚂蚁从点D出发沿着圆柱的表面爬行到点C的最短路程大约是()

A.6cm B.12cm C.13cm D.16cm 练6.(2014春•普宁市校级期中)如图是一个长4m,宽3m,高2m的有盖仓库,在其内壁的A处(长的四等分)有一只壁虎,B处(宽的三等分)有一只蚊子,则壁虎爬到蚊子处最短距离为()m.

A.4.8 B. C.5

D.

随堂检测

1.已知两边的长分别为8,15,若要组成一个直角三角形,则第三边应该为()A.不能确定 B. C.17 D.17或

2.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,若∠A:∠B:∠C=1:2:3.则a:b:c =()A.1::2 B.:1:2 C.1:1:2 D.1:2:3 3.直角三角形的两边长分别为3厘米,4厘米,则这个直角三角形的周长为()A.12厘米 B.15厘米 C.12或15厘米 D.12或(7+)厘米 4.有一棵9米高的大树,树下有一个1米高的小孩,如果大树在距地面4米处折断(未完全折断),则小孩至少离开大树

米之外才是安全的.

5.如图,一棵大树在一次强台风中于离地面3m处折断倒下,树干顶部在根部4米处,这棵大树在折断前的高度为

m.

6.在一个长为2米,宽为1米的矩形草地上,如图堆放着一根长方体的木块,它的棱长和场地宽AD平行且大于AD,木块的正视图是边长为0.2米的正方形,一只蚂蚁从点A处,到达C处需要走的最短路程是 米.(精确到0.01米)

课堂小结

_________________________________________________________________________________ _________________________________________________________________________________ 课后作业

1.若一个直角三角形的三边长分别为3,4,x,则满足此三角形的x值为()A.5 B. C.5或 D.没有

2.已知直角三角形有两条边的长分别是3cm,4cm,那么第三条边的长是()A.5cm B.cm C.5cm或cm D.cm

23.已知Rt△ABC中的三边长为a、b、c,若a=8,b=15,那么c等于()A.161 B.289 C.225 D.161或289 4.一个等腰三角形的腰长为5,底边上的高为4,这个等腰三角形的周长是()A.12 B.13 C.16 D.18 5.长方体的长、宽、高分别为8cm,4cm,5cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁爬行的最短路径的长是 cm.

6.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用

秒钟. 7.如图,一个长方体盒子,一只蚂蚁由A出发,在盒子的表面上爬到点C1,已知AB=5cm,BC=3cm,CC1=4cm,则这只蚂蚁爬行的最短路程是

cm.

8.如图,今年的冰雪灾害中,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是

米.

9.如图所示的长方体是某种饮料的纸质包装盒,规格为5×6×10(单位:cm),在上盖中开有一孔便于插吸管,吸管长为13cm,小孔到图中边AB距离为1cm,到上盖中与AB相邻的两边距离相等,设插入吸管后露在盒外面的管长为hcm,则h的最小值大约为

cm.(精确到个位,参考数据:≈1.4,≈1.7,≈2.2).

10.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为

mm.

第二篇:勾股定理教案

勾股定理

作者:范丹初中 耿占华

一、素质教育目标

(一)知识教育点

1、用验证法发现直角三角形中存在的边的关系。

2、掌握定理证明的基本方法。

(二)能力训练点

观察和分析直角三角形中,两边的变化对第三边的影响,总结出直角三角形各边的基本关系。

(三)德育渗透点

培养学生掌握由特殊到一般的化归思想,从具体到抽象的思维方法,以及化归的思想,从而达到从感性认识到理性认识的飞跃;又从一般到特殊,从抽象到具体,应用到实践中去。

二、教学重点、难点及解决办法

1、重点:发现并证明勾股定理。

2、难点:图形面积的转化。

3、突出重点,突破难点的办法:《几何画板》辅助教学。

三、教学手段 :

利用计算机辅助面积转化的探求。

四、课时安排:

本课题安排1课时

五、教学设想:

想培养学生的思维能力,为学生提供一个丰富的思维空间,使学生能够根据“式,数、形”等不同的结构从不同的角度去分析问解决问题

六、教学过程(略)

