三角函数周期与最值教案

时间:2019-05-12 23:44:04下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《三角函数周期与最值教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《三角函数周期与最值教案》。

第一篇:三角函数周期与最值教案

三角函数的周期与最值,授课人:王俊

时间:2017-9-12 授课班级:高三(5)班

授课内容:三角函数的周期与最值 教学目标: 掌握三角函数的最小正周期的求法。掌握能化成形如yAsin(x)b的三角函数的最值的求法。3 有范围限制的三角函数最值的求法

教学重点:把形如yasinxbcosx的三角函数化成yAsin(x)b的形式的方法与技巧。

教学过程:

回顾上节课内容,导入新课

复习上节课三角函数的图像以及求单调区间,对称轴,对称中心。

新课讲授:

一.三角函数的周期(最小正周期)

2(x)b

T=

1.yAsin(w>0)

2 2.yAcos(x)b

T=(w>0)

x)b

T=(w>0)3.yAtan(

二.三角函数的最值

1.形如yAsin(x)b(x∈R)的最值

若A>0时,ymaxA

yminA

若A<0时,ymaxA

yminA 注:有范围限制时需结合图像求值域

2.辅助角公式

yasinxbcosxaba2b2(sinxcosx)

2222ababa2b2sin(x)

(其中cosaab22,sinbab22)yasinxbcosxabcos(x—)22

(其中sinaab22,cosbab22)

三.例题:

1.选择题

x)+1是()4

A

最小正周期为的奇函数

B

最小正周期为的偶函数

C

最小正周期为的奇函数

D

最小正周期为的非奇非偶函数

2.填空题

sin2xcos2x函数y=的最小正周期

cos2xsin2x

3.解答题

已知函数f(x)=sin2xsinxsin(x)

(1)求f(x)的最小正周期

(2)当x∈﹝0,)时,求f(x)的值域

2函数y=-2cos2(练习题:

求y23sinx2cos(x),x0,的最大值 3

备课组长签字:

第二篇:简评“三角函数最值求法”(张辉老师执教)

评课稿

2013年4月22日下午,赴陈经纶中学听张辉老师执教高一数学“三角函数最值求法”习题课。感受颇深,很受启发。觉得张老师采用的是教师引领学生探究式教学,学生参与度高,是一堂培养学生思维能力的成功的习题课。

课堂以求函数最值为主线,选择三个典型的例子作为题材很恰当,虽然还有其他最值形式,但都可以练习的方式渗透、训练。

好的方面不多说,主要有以下两点看法:

1.从课堂引入的问题“求三角函数最值有哪些方法?”

从学生回答看来,学生对这样的问题不好回答,其实,老师想要学生说的东西有些就不是一个方法,似乎是一个“目标模式”。因此,如果把提问调整为“就自己的亲历过的学习、练习、阅读等,谁能说出一些求三角函数最值的目标模式,说多少都可以,其他同学也可以补充。”,我想学生就可以回答的比较具体,虽不一定说得全面,参与的同学多了,典型的目标模式是一定能收集到的。另外,教师这么问,是不是也意味着本节课要讲的方法只是一个综述呢,还是除了学生熟悉的方法,老师还有新方法传授?

2.关于例2,张老师引领学生“完成解答”之后,我觉得她有点急于揭示解法之错误。由于2cos2xcos2y2,而学生跟着老师走过来的解法得到最大值是5,这明显存在有“认知冲突”。因此,如果这时张老师放手让学生交流做“合作交流,题后反思”,学生应该很快发现错误,形成“冲突”之后更有利于学生“求真欲望”,继续放手让学生找到可能出错之处,再让学生合作修复。我觉得对陈经纶中学的学生来说,这些做法在课堂上是可以完成的,哪怕是把例3留作作业也好。这样处理可以使得教师掌控的时间缩短,给学生留下整理反思的时间,教师也能够赢得“小结学生感受收获”的时间。

