函数的值域与最值教案

时间:2019-05-15 02:57:49下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《函数的值域与最值教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《函数的值域与最值教案》。

第一篇:函数的值域与最值教案

专题课

函数的值域与最值

教材分析:1.值域是函数的三要素之一,函数的值域与最值,特别是最值是高考重点,而且考察的题型涉及选择、填空、解答题.2.值域与最值知识在教材中比较分散,且方法较多,因此教学中要善于总结.教学设计:通过对例题的变式训练,让学生在问题的认知、探索、发现、设计、解决、创造等全过程、全方位、深层次中进行主体性、实质性的参与.教学目标:1.知识目标:让学生掌握求值域的基本方法及基本函数的的值域.2.能力目标:培养学生观察、分析、总结、化归的能力,熟练各种方法.3.情感目标:在探究的过程中形成良好的数学素质和正确的学习态度.教学重点:求值域的方法.教学难点:判别式法、单调性法.教学方法:导练法 教学过程: 一.知识提炼:

1.函数的值域

值域是__________组成的集合,它是由_________和______________确定的.2.基本函数的值域

(1).一次函数ykxbk0的值域是______.(2).二次函数yax2bxc(a0),当a0时,值域是_______________,当a0时,值域是_______________.(3).反比例函数ykxk0的值域是__________________.(4).指数函数yaxa0且a1的值域是_____________.(5).对数函数ylogaxa0且a1的值域是_____________.3.求值域的基本方法(1).形如yaxbmxnmn0的函数,用________________________________求值域.(2).形如yax2bxc(a0)的函数,用___________求值域,要特别注意定义域.二次函数在给出区间上的最值有两类:

一是求闭区间a,b上函数的最值问题;

二是求区间确定(运动),对称轴运动(确定)时函数的最值问题。在求二次函数的最值问题时,一定要注意数形结合,注意“两看”: 一看开口方向;

二看对称轴与所给区间的相对位置关系。

(3).形如yax2bxcmx2nxem,a至少一个不为0的函数,可用____________求值域.(4).形如yfxgx的函数用_______________求值域.(5).其它方法:不等式法,导数法,单调性法,函数的有界性,图象法等.二.典例示范:

例1.求下列各函数的值域.(1)yx24x3xR

变式1:当x-1,3时,求函数值域.变式2:当xt,t1tR时,求函数的最小值.点评:(2)yx4xx0

变式:当x1,5时,求函数的值域.点评:

(3)yx2x1x1

变式1:将函数式改为yx2-x-2x1,值域如何求?

变式2:将函数式改为yx2x1x21,值域如何求?

点评:

(4)yx1x

变式1:将函数式改为yx-1x,值域如何求?

变式2:将函数式改为yx1x2,值域如何求?

点评:

例2.已知f(x)2log3x(1x9),求函数g(x)f2(x)f(x2)的最大值与最小值.点评:

探究题.已知函数f(x)x22xax,x[1,)(1)当a

时,求函数f(x)的最小值 ;(2)若对任意x[1,),f(x)0恒成立,试求实数a的取值范围.三.基础练习:

1.函数yx25的值域为x2______________.42.y32xx2 的值域是______________.3.yx2x1的最小值是______________.4.y2x1x3的值域是______________.5.函数fx2x213x3在区间[-1,5]上的最大值是______

6.函数y22x2x1的值域为()

A.(,2][1,)B.(,2)(1,)

C.yy1,yR D.yy2,yR

7.已知函数f(x)的值域是[3,489],试求yf(x)12f(x)的值域.8.已知函数fxlogmx28xn3x21的定义域为R,值域为0,2,求实数m,n的值.四.归纳总结:

1.求值域时不但要重视对应法则的作用,而且要特别注意定义域的制约作用.2.求值域问题的结果要写成集合或区间形式.3.熟练掌握求值域的几种方法,积累经验,掌握规律,根据问题的不同特点,综合而灵活地运用条件选择方法求之.五.布置作业