第三篇:勾股定理教案

一,课题:勾股定理(八年级下册第十八章——勾股定理)

二,教学类型:新知课

三,教学目的:让学生了解勾股定理的产生及其内容。

四,教学方法:讲解法

五,教学重难点:如何引入勾股定理,如何让学生理解勾股定理的内容。六,教具:粉笔,直角三角板,画好网格的A4纸,正方形彩纸。

七,教学过程:1,引入新课:相传2500年前,大数学家毕达哥拉斯在朋友家做客时发现家里的地板放映了直角三角边的某种数量,请同学们仔细观察书P72的图,看是否能发现途中隐藏的玄机?

2,讲解新课:我们能发现,图中,以等腰直角三角形的两直角边为边长的小正方形面积和,等于以斜边为边长的正方形的面积,因此我们大胆提出猜想,等腰直角三角形的三边之间有特殊关系:斜边的平方和等于两直角边的平方和。见书P73图。这即是我们的命题一:如果是角三角形的两直角边长分变为a,b,斜边长为c,那么a^2+b^2=c^2.那么我们如何验证命题的正确性呢?请拿出我们的两张正方形彩纸,按照书上给出的步骤进行折叠,并把中间的小正方形描画出来。我们所折出的四个全等三角形中短边长为a,长直角边长为b,斜边长为c,且斜边长即为新折出的正方形的边长。原来没有折叠前,两张彩纸的面积一共为a^2+b^2,折叠后的面积为c^2,但是折叠前后并没有改变其面积的大小,因此有a^2+b^2=c^2.这样命题就等到了验证。(这种方法是我国古代的数学家赵爽想出来的,同学们是否有其他方法来验证命题的正确性?)命题一就是我们所说的勾股定理。

3,小结:勾股定理的内容是什么?验证勾股定理的方法是什么?

4,巩固:我们来研究勾股定理在实际中是如何被利用的。有一个门框,宽3米,高4米,请问有个人拿了五米高的薄木板,请问他能否通过此门?若能应如何通过?若不能请给出理由。(能。运用勾股定理,3^2+4^2=5^2,把木板按照门的对角线放置就能经过此门)

5,作业:书P781,2,5,8题

八,思考:我们知道直角三角形一定满足勾股定理,那么满足勾股定理的三角形一定是直角三角形吗?你是否能找到满足勾股定理但不是直角三角形的例子呢?请同学们回家思考,明天给我答案。

第四篇:勾股定理教案

勾股定理专题 第 1 讲

一、《标准》要求

1.在研究图形性质和运动等过程中,进一步发展空间观念。2.在多种形式的数学活动中,发展合情推理能力。

3.经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。4.探究勾股定理及其逆定理,并能运用他们解决一些简单的实际问题。

二、教学目标:

(一)、知识与技能:

经历勾股定理及其逆定理的探索过程,了解勾股定理的各种探究法方法及其内在联系,体验数形结合的思想,解和掌握勾股定理内容及简单应用,进一步发展空间观念和推理能力。

(二)、过程与方法:

1.掌握勾股定理及其逆定理的内容;

2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);

3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.

(三)、情感态度与价值观

通过实例了解勾股定理的历史与应用,体会勾股定理的文化价值。

三、教学重点

勾股定理及其逆定理在解决数学问题中的灵活应用

四、教学难点

勾股定理及其逆定理的证明

五、教学过程

一、引入新课

据传两千多年前的一天(公元前580-490年左右),古希腊著名的数学家毕达哥拉斯到朋友家做客,在宴席上,其他的宾客都在尽情欢乐,只有毕达哥拉斯却看着朋友家的方砖地发起呆来,原来朋友家的地面是由许多直角三角形组成的图案,黑白相间,美观大方。主人看到毕达哥拉斯的样子非常奇怪,就想过去问他,谁知,毕达哥拉斯突然恍然大悟地站了起来,大笑着跑回去了,原来,他发现了地砖上的三个正方形存在某种数学关系。

那么黑白相间的地砖上的正方形之间存在怎样的关系呢?让我们一起来探索!