以上写出了我自己的所思所想。每个做课教师都是下过很大功夫的,通常是几易其稿,最后实施教学。我们听课者通常中午没有休息,听课的时候真的比较困,如果课堂上没有抑制住疲劳,尤其是对课堂索然乏味的时候,既使在评课的时候,也还是很疲劳,精力得不到回复,大脑不听使唤。在这种状态下,教师评课积极性不高是可以理解的。所以,我倡议同仁们,加入到听课后评课中来,以期大家智慧共享,改善我们的课堂教学。

清华附中朝阳学校王慧兴

2013年4月22日星期一

第三篇:函数的值域与最值教案

专题课

函数的值域与最值

教材分析:1.值域是函数的三要素之一,函数的值域与最值,特别是最值是高考重点,而且考察的题型涉及选择、填空、解答题.2.值域与最值知识在教材中比较分散,且方法较多,因此教学中要善于总结.教学设计:通过对例题的变式训练,让学生在问题的认知、探索、发现、设计、解决、创造等全过程、全方位、深层次中进行主体性、实质性的参与.教学目标:1.知识目标:让学生掌握求值域的基本方法及基本函数的的值域.2.能力目标:培养学生观察、分析、总结、化归的能力,熟练各种方法.3.情感目标:在探究的过程中形成良好的数学素质和正确的学习态度.教学重点:求值域的方法.教学难点:判别式法、单调性法.教学方法:导练法 教学过程: 一.知识提炼:

1.函数的值域

值域是__________组成的集合,它是由_________和______________确定的.2.基本函数的值域

(1).一次函数ykxbk0的值域是______.(2).二次函数yax2bxc(a0),当a0时,值域是_______________,当a0时,值域是_______________.(3).反比例函数ykxk0的值域是__________________.(4).指数函数yaxa0且a1的值域是_____________.(5).对数函数ylogaxa0且a1的值域是_____________.3.求值域的基本方法(1).形如yaxbmxnmn0的函数,用________________________________求值域.(2).形如yax2bxc(a0)的函数,用___________求值域,要特别注意定义域.二次函数在给出区间上的最值有两类:

一是求闭区间a,b上函数的最值问题;

二是求区间确定(运动),对称轴运动(确定)时函数的最值问题。在求二次函数的最值问题时,一定要注意数形结合,注意“两看”: 一看开口方向;

二看对称轴与所给区间的相对位置关系。

(3).形如yax2bxcmx2nxem,a至少一个不为0的函数,可用____________求值域.(4).形如yfxgx的函数用_______________求值域.(5).其它方法:不等式法,导数法,单调性法,函数的有界性,图象法等.二.典例示范:

例1.求下列各函数的值域.(1)yx24x3xR

变式1:当x-1,3时,求函数值域.变式2:当xt,t1tR时,求函数的最小值.点评:(2)yx4xx0

变式:当x1,5时,求函数的值域.点评:

(3)yx2x1x1

变式1:将函数式改为yx2-x-2x1,值域如何求?

变式2:将函数式改为yx2x1x21,值域如何求?

点评:

(4)yx1x

变式1:将函数式改为yx-1x,值域如何求?

变式2:将函数式改为yx1x2,值域如何求?

点评:

例2.已知f(x)2log3x(1x9),求函数g(x)f2(x)f(x2)的最大值与最小值.点评:

探究题.已知函数f(x)x22xax,x[1,)(1)当a

时,求函数f(x)的最小值 ;(2)若对任意x[1,),f(x)0恒成立,试求实数a的取值范围.三.基础练习:

1.函数yx25的值域为x2______________.42.y32xx2 的值域是______________.3.yx2x1的最小值是______________.4.y2x1x3的值域是______________.5.函数fx2x213x3在区间[-1,5]上的最大值是______

6.函数y22x2x1的值域为()

A.(,2][1,)B.(,2)(1,)

C.yy1,yR D.yy2,yR

7.已知函数f(x)的值域是[3,489],试求yf(x)12f(x)的值域.8.已知函数fxlogmx28xn3x21的定义域为R,值域为0,2,求实数m,n的值.四.归纳总结:

1.求值域时不但要重视对应法则的作用,而且要特别注意定义域的制约作用.2.求值域问题的结果要写成集合或区间形式.3.熟练掌握求值域的几种方法,积累经验,掌握规律,根据问题的不同特点,综合而灵活地运用条件选择方法求之.五.布置作业

第四篇:三角函数教案

三角函数

1教学目标

⑴: 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形

⑵: 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. ⑶: 渗透数形结合的数学思想,培养学生良好的学习习惯.

