一类二元函数最值的求法

时间:2019-05-15 08:04:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《一类二元函数最值的求法》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《一类二元函数最值的求法》。

第一篇:一类二元函数最值的求法

龙源期刊网 http://.cn

一类二元函数最值的求法

作者:高海燕

来源:《数理化学习·高三版》2013年第05期

点评:解法1和解法2中都用了配方法,但由于配方的目的不同.

第二篇:偏导数求二元函数最值

偏导数求二元函数最值

用偏导数可以求多元函数的极值及最值,不过要比一元函数复杂很多。

这个在高等数学教材里都有,极值求法与一元函数类似。不过极值点的判断要比一元函数复杂很多。

求闭区域上的最值要更麻烦一些。为什么呢?你可以回忆一下闭区间上一元函数的最值,我们做法是先求极值,再与端点的函数值比大小。但多元函数就麻烦了,因为一元函数的区间端点只有两个值,可以全求出来比就行了。但多元函数闭区域的边界是无穷多个值,不可能全求出来了,因此边界上我们还需要再求最大最小值,这个叫做条件最值。

如果能代入的话,就是代入求(将条件最值转化为无条件最值)。如果有些函数很复杂不能代入,有另一个方法,叫做拉格朗日乘数法,就是解决条件最值的问题的。

第三篇:不等式证明、最值求法

不等式的证明(论一个不等式的应用)

贵刊2004(11)发表李建新老师《巧用向量求值》一文(以下简称原文),经笔者研究发现,原文中的所有最值问题都可以用下面的一个不等式加以解决,而且相比之下比李老师的向量法在处理上更简单一些,故写此文和大家交流.

x2y222

2定理 若实数a,b,x,y满足221,则ab≥(xy).

abx2y2b2x2a2y2222222

证明:ab(ab)(22)xy2 2

abab

222

≥xy2xy(xy),xy

由证明过程易知等号成立的条件是22.

ab

注 这个不等式的条件是一个椭圆方程,故称此不等式为椭圆不等式.

1 求满足整式方程的未知数的代数式的最值

例1 已知x,y满足xy2x4y0,求x2y的最值(1988年广东高考题,原文例1).

(x1)24(y2)2

解:xy2x4y01,依定理有

520

520[(x1)2(y2)]2,即(x2y5),解得0x2y10,当且仅当2

5x1

y222

(x2y)min0,且xy2x4y0,即xy0时,当x2,y4

时,(x2y)max10.

例2 已知a,bR,且ab10,求(a2)(b3)的最小值(第10届“希望杯”全国数学邀请赛高二培训题).

(a2)2(b3)2

1,由定理得: 解:令(a2)(b3)=t,则

tt

2t≥(ab5)2(ab16)236,即t≥18,当且仅当a2b3且ab10

时,即a1,b0时,tmin18,从而(a2)(b3)的最小值为18.

2 求满足三元一次方程及三元二次方程的未知数的最值

例3 已知实数x1,x2,x3满足方程x1

111212x2x31及x12x2x33,求x3的232

3最小值(1993年上海市高三数学竞赛试题,原文例3)

(x2)2

x1212111

1解:x1x2x31x1x21x3,x12x2x331

222323233x3(3x3)323

由定理得

111112112121

(3x32)(3x32)(x1x2)23x32(x1x2)23x32(1x3)2x33

323233233311

从而x3的最小值为

21. 11

3 求满足整式方程的未知数的分式的最值

例4 如果实数x,y满足等式(x2)y3,求题).

y的最大值(1990年全国高考试x

y

k,则ykx,由已知等式(x2)2y23可得 x

(2kkx)2(kx)2222,∴由定理得:≥,即≤3,∴≤k≤3,133kk4k2

33k

y

从而的最大值为3。

x

y22

例5 若实数x,y适合方程xy2x4y10,那么代数式的取值范围

x2

解:令

是(第9届“希望杯”全国数学邀请赛高二第1试).

y

t,则txy2t0,由已知方程得(x1)2(y2)24,变形得:x2

(txt)2(y2)2

1,∴由定理得:4t24≥(txy2t)2(23t)2,解之得: 2

44t

12y120≤t≤,∴代数式的取值范围是[0,].