勾股定理被称为“几何学的基石”,勾股定理现约有500种证明方法,是数学定理中证明方法最多的定理之一。勾股定理是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。在中国,商朝时期的商高提出了“勾三股四玄五”的勾股定理的特例。在西方,最早提出并证明此定理的为公元前6世纪古希腊的毕达哥拉斯学派,他用演绎法证明了直角三角形斜边平方等于两直角边平方之和。

别名:商高定理、毕达哥拉斯定理、百牛定理。1(1)、动手画一个直角边为3cm和4cm的直角△ABC,用

刻度尺量出AB的长。(2)、再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长

你能观察出直角三角形的三边关系吗?看不出来的话我们先来看一下下面的活动。

4.如果直角三角形的两直角边分别为1.6个单位长度和2.4个单位长度,上面的猜想关系还成立吗?

二、新知传授

通过上面的活动,可以发现:直角三角形两直角边的平方和等于斜边的平方。因为我国古代把直角三角形较短的直角边称为勾,较长的直角边称为股,斜边称为弦,因此我国把上面的这个结论称为勾股定理。

勾股定理:直角三角形两直角边的平方和等于斜边的平方。如果用a,b,c分别表示直角三角形的两直角边和斜边,那么abc。22

勾股定理的一些变式:

2a2c2b2,b2c2a2,cab2ab.

2勾股定理的证明

勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化进行证明的,体现了数形结合的思想.

方法一:如图(3)所示,将两个直角三角形拼成直角梯形.

,所以.

(这个方法叫加菲尔德证法。加菲尔德在证出此结论5年后,成为美国第20任总统,所以人们又称其为“总统证法”。)

方法二:将四个全等的直角三角形拼成如图(1)所示的正方形.

图(1)中,所以

这是加菲尔德证法变式 如果将大正方形边长为c的小正方形沿对角线切开,则回到了加菲尔德证 法。相反,若将上图中两个梯形拼在一起,就变为了此证明方法。

大正方形的面积等于中间正方形的面积加上四个三角形的面积,即:

方法三:将四个全等的直角三角形拼成如图(2)所示的正方形.

图(2)中,所以

(这个方法是以前一个叫赵爽的人对这个图做出的描述,所以这个图又叫赵爽弦图,用现代的数学语言描述就是大正方形的面积等于小正方形的面积加上四个三角形的面积。)

那么勾股定理到底可以用来干什么呢?

勾股定理的作用

1.已知直角三角形的任意两条边长,求第三边; 2.用于解决带有平方关系的证明问题; 3. 与勾股定理有关的面积计算; 4.勾股定理在实际生活中的应用.

类型

一、勾股定理的直接应用

1、在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.

5(1)若a=5,b=12,求c;(2)若c=26,b=24,求a.

【思路点拨】利用勾股定理a2b2c2来求未知边长.

解:(1)因为△ABC中,∠C=90°,a2b2c2,a=5,b=12,所以c2a2b25212225144169.所以c=13.

(2)因为△ABC中,∠C=90°,a2b2c2,c=26,b=24,所以a2c2b2262242676576100.所以a=10.

练习1

△ABC,AC=6,BC=8,当AB=________时,∠C=90°

2.在△ABC中,A900,则下列式子中不成立的是()A.BC2AB2AC

2B.AC2BC2-AB2 B.AB2BC2AC2

D.AB2AC2BC2

3.在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)已知b=6,c=10,求a;

(2)已知a:c3:5,b=32,求a、c.

【答案】

解:(1)∵ ∠C=90°,b=6,c=10,∴ acb10664,∴ a=8.(2)设a3k,c5k,∵ ∠C=90°,b=32,∴ abc.

222(3k)32(5k)即. 22222222解得k=8.

∴ a3k3824,c5k5840.

类型

二、与勾股定理有关的证明

2、(2015•丰台区一模)阅读下面的材料

勾股定理神秘而美妙,它的证法多种多样,下面是教材中介绍的一种拼图证明勾股定理的方法.先做四个全等的直角三角形,设它们的两条直角边分别为a,b,斜边为c,然后按图1的方法将它们摆成正方形.

由图1可以得到(a+b)=4×222

2,整理,得a+2ab+b=2ab+c.

222所以a+b=c.