2学情分析

学生在具备了解直角三角形的基本性质后再对所学知识进行整合后利用才学习直角三角形边角关系来解直角三角形。所以以旧代新学生易懂能理解。

3重点难点

重点:直角三角形的解法

难点:三角函数在解直角三角形中的灵活运用 以实例引入,解决重难点。

4教学过程 4.1 第一学时 教学活动 活动1【导入】

一、复习旧知,引入新课

一、复习旧知,引入新课

1.在三角形中共有几个元素? 2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?

答:(1)、三边之间关系 : a2 +b2 =c2(勾股定理)(2)、锐角之间关系:∠A+∠B=90°(3)、边角之间关系

以上三点正是解的依据.

3、如果知道直角三角形2个元素,能把剩下三个元素求出来吗?经过讨论得出解直角三角形的概念。

复习直角三角形的相关知识,以问题引入新课

注重学生的参与,这个过程一定要学生自己思考回答,不能让老师总结得结论。

PPT,使学生动态的复习旧知

活动2【讲授】

二、例题分析教师点拨

例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=,a=,解这个直角三角形. 例2在Rt△ABC中,∠B =35o,b=20,解这个直角三角形

活动3【练习】

三、课堂练习学生展示

完成课本91页练习

1、Rt△ABC中,若sinA= ,AB=10,那么BC=_____,tanB=______.

2、在Rt△ABC中,∠C=90°,a=,c=,解这个直角三角形.3、如图,在△ABC中,∠C=90°,sinA= AB=15,求△ABC的周长和tanA的值

4、在Rt△ABC中,∠C=90°,∠B=72°,c=14,解这个直角三角形(结果保留三位小数).活动4【活动】

四、课堂小结

1)、边角之间关系 2)、三边之间关系

3)、锐角之间关系∠A+∠B=90°.

4)、“已知一边一角,如何解直角三角形?”

活动5【作业】

五、作业设置

课本 第96页习题28.2复习巩固第1题、第2题.

第五篇:两角和与差的三角函数 解斜三角形 三角变换中的最值问题 教案

两角和与差的三角函数,解斜三角形·三角变换中的最值问题·教案

北京市第一七一中学 许绮菲

教学目标

1.复习、巩固和、差、倍、半角公式,使学生能够熟练运用公式解决典型的三角函数式的最值问题. 2.在学生掌握三角函数式最值的基本求解方法的基础上,引导学生在解决最值应用问题时,会引入角做变量列出目标函数,借助繁多的三角公式求解函数最值.

3.在教学过程中突出三角函数式与代数式的相互转化,训练学生灵活选择代数与三角变换两种工具,渗透“转化”数学思想.

教学重点与难点

重点是教会学生把三角函数式最值问题转化为代数式的最值问题,同时能够利用三角变换知识解决代数式的最值问题,恰当选取方法解决问题.

难点是培养学生利用三角变换工具解决问题的意识,体现三角变换的工具性.讲授难点是引导学生全面分析题目,恰当选取变量,正确列出较易求最值的目标函数.

教学过程设计

师:我们已经学过了和、差、倍、半角公式,深感三角公式繁多,变换多端,同时三角函数还具有单调性及有界性.今天我们来共同探讨三角变换中的最值问题.首先我请一位同学回答代数式的最值问题有哪些基本求解方法.

生:有利用函数单调性的方法,如最常用的二次函数法、复合函数法、分离变量法、方程法、换元法等. 师:这位同学回答很好.我们在学习三角函数式的最值问题时也希望大家注意总结方法.下面让我们看第一个例题.

例1 求y=cos2x+6cosx+5的最大、最小值.

分析:这个函数式变量形式不统一,我们首先要设法统一变量再求其最值. 生:可以利用倍角公式统一变量,转化为二次函数求解.