5x25

y122

例6 已知实数x,y满足方程(x2)y1,求的最小值(第10届"希望杯"

x2

解:令

邀请赛数学竞赛高二试题,原文例4)

(kx2k)2(kx2k1)2y122

1,解:设k,则ykx2k1,(x2)y1

k21x2

由定理得k1[(kx2k)(kx2k1)](14k),解得0k4 求满足不等式的未知数的最值

例7 若2xy1,uy2yx6x,则u的最小值等于()A.

y18,即的最小值为0. 15x2

77141

4B.C.D. 5555

(2003年"希望杯"全国数学邀请赛高二试题)

4(x3)2(y1)2

1,依定理及条件有 解:uy2yx6x

4(u10)u10

36142(x3)

当且仅当10,y1且2xy1

554

31114

时,即x,y时,umin,故选(B).

555

11n

例8 设abc,且≥恒成立,则n的最大值是(第11

abbcac

5(u10)(2xy5)236,即u

届“希望杯”全国数学邀请赛高二第1试,原文例11).

解:令

11112

=t,则=1,从而t(ac)≥(11)4,

t(ab)t(bc)abbc

由已知得ac0,故t≥5 求无理函数的值域

4114,即≥,∴n的最大值是4. 

abbcacac

1994年上海市高三数学竞赛题,原

例9

求函数y文例5).

解:由1994x0且x19930得1993x1994,两边平方易得y1,又

1

1994xx1993,由定理得:22,

1y

故函数y6 求满足分式方程的未知数的代数式的最值

例10 设x,y,a,bR,且

ab

1,则xy的最小值为(第11届"希望xy

杯"全国数学邀请赛高二培训题).

解:

依定理有xy,ab

1,即x,xy

x

时,(xy)min2.

例11 已知x,y(0,),且数学竞赛试题,原文例6).

解:由已知条件和定理有:xy117. 定理的推广 若

1998

1,求xy的最小值(1998年湖南省高中xy

a

i1

n

bi

i

1,则ai≥(i1

n

b)

ii1

2i

n,其中ai与bi同号(i=1,2,. ,n)

证明:由Cauchy不等式及已知条件有:7 求使多项式函数取最值的未知数的值

a=a.a

i

i1

i1

nnn

bi

i

≥(i1

b).

2ii12

n

例12 求实数x,y的值,使得(y1)(xy3)(2xy6)达到最小值(2001年全国高中数学联赛试题,原文例7).

1()y2(22x6y)6(2)xy

解:令(y1)(xy3)(2xy6)t,则t4tt

1,由定理的推广得:6t[(1y)(2x2y6)(62xy)]1,即t,当且仅当6

1yxy362xy55

(y1)2(xy3)2(2xy6)2达,即x,y时,

12126

到最小值.

68 求满足分式方程的未知数的分式的最值

x2y2z2xyz

例13 已知x,y,zR,,求的最2

1x21y21z21x21y21z2

大值(1990年首届"希望杯"全国数学邀请赛培训题,原文例8).

x2y2z2111

2解:由易知1,而 1x21y21z21x21y21z2

x2(y)2z2

()()222222xyz1y21,依定理的推广可有222

1x1y1z

1x21y21z2222xyz2xyz2,即()(2,从222222222

1x1y1z1x1y1z1x1y1z

xyz

. 

1x21y21

z2

9 求无理式的最值

例14 如果abc1,(第8届"希望杯"全国数学邀请赛高二试题,原文例9).

解:由条件知(3a1)(3b1)(3c1)6,则

3a13b13c1

1,由定理

666

的推广得:18,且仅当abc

时达到最大值). 3

M

是多少?N

10 求三角函数的最值

例15的最大值为M,最小值为N,则

(1999年"希望杯"数学邀请赛,山西、江西、天津赛区高二试题,原文例12).

解:由1tanx

N

tanx13tanx



1,由定理得422

2,即M=2,故

M. N11 求对数函数的最值

例16 已知ab1000,a1,b

1,则的最大值是多少?(第13届"希望杯"全国邀请赛高二培训题,原文例13).