第二篇:函数的值域与最值的求法一教案

函数的值域与最值的求法一(2课时)

2011年2月14号 星期一

重难点:函数值域与最值的求法

口诀:分式分,单调单,抛物找轴最关键;绝对脱,根式换,化为二次方程判;

x213x1、观察法: 例题: ①y=2;②y=x

x23

12、配方法:y=a(f(x))2+bf(x)+c(a≠0)例题:①求y=-x2+2x+5,x ∈[2,3]的值域;②y=4-32xx2;③y= 3x2-x+2;④y=x26x5

3、代数换元法:y=ax+b±cxd

例题:①y=2x+12x;②y=x+41x;③y=x+2x1;④y=2x-5+154x;⑤y=2x-4x13 ⑥y=2x-1x⑦y=x-12x

4、中间变量法(定义域为R)

x21例题:y=2

x

25、三角函数的有界性法(几何意义法:斜率公式)

3x21x例题:①y=②y=

54x2x5, ]或设x=cos22θ, θ∈[0,Л] 题中出现1x2可设x=tanθ, θ∈(-,)或设x=cosθ,22θ∈(0,Л)axba7、分离常量法:y=(结果规律:y≠)

cxdc6、三角函数换元法:题中出现1x2可设x=sinθ, θ∈[-axb3x21x10x10x8、反函数法:y=例题:①y=②y= ③y=x

cxd54x2x51010xa1x2b1xc19、判别式法:y=(定义域为R)即分子或分母中含有二次三项式a2x2b2xc2的分式函数 3xx2x32x2x2x22x2例题:①y=2;②y=2;③y=2④y=2⑤x4xx1xx1xx12xx2x2x2xy=2⑥y=2 ⑦y=2 xx1x4x3xx1kx2

310、均值不等式法y=f(x)+(f(x)>0,k>0)y=

2f(x)x

211、单调性法(对勾函数y=ax+

12、数形结合法(分段函数)

b(a,b>0))x例题:设函数g(x)x22(xR),(x)x4,xg(x),f(x){gg(x)x,xg(x).则f(x)的值域是()

999(A),0(1,)(B)[0,)(C)[,)(D),0(2,)

444

13、导数法

课堂练习题:

1、求下列函数的值域:

x2x(1)y=2 解法一:配方法;解法二:判别式法

xx1(2)y=x-12x 解法一:换元法;解法二:单调性法(3)y=-xx2x22换元法

10x10x(4)y=x x1010 反函数法

(5)f(x)=(x-1)3x2在[-1,1]上的最值。

2五、课下练习作业:练习册P121

第三篇:函数值域问题

努力今天成就明

知识就是财富

求分式函数值域的几种方法

求分式函数值域的常见方法 1 用配方法求分式函数的值域

如果分式函数变形后可以转化为y配方,用直接法求得函数的值域.例1 求y解:y1的值域.22x3x11312x482ab的形式则我们可以将它的分母2a1xb2xc22,311因为2x≥,488所以函数的值域为:,8∪0,.x2x例2 求函数y2的值域.xx1解:y211,2xx12133因为xx1x≥,244所以31≤20,4xx12 1故函数的值域为,1.3先配方后再用直接法求值域的时候,要注意自变量的取值范围.取“”的条件.利用判别式法求分式函数的值域

我们知道若ax2bxc0a0,a,bR有实根,则b24ac≥0常常利用这一结论来求分式函数的值域.x23x4例1 求y2的值域.x3x4解:将函数变形为y1x23y3x4y40①,当y1时①式是一个关于x的一元二次方程.因为x可以是任意实数,所以≥0,即3y34y14y47y50y7≥0,解得,17≤y≤1或1y≤7,又当y1时,x0,1故函数的值域为,7.72x2bxc例2 函数y的值域为1,3,求b,c的值.2x1解:化为y2xbxyc0,⑴当y2时xRb4y2yc≥0,4y24c2y8cb2≥0,由已知4y24c2y8cb20的两根为1,3,由韦达定理得,c2,b2.⑵当y2时x2c0有解 b综上⑴和⑵,b2,c2.由这两个例题我们知道在利用判别式法求分式函数的值域时要注意下列问题:

1、函数定义域为R(即分母恒不为0)时用判别式求出的值域是完备的.2、当x不能取某些实数时(分母为零),若要用判别式法求它的值域则需要对使ya2x2b2xc2a1x2b1xc1的判别式0的y值进行检验.3、转换后的一元二次方程若二次项系数中含有字母则需要讨论其是否为0只有在其不为0的情况下才可以使用判别式法.3.利用函数单调性求分式函数的值

对于求函数的值域问题,我们通常使用能够揭示此类函数本质特征的通性通法即利用函数的单调性来求其值域.例1求函数y解:y2x1(xR,x1)的值域.x12x12(x1)33,2x1x1x13是x减函数进而y是x的增函数,于是y,2; x1当x1时,当x1时,同样y是x的增函数,于是y2,; 所以y2x1(x1)的值域为,2∪2,.x1a的单调性的结论: x在求分式函数时我们常运用函数yx⑴当a0时在,a和a,上增函数,在a,0和0,a上是减函数.⑵当a0时在,0和0,上是增函数.例求函数yx(1≤x≤3)的值域.2xx4解:x0所以yx.4x1x4令tx在1,2上是减函数,在2,3是上增函数,x所以x2时,tmin4;

x1时,tmax5;

所以t4,5,t13,t,11故值域为,.434.利用反函数法(反解)求分式函数的值域

设yf(x)有反函数,则函数yf(x)的定义域是它反函数的值域,函数yf(x)的值域是其反函数的定义域.那么如果一个分式函数的反函数存在,我们就可以通过求反函数的定义域来求其值域.例1 求函数y2x的值域.5x12x1(x)的映射是一一映射因此反函数存在,其反函数为5x152,5解:由于函数yyx 明显知道该函数的定义域为x|x25x22故函数的值域为,∪,.55说明:由于本方法中所具有的某些局限性,一般说来,用此方法求值域只用yaxb(c≠0)的函数,并且用此方法求函数的值域,也不是比较理想的方法.我们用这种cxd方法目的是找关于y的不等式所以反函数求值域的实质是反函数的思想树立这种思想是我们的宗旨.下面这种方法就是利用了反函数的思想比较通用的方法.5.利用方程法求分式函数的值域

4x27x0,1求函数例1(2005年全国高考理科卷Ⅲ第22题)已知函数f(x)2xf(x)的值域

4x27解:f(x),x0,1,2x所以2yxy4x27,x0,1,即4x2yx(72y)0,x0,1.这样函数的值域即为关于x的方程4x2yx(72y)0在x0,1内有解的y的取值集.令g(x)4x2yx(72y),x0,1,则关于x的方程4x2yx(72y)0在x0,1内有解g(0)g(1)≤0 g(0)0g(1)077或≤y≤3或4≤y≤4≤y≤3,by2202a241b4acy4(72y)0即所求函数的值域为4,3..利用换元法求分式函数的值域

当题目的条件与结论看不出直接的联系(甚至相去甚远)时,为了沟通已知与未知的联系,我们常常引进一个(或几个)新的量来代替原来的量,实行这种“变量代换”往往可以暴露已知与未知之间被表面形式掩盖着的实质,发现解题方向.换元法是一种重要的数学解题方法,掌握它的关键在于通过观察、联想,发现与构造出变换式(或新元换旧式、或新式换旧元、或新式换旧式).在中学数学问题中,常见的基本换元形式有式代换、三角代换、点代换、参数代换等.x24x4,x[1,0]的值域. 例1 求函数f(x)2x4x5解:令tx2,t2则y2t111,[,1]. 1t212t115因为12[,2],t414所以函数f(x)的值域是[,].