因为cosx∈[-1,1],所以ymax=12,ymin=0.

师:这个题目我们借助二次函数这一工具求最值,注意到了代数与三角变换间的沟通.下面我们看例2. 例2 求函数y=sinx+cosx+sinx·cosx+1的最大值与最小值. 生:这个题目既有“sinx”又有“cosx”,若用sin2x+cos2x=1求解,会出现根式,所以考虑把角度取半使其次数升高.

y=sinx·(1+cosx)+1+cosx =(1+cosx)·(1+sinx)

师:这位同学为了不出现根式而把角度减半以达到升次的目的,很好.但若把题目改为y=sinx+cosx+3sinxcosx+1,这样能否可行?对例2有没有更具有普遍意义的做法?

生:观察到(sinx+cosx)2=sin2x+cos2x+2sinxcosx=1+2sinxcosx,故联

函数求解.于是得到例2的又一解法. 解

师:这位同学的解法更具有普遍意义,特别值得表扬的是这位同学在换元时注意到了等价性,即求出了t的取值范围.下面我们看例3.

例3 已知x2+y2=1,求u=3x+4y的值域.

分析:这个题目是代数式的最值问题,若用代数方法求解,要首先统一变元,这样就会出现根式,运算不够简洁.观察到x2+y2=1这一制约条件,联想到sin2x+cos2x=1,可令x=cosα,y=sinα.进行三角换元,利用三角公式求最值.

解 令x=cosα,y=sinα.则

所以u∈[-5,5].

下面我们做三个练习:

练习1 已知x2+y2=4,求μ=3x+4y的值域.

(分别请三位同学板演.)

解1 令x=2cosα,y=2sinα,则

所以μ∈[-10,10].

师:这三位同学都注意到所求函数的定义域,利用三角换元求解最值.一般来说,利用三角换元求解y=f(x)的最值问题的步骤为:1°求函数y=f(x)的定义域;2°根据求出的定义域设计换元,注意换元后给出一个能够保证其值域充满给定函数y=f(x)的定义域的新变量的最小取值范围,如练习2中要求x∈[-1,1],令x=sinα后给出α∈

取值范围;3°利用三角公式求函数的最值.

利用换元法求最值不仅限于把变量x换为sinα或cosα,还可以换元为tanα,cotα等,要依所给函数而定;三角换元也未必只在代数式

函数转化为代数式求解,在求解最值问题时要恰当选取代数与三角两种工具,并能互相转化. 以上我们研究了函数式的最值问题,下面我们看几个最值应用问题,探讨如何利用三角这一工具解决问题. 例4 欲在半圆形铁皮(如图1)截取矩形,如何截取利用率最高.(半径为R)

分析:矩形ABCD的面积取决于CD的位置,而CD∥AB,故C点位置一旦取定,则D点位置也随之而定.C点在圆周上,连结圆心O与C点,则∠COB的大小便确定了C点的位置,故引入∠COB作为变量写出目标函数.

S=Rsinα·2Rcosα=R2sin2α,利用三角变换解最值应用问题的一般步骤是:1°全面分析题目,选择恰当的自变量;2°列出目标函数,确定自变量取值范围;3°利用三角变换公式求最值.

若我们把半圆形铁皮改为扇形铁皮,如何求解呢?请同学们练习.

练习4 在半径为R,中心角为α的扇形铁皮中(如图2)截取矩形,何时利用率最高.

(此题可利用正弦定理,即△ABC中,A,B,C为三内角,a,(给出时间让学生独立思考,请学生回答.)

生:与例4相似的有矩形ABCD面积由CD位置决定,CD∥AB,C点位置决定了矩形ABCD的面积,而∠COB的大小决定了C点位置.故引入∠COB为变量.这个题目与例4的区别在于目标函数较例4复杂.

解 设∠COB=θ,θ∈(0,α).

在Rt△COB中,|BC|=Rsinθ,在△COD中,∠CDO=π-α,∠DOC=α-θ,由正弦定理,师:四个题目还可以略加改动.