如果把图1中的四个全等的直角三角形摆成图2所示的正方形,请你参照上述证明勾股定理的方法,完成下面的填空:

由图2可以得到

,整理,得

,所以

【答案与解析】

证明:∵S大正方形=c2,S大正方形=4S△+S小正方形=4×ab+(b﹣a)2,∴c2=4×ab+(b﹣a)2,整理,得

2ab+b2﹣2ab+a2=c2,∴c2=a2+b2. 故答案是:41ab(b-a)2c2;2ab+b2﹣2ab+a2=c2;a2+b2=c2. 2

练习2 如图,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE2-BE2等于()

A.AC2

B.BD2

C.BC2

D.DE2

【答案】连接AD构造直角三角形,得,选A.

类型

三、与勾股定理有关的线段长

3、如图,长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3,则AB的长为()

A.3 B.4 C.5 D.6

【答案】D; 【解析】

解:设AB=x,则AF=x,∵ △ABE折叠后的图形为△AFE,∴ △ABE≌△AFE.BE=EF,EC=BC-BE=8-3=5,在Rt△EFC中,由勾股定理解得FC=4,22在Rt△ABC中,x8x4,解得x6.

2类型

四、与勾股定理有关的面积计算

4、如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()

A.6

B.5

C.11

D.16 【思路点拨】本题主要考察了全等三角形与勾股定理的综合应用,由b是正方形,可求△ABC≌△CDE.由勾股定理可求b的面积=a的面积+c的面积. 【答案】D

【解析】

解:∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC,在△ABC和△CDE中,∵ABCCDEACBDECACCE

∴△ABC≌△CDE ∴BC=DE ∵ABBCAC ∴ABDEAC

∴b的面积为5+11=16,故选D.

练习4如图,所有的四边形都是正方形,所有的三角形都是直角三角形,请在图中找出若干图形,使得它们的面积之和恰好等于最大正方形①的面积,尝试给出两种以上的方案。22222

24.如图,所有三角形都是直角三角形,所有四边形都是正方形,已知S1=4,S2=9,S3=8,S4=10,则S=()

A.25 B.31 C.32 D.40

【答案】解:如图,由题意得: AB2=S1+S2=13,AC2=S3+S4=18,∴BC2=AB2+AC2=31,∴S=BC2=31,故选B.

类型

五、利用勾股定理解决实际问题

5、有一个小朋友拿着一根竹竿要通过一个长方形的门,如果把竹竿竖放就比门高出1尺,斜放就恰好等于门的对角线,已知门宽4尺,求竹竿高与门高.

【思路点拨】根据题中所给的条件可知,竹竿斜放就恰好等于门的对角线长,可与门的宽和高构成直角三角形,运用勾股定理可求出门高.

【答案与解析】

解:设门高为x尺,则竹竿长为(x+1)尺,根据勾股定理可得:

x2+42=(x+1)2,即x2+16=x2+2x+1,解得:x=7.5,竹竿高=7.5+1=8.5(尺)

答:门高7.5尺,竹竿高8.5尺.

练习5

如图,某储藏室入口的截面是一个半径为1.2m的半圆形,一个长、宽、高分别是1.2m,1m,0.8m的箱子能放进储藏室吗?

5.如图所示,一旗杆在离地面5m处断裂,旗杆顶部落在离底部12m处,则旗杆折断前有多高?

【答案】

解:因为旗杆是垂直于地面的,所以∠C=90°,BC=5m,AC=12m,∴

ABBC222AC52122169 .∴

AB13(m).

BC+AB=5+13=18(m).

旗杆折断前的高度为18m.

第五篇:《勾股定理》教案

学英语报社http://全新课标理念,优质课程资源 ·勾股定理

·教学目标

知识目标: 掌握勾股定理的几种证明方法,能够熟练地运用勾股定理由直角

三角形的任意两边求得 图

1紧接着再问学生:我们是通过测量的方式发现了直角三角形两直角边的平方和等于斜边的平方或者说两小正方形的面积和大正方形的面积.这种做法往往并不可靠,我们能否证出两直角边为3、4的直角三角形斜边是5.(目的:数学需要合情推理,但也要逻辑证明.通过此问题证明过程,关键是这里渗透了面积法的证明思想.)