25x4例2 求函数y的值域.

(1x2)3解:令xtan,(,),22tan4tan4则ysin4cos2 233(1tan)sec1sin2sin22cos221sin2sin22cos24≤.23276

3当且仅当tan22时“”成立.x44所以函数y的值域为0,.(1x2)327在这道例题中不仅用了换元法还用了均值不等式.利用三角函数来代换是我们在用换元法解题最常用的在换元后根据三角函数的有界性求能求出函数的值域.在用换元法的时候重要的就是要注意换元后的自变量发生了改变,那么它的定义域也就变了.注意到这点才能准确地求出值域.7.利用不等式法求分式函数的值域

“不等式法”就是通过利用不等式的一些性质和均值不等式来求某些具有一定特性的分式函数的值域.若原函数通过变形后的分子分母符和下列条件①各变数为正;②各变数的和或积为常数.则可以考虑用均值不等式求它的值域.要注意在得到结论之后要说明其中等号能够取到.例1 求函数y解:y24(x1)(x1)的值域.(x3)224(x1)24.24(x1)4(x1)4(x1)4x14因为x10,所以x1≥4,x14则x148,x124所以0y≤3(当x1时取等号),8故函数的值域为0,3.例2 设Sn123n,nN求f(n)中数学联赛)

解:f(n)Sn(n32)Sn1Sn的最大值.(2000年全国高

(n32)Sn1n(n1)nn22,(n1)(n2)(n32)(n2)n34n64(n32)27 即化为了求分式函数最值的问题f(n)164n34n.又因为n34当n64643450,≥2nnn641即n8时“”成立,所以对任何nN有f(n)≤,n501故f(n)的最大值为.50例2表面上看是数列的问题而实际是我们可以将其转化为求函数值域的问题在这里我们利用均值不等式的性质来求其值域就使得整个解题过程利用数更简单.8.斜率法求分式函数的值域

数形结合是中学数学中的一种重要的数学思想方法.数是形的抽象概括,形是数的直观表现.华罗庚先生指出:数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休.这种方法不仅仅体现在数学的其它领域中,在求函数的值域与最值时也有良好的反映.联想到过A(x1,y1),B(x2,y2)的直线LAB的斜率为kAB函数化为斜率式并利用数形结合法来求函数的值域.3t22(t)的最小值.例1 求函数f(t)2(3t2)3y2y1,我们可以考虑把分式x2x13t202解:函数f(t)可变形为f(t)(t),6t43设A(6t,3t2),B(4,0)则f(t)看作是直线AB的斜率,令x6t,y3t2则x212y(x4).在直角坐标系中A点的轨迹为抛物线的一部分直线与抛物线相切是斜率最小.过点B(4,0)直线方程为:yk(x4)将它代入x212y,有x212kx48k0,则0推算出k即t8时,f(t)min4.34此时x8,38 x2x11例2 求y(≤x≤1)的值域.x12(x2x)1解:y,令A(1,1),B(x,x2x),x(1)则ykAB,点B的轨迹方程为yx2x(1≤x≤1),21151B1(,),B2(1,2),kAB1,kAB2,2422所以yk51AB2,2,即函数的值域为512,2.

第四篇:二次函数的最值教案

丰林中学 任志库

一、教学目标

(一)知识与技能

1、会通过配方或公式求出二次函数的最大或最小值;

2、在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求实际问题中的最大或最小值;

(二)过程与方法

通过实例的学习,培养学生尝试解决实际问题,逐步提高分析问题、解决问题的能力,培养学生用数学的意识。

(三)情感态度价值观

1、使学生经历克服困难的活动,在数学学习活动中获得成功的体验,建立学好数学的信心;