练习5在中心角为α半径为R的扇形中如图截取矩形(如图3),何时利用率最高.

请同学们课下解决,并且总结这类有动点在圆周上的题目的解法. 下面我们再看一个例题:

例5 边长为α的正三角形ABC,其中心为O,过O的直线MN

分析:OM与ON的长度与过O的直线MN的倾斜程度有关,故引入∠AOM为变量,利用解三角形的知识表示出|OM|及|ON|,求解最值.

解 设∠AOM=α.

这个题目仍然是引入了角做变量,利用三角变换这一工具求解最值.这个题目限定自变量的取值范围直接影响结果,十分重要.

下面我们小结一下这节课.这节课我们主要研究了两个问题:即函数式的最值问题及最值应用问题.函数式的最值问题是最值应用问题的基础,解决函数式的最值问题的关键在于灵活地选用代数与三角两种工具,树立转化的数学思想,同时应注意一些典型方法的总结.解决最值应用问题的关键在于充分分析题目,选择恰当的自变量,列出相对简单的目标函数以便于求解最值.

作业

1.求下列函数的值域.

(2)已知(x+2y)2+y2=9,求u=x-y的最值. 3.求周长为定值P的直角三角形面积的最大值.

4.△ABC中,AB=AC=1,△ABC与以BC为边的正△BCD面积和为S,求S的最大值.

5.如图5,AB是半圆直径,延长AB到D,使BD=R,C为半圆上的动点,C在何处时,以DC为边的正△CDP与△OCD面积和最大.

课堂教学设计说明

最值问题是学生感到困难的一个内容,求最值的方法多样,不可能一一列举.这节课的主要目的是教会学生灵活选用代数与三角两种工具解决问题,培养学生“转化”这一数学思想,体现“三角变换”的工具性.

下载三角函数周期与最值教案word格式文档
下载三角函数周期与最值教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    84正弦、余弦定理综合——三角形形状、三角函数最值、解三角形

    江苏省淮阴中学2009高一数学学案NO5编制:上官志薇 正弦、余弦定理综合 ——三角形形状、三角函数最值、解三角形 【典例练讲】 例1:ABC中,AB=1,AC=2,A的平分线AD=1,(1)求ABC的面积;......

    三角函数教案及反思

    课题:三角函数的诱导公式(一) 教者:王永涛(宁县四中) 教学目标:1.知识与技能:借助单位圆,推导出诱导公式,能正确运用诱导公式 将任意角的三角函数化为锐角的三角函数,掌握有关三角函数......

    三角函数线教案

    三角函数线及其应用 教学目标 1.使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题. 2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力. 3.强化数形结......

    反三角函数(教案)

    第4节 反三角函数(2课时) 第1课时 [教材分析]:反三角函数的重点是概念,关键是反三角函数与三角函数之间的联系与区别。内容上,自然是定义和函数性质、图象;教学方法上,着重强调类......

    三角函数的教案

    三角函数的教案1一、案例实施背景本节课是九年级解直角三角形讲完后的一节复习课二、本章的课标要求:1、通过实例锐角三角函数(sinA、cosA、tanA)2、知道特殊角的三角函数值3......

    2015二次函数与最值问题

    2015年中招专题---二次函数与最值问题 1.(2014•四川绵阳)如图,抛物线y=ax2+bx+c(a≠0)的图象过点M(﹣2,且与x轴交于A、B两点,与y轴交于C点. (1)求抛物线的解析式; (2)点P为抛物线对称轴上的......

    不等式证明与最值问题

    不等式证明与最值问题(一)均值不等式的运用(1)均值不等式的运用:a² + b²≥ 2ab;当a>0,b>0时,a+b ≥2√ab 附: 完全的均值不等式:√[(a²+ b²)/2] ≥(a+b)/2 ≥√ab ≥2/(1/a+1/b) (......

    二次函数的最值教案

    丰林中学 任志库 一、教学目标(一)知识与技能 1、会通过配方或公式求出二次函数的最大或最小值; 2、在实际应用中体会二次函数作为一种数学模型的作用,会利用二次函数的性质求......