解:由已知易得:(1lga)(1lgb)5,即

1lga1lgb

1,由定理有

10

2

由上我们可以看出,用本文中的定理和定理的推广要比文[1]中用向量解决这些问题

简单的多.当然,这样的例子很多的,这里不再赘述,请读者自行研究,以下是几个练习.

练习

1.设x,y,zR,且xyz1,求队第一轮选拔赛题).(答案:36)

2.已知x,y,zR,xyz1,求数学问题1504).(答案:64)

3.函数y

149

的最小值(1990年日本IMO代表xyz

118

《数学通报》2004(7),22的最小值(2

xyz

3xx2的最小值为12届“希望杯”全国数学邀请赛高

参 考 文 献

一培训题).(答案:-2)

1.李建新.巧用向量求值.数学教学,2004,11.

第四篇:人教版高一数学《函数最值求法及运用》教案

人教版高一数学《函数最值求法及运用》

教案

函数最值求法及运用

一经验系统梳理:)问题思考的角度:1几何角度;2代数角度

2)问题解决的优化策略:

Ⅰ、优化策略代数角度:

消元

2换元

3代换

4放缩

①经验放缩,②公式放缩③条放缩]

Ⅱ、几何角度:

经验特征策略分析问题的几何背景线性规划、斜率、距离等

3)核心思想方法:

划归转化思想;等价转化思想

,则

二、体验训练:

线性规划问题

已知双曲线方程为求的最小值

2斜率问题

已知函数的定义域为,且

为的导函数,函数的图像如图所示若两正数满足,则的取值范围是

3距离问题

3、由直线上的一点向圆引切线,则切线长的最小值为

练习1已知点是直线上动点,、是圆 的两条切线,、是切点,若四边形的最小面积是,则

练习2已知实数满足不等式组,则的最小值为

4消元法

已知函数,若且则的取值范围为

练习:设函数,若且则的取值范围为

换元法

求下列函数的最大值或最小值:

(1)

(2)

(3)若函数的最大值是正整数,则=_______

解:(1)

,由得,∴当时,函数取最小值,当时函数取最大值.

(2)令,则,∴,当,即时取等号,∴函数取最大值,无最小值.

2已知,且夹角为如图点在以为圆心的圆弧上动若则求的最大值

6代换法

设为正实数,满足,则的最小值是

【解析】本小题考查二元基本不等式的运用.由得,代入得,当且仅当=3

时取“=”.

设正实数满足则的最大值为

▲1

7公式放缩法

函数,的最小值为:_________

错解:∵

∴,又为定值故利用基本不等式得

即的最小值为4

点评:利用基本不等式必须满足三个条:即“一正、二定、三等”,而本题只满足前两个条,不满足第三个条,即不成立。

设为实数,若则的最大值是。

8放缩法、换元法

已知二次函数的值域是那么的最小值是

9综合探讨:

满足条的三角形的面积的最大值

【解析】本小题考查三角形面积公式、余弦定理以及函数思想.设B=,则A=

,根据面积公式得=,根据余弦定理得

,代入上式得

=

由三角形三边关系有解得,故当时取得最大值

解析2:若,则的最大值。

【解析】本小题考查三角形面积公式及函数思想。

因为AB=2(定长),可以以AB所在的直线为轴,其中垂线为轴建立直角坐标系,则,设,由可得,化简得,即在以(3,0)为圆心,为半径的圆上运动。又。

答案

7、设,则函数

时,;

(3)=

由于,所以

在内单调递减,于是当时时

的最大值米

答:当或时所铺设的管道最短,为米

第五篇:函数的值域与最值的求法一教案

函数的值域与最值的求法一(2课时)

2011年2月14号 星期一

重难点:函数值域与最值的求法

口诀:分式分,单调单,抛物找轴最关键;绝对脱,根式换,化为二次方程判;

x213x1、观察法: 例题: ①y=2;②y=x

x23

12、配方法:y=a(f(x))2+bf(x)+c(a≠0)例题:①求y=-x2+2x+5,x ∈[2,3]的值域;②y=4-32xx2;③y= 3x2-x+2;④y=x26x5