2、通过对解决问题过程的反思,获得解决问题的经验和获得新的思想知识的方法,从而体会熟悉活动中多动脑筋、独立思考、合作交流的重要性。

四、教学重点与难点

1、教学重点:实际问题中的二次函数最值问题。

2、教学难点:自变量有范围限制的最值问题。

二、课堂教学设计过程

(一)复习导入 以旧带新

1、二次函数的一般形式是什么?并说出它的开口方向、对称轴、顶点坐标。

2、二次函数y=-x²+4x-3的图象顶点坐标是()

当x

时,y有最

值,是______。

3、二次函数y=x²+2x-4的图象顶点坐标是()当x

时,y有最

值,是______。

分析:由于函数的自变量的取值范围是全体实数,所以只要确定他们的图像有最高点或最低点,就可以确定函数有最大值或最小值。

设计意图:复习与本节课有关的知识,可充分调动学生思维的积极性,又为新课做好准备。

(二)创设情境,导入新课

1、试一试:

1.有长为30米得篱笆,利用一面墙(墙的长度不超过10米),围成中间隔有一道篱笆(平行于BC)的矩形花圃。设花圃的一边BC为x米,面积为y平方米。

(1)求y与x的函数关系式;

(2)能否使所围矩形花圃的面积最大?如果能,求出最大的面积;如果不能,请说明理由。设计意图:让学生从已学的用配方法或公式法求二次函数的最值,在教学时,可让学生充分讨论、发言,培养学生的合作探究精神,可让学生感受到成功的喜悦。

2。直击中考:

例2.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么一个月内可以售出400件.根据销售经验,提高单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.售价提高多少元时,才能在一个月内获得最大利润? 分析:解决实际问题时,应先分析问题中的数量关系,列出函数关系式,求出自变量的取值范围,结合图像和二次函数的性质求w的最大值。

(四)课堂练习,见导学案

(五)课堂小结,回顾提升

本节课我们研究了二次函数的最值问题,主要分两种类型:

(1)如果自变量的取值范围是全体实数,那么函数在顶点处取最值;

(2)如果自变量的取值范围不是全体实数,要根据具体范围加以分析,结合函数图像的同时利用函数的增减性分析题意,求出函数的最大值或最小值。

另:当给出了函数的一般形式时,不管自变量是否受限制,常常要配方化为顶点式来求最值问题。

(六)布置作业,

第五篇:分式函数值域解法

分式函数值域解法汇编

甘肃省定西工贸中专文峰分校 张占荣

函数既是中学数学各骨干知识的交汇点,是数学思想,数学方法应用的载体,是初等数学与高等数学的衔接点,还是中学数学联系实际的切入点,因此函数便理所当然地成为了历年高考的重点与热点,考查函数的定义域、值域、单调性、奇偶性、反函数以及函数图象。而对函数值域的考查或是单题形式出现,但更多的是以解题的一个环节形式出现,其中求分式函数的值域更是学生失分较大知识点之一。为此,如何提高学生求分式函数值域的能力,是函数教学和复习中较为重要的一环,值得探讨。下面就本人对分式函数值域的教学作如下探究,不馁之处、敬请同仁指教。

一、相关概念

函数值是指在函数y=f(x)中,与自变量x的值对应的y值。

函数的值域是函数值的集合,是指图象在y轴上的投影所覆盖的实数y的集合。函数的值域由函数的定义域及其对应法则唯一确定;当函数由实际问题给出时,函数的值域由问题的实际意义确定。

分式函数是指函数解析式为分式形式的函数。

二、分式函数的类型及值域解法

类型一:一次分式型

一次分式型是指分子与分母都是关于自变量x(或参数)的一次函数的分式函数。

1.y=(a0)型

例1 求函数y=的值域。

解法一:常数分离法。将y=转化为y=(k1,k2为常数),则yk1 解:∵y==,∴

y。

解法二:反函数法。利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。

解:反解y=得x=,对调 y=(x),∴函数y=的值域为

y。

2.y=(a0)型

分析:这是一道含三角函数的一次分式函数,由于含三角函数,不易直接解出x,但其有一个特点:只出现一种三角函数名。可以考虑借助三角函数值域解题,其实质跟y=(t=sinx)在t的指定区间上求值域类似。