三、自主探索、发现新知

为了解决好这个问题我们不妨把图19.2置于方格图中,计算大正方形的面积等于25.于是让学生计算大正方形的面积,但大正方形R的面积不易求出,可引导学生利用网格对大正方形尝试割或补两种方法解决.1(34)243425.方法一:将图2补成图3,则要求正方形的面积为:

2因此直角边分别为3、4的直角三角形斜边是5即324252.1方法二:将图2补成图4,则要求正方形的面积为:434125.2因此直角边分别为3、4直角三角形斜边是5即324252.(目的:在方格图中利用割补的思想通过计算面积的方法证明了直角边分别为3、4的直角三角形斜边是5即324252.为探索一般的直角三角形也有两直角边的平方和等于斜边的平方以及证明它的成立做好铺垫.)

此时老师提出问题:对于这个直角三角形满足两直角边的平方和等于斜边的平方,那么对于任何一个直角三角形都有这种关系吗?

通过以上探索,相信有学生能用文字语言概括猜想出一般的结论:直角三角形两直角边的平方和等于斜边的平方.符号表示为a2b2c2(a、b是直角边,c是斜边.).教师要鼓励这位同学讲的好,敢于猜想是一种难能可贵的数学素养,这位同学用精确的语言叙述了直角三角形三边的关系,那么这一结论是否正确,怎样论证?

(目的:在学生的数学学习过程中,既要学会证明又要学会猜想;既要学会演绎推理又要学会合情推理.鼓励学生在讨论的基础上大胆猜想,能培养学生的探索创新精神.)

老师用多媒体将图2的方格线隐去得图5,设RtACB直角边为a,b

及斜边

c,试证明a2b2c2.通过与学生的合作交流,只要证明出斜边上的正方形的面积,等于两直角边上的正方形的面积和即可.有前面的证明过程,学生可以想到通过割补利用面积法进行证明.这个地方要留够充足的时间让学生讨论交流,证好的同学请上台来解释他是如何证明的.方案一:,用三个与RtACB一样的直角三角形将图5中斜边上的正方形补

1成图6,则Sc2(ab)24ab.化简整理得到a2b2c2.2方案二:用三个与RtACB一样的直角三角形将图5中斜边上的正方形割成1图7,则S=c2(ab)24ab.化简整理得到a2b2c2.Aa-b BC图7 图6

教师介绍:我国古代把直角三角形中较短的直角边称为勾,较长的称为股,斜边称为弦.图7称为“弦图”,最早是由三国时期的数学家赵爽在为《周髀算经》作法时给出的.图19.2.8是在北京召开的2002

年国际数学家大会(ICM-2002)的会标,其图案正是“弦图”,它标志着中国古代的数学成就.此时,教师极力夸赞学生已成功探索出5000多年前人类历史

上的一个重大发现,真是太伟大了!a2b2c2,这就是赫赫有名的勾股定理(板书课题).接着用多媒体展

示勾股定理的历史.图19.2.8

勾股定理史话

勾股定理从被发现到现在已有五千年的历史.远在公元

前三千年的巴比伦人就知道和应用它了.我国古代也发现了

这个定理.据《周髀算经》记载,商高(公元前1120年)关

于勾股定理已有明确的认识,《周髀算经》中有商高答周公的话:“勾广三,股修四,径隅五.”同书中还有另一位学者陈子(公元前六七世纪)与荣方(公元前六世纪)的一段对话:“求邪(斜)至日者,以日下为勾,日高为股,勾、股各自乘,并而开方除之,得邪至日”(如图所示),即

邪至日=2+股2.这里陈子已不限于“三、四、五”的特殊情形,而是推广到一般情况了.人们对勾股定理的认识,经历过一个从特殊到一般的过程,其特殊情况,在世界很多地区的现存文献中都有记载,很难区分这个定理是谁最先发明的.国外一般认为这个定理是毕达哥拉斯学派(Pythagoras,公元前580~前500)首先发现的,因而称为毕达哥拉斯定理.勾股定理曾引起很多人的兴趣,世界上对这个定理的证明方法很多.1940年卢米斯(E.S.Loomis)专门编辑了一本勾股定理证明的小册子――《毕氏命题》,作者收集了这个著名定理的370种证明,其中包括大画家达•芬奇和美国总统詹姆士••••阿•加菲尔德(James Abram