3、代数换元法:y=ax+b±cxd

例题:①y=2x+12x;②y=x+41x;③y=x+2x1;④y=2x-5+154x;⑤y=2x-4x13 ⑥y=2x-1x⑦y=x-12x

4、中间变量法(定义域为R)

x21例题:y=2

x

25、三角函数的有界性法(几何意义法:斜率公式)

3x21x例题:①y=②y=

54x2x5, ]或设x=cos22θ, θ∈[0,Л] 题中出现1x2可设x=tanθ, θ∈(-,)或设x=cosθ,22θ∈(0,Л)axba7、分离常量法:y=(结果规律:y≠)

cxdc6、三角函数换元法:题中出现1x2可设x=sinθ, θ∈[-axb3x21x10x10x8、反函数法:y=例题:①y=②y= ③y=x

cxd54x2x51010xa1x2b1xc19、判别式法:y=(定义域为R)即分子或分母中含有二次三项式a2x2b2xc2的分式函数 3xx2x32x2x2x22x2例题:①y=2;②y=2;③y=2④y=2⑤x4xx1xx1xx12xx2x2x2xy=2⑥y=2 ⑦y=2 xx1x4x3xx1kx2

310、均值不等式法y=f(x)+(f(x)>0,k>0)y=

2f(x)x

211、单调性法(对勾函数y=ax+

12、数形结合法(分段函数)

b(a,b>0))x例题:设函数g(x)x22(xR),(x)x4,xg(x),f(x){gg(x)x,xg(x).则f(x)的值域是()

999(A),0(1,)(B)[0,)(C)[,)(D),0(2,)

444

13、导数法

课堂练习题:

1、求下列函数的值域:

x2x(1)y=2 解法一:配方法;解法二:判别式法

xx1(2)y=x-12x 解法一:换元法;解法二:单调性法(3)y=-xx2x22换元法

10x10x(4)y=x x1010 反函数法

(5)f(x)=(x-1)3x2在[-1,1]上的最值。

2五、课下练习作业:练习册P121

下载一类二元函数最值的求法word格式文档
下载一类二元函数最值的求法.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    二次函数最值问题

    《二次函数最值问题》的教学反思 大河镇第二中学姚朝江 本节课的教学目标是:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数知识解决实际问题......

    简评“三角函数最值求法”(张辉老师执教)

    评课稿 2013年4月22日下午,赴陈经纶中学听张辉老师执教高一数学“三角函数最值求法”习题课。感受颇深,很受启发。觉得张老师采用的是教师引领学生探究式教学,学生参与度高,是一......

    二次函数的最值问题

    二次函数的最值问题 雷州市第一中学 徐晓冬 一、 知识要点 对于函数fxax2bxca0, 当a0时,fx在区间R上有最 值,值域为 。 当a0时,fx在区间R上有最 值,值域为 。 二、 典例讲解 例1......

    二次函数的最值问题

    涟水县第四中学(红日校区)周练专用纸 初三:年级 数学:学科 出核人:杨守德 审核人:高阳 时间:12月26日 1.若二次函数y=x-3x+c图象的顶点在x轴上,则c=( ) 24411A. B.- C. D.- 9999222.抛物线y=ax+bx......

    二次函数的最值教案

    丰林中学 任志库 一、教学目标(一)知识与技能 1、会通过配方或公式求出二次函数的最大或最小值; 2、在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求......

    函数的最值教案设计(5篇)

    目的 :(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质;重点:函数的最大(小)值及其几何意义.教学难点:利用函数的单调性求函数的最大(小)值.教学过程:一、引入......

    函数最值教学设计 3

    新蔡二高教学设计 年级:15级 学科:数学 主备课人:徐德功 日期 2017年10月10 日 课题:高三数学一轮复习3.3导数在函数求最大值和最小值中的应用 三 1、知识目标 1.利用导数求函......

    从一道高考题谈多元函数最值得求法

    龙源期刊网 http://.cn 从一道高考题谈多元函数最值得求法 作者:李忠贵 李歆 来源:《新高考·高一数学》2012年第05期......