即:将y=反解得sinx=f(y),而-1≤sinx≤1,即-1≤f(y)≤1,解之即可。

例2 求函数y=的值域。

解:由y=得,sinx=,∵-1≤sinx≤1,∴-1≤≤1,解之得≤y≤3。

3.y=或y=(a0)型

分析:这道题不仅含有三角函数,且三角函数不同,例2解法行不通,但反解之后会出现正、余弦的和、差形式,故可考虑用叠加法。

即:去分母以后,利用叠加公式和|sinx|≤1解题。

例3 求函数y=

解:∵2cosx+100,∴3sinx-2ycosx=10y+3。的值域。

∴, 其中,由∴和,整理得8y+5y≤0。2得,∴≤y≤0 即原函数的值域为[,0]。

总结:求一次分式函数的值域,首先要看清楚是在整个定义域内,还是在指定区间上;其次用反函数法解题;再次还要注意含三角函数的分式函数,其实质是在指定区间上求分式函数的值域。

类型二:二次分式型

二次分式型是指分子与分母的最高次项至少有一项是关于x的二次函数。由于出现了x2项,直接反解x的方法行不通。但我们知道,不等式、函数、方程三者相互联系,可以相互转化。所以可考虑将其转化为不等式或方程来解题。

1.y=(a、d不同时为0),x∈R型

分析:去分母后,可将方程看作是含参数y的二次方程f(x)=0。由于函数的定义域并非空集,所以方程一定有解,≥0(f(y)≥0),解该不等式便可求出原函数的值域。

≥0(=f(y)),即:用判别式法。先去分母,得到含参数y的二次方程f(x)=0,根据判别式

即可求出值域。

例4 求函数y=的值域。

解:由y=得yx2-3x+4y=0。

当y=0时,x=0,当y≠0时,由△≥0得-

∵函数定义域为R,≤y≤。

∴函数y=的值域为[-,]。

说明:判别式法求二次函数的值域只适用于在整个定义域内,但不能用其在指定的区间上求二次函数的值域,否则就会放大值域。

2.y=(a、d不同时为0),指定的区间上求值域型。

例5 求(x<)的值域。

分析:因为x<,所以若用判别式法,可能会放大其值域。可以考虑使用均值定理解题。解:∵x<,∴5-4x>0,>0。

∴=1-4x+

=[(5-4x)+ ]-

4≥

2=-2,∴原函数的值域为。-4

例6 求的值域。

错解:=≥2。

分析:在使用均值定理时一定要注意使用条件“一定、二正、三相等”,显然上述解法中和不能相等,“相等”条件不能成立。所以不能使用均值定理。但若用判别式法又无法解决根式问题,此时可考虑借函数的单调性求值域。

解:用单调性法

=,令=t,显然t≥2,则y=t

+(t≥2),任取2≤t1≤t2,则f(t1)= t1+, f(t2)= t2+,f(t1)-f(t2)=(t1+)-(t2+)=(t1-t2)(1-),∵2≤t1≤t2∴t1-t2<0, t1· t2≥4, 1->0,∴f(t1)-f(t2)=(t1-t2)(1-)<0。

∴f(t1)< f(t2),即函数y=t+ 在t≥2上单调递增。

∴当t=

2、即=

2、x=0时,ymin

=,∴原函数的值域为。

总结:不管是求一次分式函数,还是求二次分式函数的值域,都必须注意自变量的取值范围。虽然我们提倡通解通法的培养,但一定要看到只有对一类题才可以用通解通法。若失去同一类前提,只强调通解通法,便是空中楼阁。故要因题而论,就事论事,防止一概而论的错误,用辩证和发展的眼光看待问题,这样才会起到事半功倍的效果。