Garfield,1831~1881)的证法.美国总统詹姆士••阿•加菲尔德的证法如下:

1112S梯形=a+b)=a2abb2,222如图:因为 111S梯形2abc2abc2.222a

b所以a2b2c2.勾股定理是一条古老而又应用十分广泛的定理.例如从勾股定理出发逐渐发展了开平方、开立方;用勾股定理求圆周率.据说4000多年前,中国的大禹曾在治理洪水的过程中利用勾股定理来测量两地的地势差.勾股定理以其简单、优美的形式,丰富、深刻的内容,充分反映了自然界的和谐关系.人们对勾股定理一直保持着极高的热情,仅定理的证明就多达四百多种,甚至著名的大物理学家爱因斯坦也给出了一个证明.中国著名数学家华罗庚在谈论到一旦人类遇到了“外星人”,该怎样与他们交谈时,曾建议用一幅反映勾股定理的数形关系图来作为与“外星人”交谈的语言.这充分说明了勾股定理是自然界最本质、最基本的规律之一,而在对这样一个重要规律的发现和应用上,中国人走在了前面.方案三(教师介绍欧几里得证法)证明:证明:在Rt△ABC的三边上向外各作一个正方

形(如图8),作CN⊥DE交AB于M,那么正方形被分成两个矩形.连结CD和KB. ∵由于矩形ADNM和△ADC有公共的底AD和相等的高,∴S矩形ADNM=2S△ADC

又∵正方形ACHK和△ABK有公共的底AK和相等的高,∴S正方形ACHK=2S△ABK

在△ADC和△ABK中

∵AD=AB,AC=AK,∠CAD=∠KAB

∴△ADC≌△ABK

由此可得S矩形ADNM=S正方形ACHK 同理可证

图8

S矩形BENM=S正方形BCGF

∴S正方形ABED=S矩形ADNM+S矩形BENM=S正方形ACHK+S正方形BCGF

即a2b2c2.(目的:在勾股定理的发现过程中,充分鼓励学生不同的拼图方法得出不同的验证方法,帮助学生自主建构新知识.另外要介绍学生所拼的图7就是古代的弦图,也是在北京召开的2002年国际数学家大会的会标,进一步激发学生的成就感.让学生充分体验到探索创新所带来的成功的喜悦.)

四、应用新知、解决问题

例1如图19.2.4,将长为5.41米的梯子AC斜靠在墙上,BC长为2.16米,求梯子上端A到墙的底端B的距离AB.(精确到0.01米)

解 在Rt△ABC中,∠ABC=90゜,BC=2.16, CA=5.41,根据勾股定理得

ABAC2BC25.4122.16

2≈4.96(米)

答:梯子上端A到墙的底端B的距离约为4.96米.图

19.2.4例2(趣味剪纸)如图两个边长分别为4个单位和

3个单位的正方形连在一起的“L”形纸片,请你剪两刀,再将所得到的图形拼成正方形.(目的:本段内容主要通过教师启发引导,学生共同探究完成,一方面让学生感受解决问题的愉悦与强烈的成就感,培养学生动手能力和学习兴趣以及加强对勾股定理的理解.另一方面让学生知道:(1)勾股定理应用的前提条件(在直角三角形中);(2)已知直角三角形的两边会用勾股定理求第三边.)

五、自我评价、形成知识

⑴这节课我的收获是.⑵我感兴趣的地方是.⑶我想进一步研究的问题是.(目的:通过这几个问题,可以很好的揭示学生新建立的不同的认知结构,也体现了不同的人学数学有不同的收获.把学习的权利交给学生,使学生体验做数学的乐趣.同时,把探究阵地从课堂延伸到课外,有利于充分挖掘学生的潜能.)