三、提炼知识,总结分式函数值域解法

求函数的值域是高中数学的难点之一,它没有固定的方法和模式。但我们可以针对不同的题型进行归类总结,尽最大可能地寻找不同类型分式函数求值域的通解通法。常用的方法有:

1.反函数法。反函数法是求一次分式函数的基本方法,是利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。但要注意看清楚是在整个定义域内,还是在指定区间上求值域。

2.判别式法。判别式法是求二次分式函数的基本方法之一,即先去分母,把函数转化成关于x的二次方程f(x,y)=0,因为方程有实根,所以判别式△≥0,通过解不等式求得原函数的值域。需注意的是判别式法求二次函数的值域只适用于在整个定义域内。

3.不等式法。不等式法是利用基本不等式:a+b≥2(a、b∈R+),是在指定区间上求二次分式函数的基本方法之一,当二次分式函数在指定区间上求值域时可考虑用不等式法。用不等式法求值域,要注意均值不等式的使用条件:“一正、二定、三相等”。

4.换元法。换元法是求复合型分式函数值域的常用方法。当分式函数的分子或分母出现子函数(如三角函数)时,可考虑用换元法,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域。要注意换元后自变量的取值范围。

5.单调性法。单调性法是通过确定函数在定义域(或某个定义域的子集)上的单调性求出函数的值域的方法。

另外,还可以根据函数的特点,利用数形结合或求导数的方法求分式函数的值域。由于这些方法不是很常用,在此就不多做说明

下载函数的值域与最值教案word格式文档
下载函数的值域与最值教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2015二次函数与最值问题

    2015年中招专题---二次函数与最值问题 1.(2014•四川绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,且与x轴交于A、B两点,与y轴交于C点. (1)求抛物线的解析式; (2)点P为抛物线对称轴上的......

    二次函数的最值问题教案

    二次函数的最值问题 莘庄职校 :吴翩 班级:莘庄职校03级(4)班2003/12/4 [教学目标] 1、 2、 3、 4、 使学生掌握二次函数在给定区间上最值的理论和方法。 引入数形结合和分类讨论......

    二次函数最值问题

    《二次函数最值问题》的教学反思 大河镇第二中学姚朝江 本节课的教学目标是:能够分析和表示不同背景下实际问题中变量之间的二次函数关系,并能够运用二次函数知识解决实际问题......

    高考数学解析几何最值问题常用技巧-分式函数值域问题分类导析

    分式函数值域问题分类导析求分式函数值域是函数值域问题中的一个重要内容,它不仅是一个难点、重点,而且是解决解析几何有关最值问题的一个重要工具.本文就中学阶段出现的各种类......

    高一数学函数值域解题技巧

    一.观察法 通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。 例1求函数y=3+√(2-3x) 的值域。 点拨:根据算术平方根的性质,先求出√(2-3x) 的值域。 解:由算术平方......

    求函数值域的方法

    求函数值域的求法: ①配方法:转化为二次函数,利用二次函数的特征来求值; ②逆求法(反求法):通过反解x,用y 来表示 ,再由 x的取值范围,通过解不等式,得出 y的取值范围; ④换元法:通过变量......

    二次函数的最值问题

    二次函数的最值问题 雷州市第一中学 徐晓冬 一、 知识要点 对于函数fxax2bxca0, 当a0时,fx在区间R上有最 值,值域为 。 当a0时,fx在区间R上有最 值,值域为 。 二、 典例讲解 例1......

    二次函数的最值问题

    涟水县第四中学(红日校区)周练专用纸 初三:年级 数学:学科 出核人:杨守德 审核人:高阳 时间:12月26日 1.若二次函数y=x-3x+c图象的顶点在x轴上,则c=( ) 24411A. B.- C. D.- 9999222.抛物线y=ax+bx......