六、作业

⑴课本P104习题19.2 1,2,3⑵通过上网,搜索有关勾股定理的知识:如(1)勾股定理的历史;(2)勾股定

理的证明方法;(3)勾股定理在实际生活中的应用等.然后写一篇以勾股定理为

主题的小论文.(目的:巩固勾股定理,进一步体会定理与实际生活的联系.促进学生学知识,用知识的意识.新课程标准提倡课题学习(研究性学习),通过课题学习与研究更多地把数学与社会生活和其他学科知识联系起来,使学生进一步体会不同的数学知识以及数学与外界之间的联系,初步学习研究问题的方法,提高学生的实践能力和创新意识.)

· 关于教学设计的几点说明:

1、这节课是定理课,针对八年级学生的知识结构和心理特征,本节课我准备以“问题情境-----实验、猜测-----验证、证明----实际应用”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论.让学生经历知识的发生、形成与应用的过程,从而更好地理解数学知识的意义.让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想;

2、由于学生的个体差异表现为认知方式与思维策略的的不同,以及认知水平和学习能力的差异,所以在整个教学过程中,我都将尊重学生在解决问题过程中所表现出的不同水平,尽可能让所有学生都能主动参与,并引导学生在与他人的交流中提高思维水平.在学生回答时,我通过语言、目光、动作给予鼓励与赞许,发挥评价的积极功能;

3、探索定理采用了面积法,通过用割补两种方法对直角边为3、4这一特殊直角三角形的斜边上的正方形的面积的计算,得到此直角三角形的两直角边的平方和等于斜边的平方.由此自然的过渡到对一般直角三角形三边关系的研究,当然也自然的用此方法证明了勾股定理.这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用;

4、本课小结也很有新意,通过这短短的几个问题,可以很好的揭示学生新建立的不同的认知结构,也体现了不同的人学数学有不同的收获.把学习的权利交给学生,使学生体验做数学的乐趣.同时,把探究阵地从课堂延伸到课外,有利于充分挖掘学生的潜能。

下载勾股定理教案word格式文档
下载勾股定理教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    勾股定理教案

    勾股定理教案1 一、教学目标1.灵活应用勾股定理及逆定理解决实际问题.2.进一步加深性质定理与判定定理之间关系的认识.二、重点、难点1.重点:灵活应用勾股定理及逆定理解决实际问......

    勾股定理复习教案

    勾股定理【知识体系】1、勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么。即直角三角形两直角边的等于。2、勾股逆定理:如果直角三角形三边长a、b、c满足,那么这个三角形......

    勾股定理教案完整版[本站推荐]

    勾股定理教案 一、指导思想与教学理念: 以学生为主体的讨论探索法 二、教学对象分析: 八年级学生好奇心强,学生对几何图形的观察,几何图形的分析能力已初步形成。能够正确归纳所......

    勾股定理教案doc5篇

    勾股定理教案 教学目标: 1、知识目标: (1)掌握勾股定理; (2)学会利用勾股定理进行计算、证明与作图; (3)了解有关勾股定理的历史. 2、能力目标: (1)在定理的证明中培养学生的拼图能力; (2)......

    勾股定理逆定理教案(5篇材料)

    17.2 勾股定理的逆定理教案 威县二中 田利功 教学目标一、知识与技能: 1.掌握直角三角形的判别条件. 2.熟记一些勾股数. 3.掌握勾股定理的逆定理的探究方法.二、过程与方法: 1.用三......

    18.1勾股定理教学教案[精选合集]

    18.1勾股定理教学教案 【教学目标】 1、体验勾股定理的探索过程并理解勾股定理反映的直角三角形三边之间的数量关系. 数学思考: 2、让学生经历“观察—猜想—归纳—验证”的......

    初二勾股定理教案(最终五篇)

    协 议 书经双方协议,达成共识。竹园行政村村民刘永会自愿同意,将南地伍亩三分(5.3)的责任田,永久转给本村村民刘永田耕种,南顶大路,北顶小坑,东靠刘红志,西靠刘永远。双方同意,永不反......

    勾股定理应用教案(最终版)

    18.1勾股定理(第二课时) 一、教学目标: 1、运用勾股定理进行简单的计算. 2、运用勾股定理解释生活中的实际问题. 3、通过从实际中抽象出直角三角形这一几何模型,初步掌握转化和......