第一篇:三角函数线教案
三角函数线及其应用
教学目标
1.使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题. 2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力. 3.强化数形结合思想,发展学生思维的灵活性. 教学重点与难点
三角函数线的作法与应用. 教学过程设计
一、复习
师:我们学过任意角的三角函数,角α的正弦、余弦、正切、余切、正割、余割是如何定义的?
生:在α的终边上任取一点P(x,y),P和原点O的距离是r(r>0),那么角α的六个三角函数分别是(教师板书)
师:如果α是象限角,能不能根据定义说出α的各个三角函数的符号规律?
生:由定义可知,sinα和cscα的符号由y决定,所以当α是第一、二象限角时,sinα>0,cscα>0;当α是第三、四象限角时,sinα<0,cscα<0.cosα和secα的符号由x决定,所以当α是第一、四象限角时,cosα>0,secα>0;当α是第二、三象限角时,cosα<0,secα<0.而tanα,cotα的符号由x,y共同决定,当x,y同号时,tanα,cotα为正;当x,y异号时,tanα,cotα为负.也就是说当α是第一、三象限角时,tanα>0,cotα>0;当α是第二、四象限角时,tanα<0,cotα<0.
师:可以看到,正弦值的正负取决于P点纵坐标y,余弦值的正负取决于P点的横坐标x,而正切值的正负取决于x和y是否同号,那么正弦、余弦、正切的值的大小与P点的位置是否有关?
生:三角函数值的大小与P的位置无关,只与角α的终边的位置有关. 师:既然三角函数值与P点在角α的终边上的位置无关,我们就设法让P点点位于一个特殊位置,使得三角函数值的表示变为简单.
二、新课
师:P点位于什么位置,角α的正弦值表示最简单? 生:如果r=1,sinα的值就等于y了. 师:那么对于余弦又该怎么处理呢? 生:还是取r=1.
师:如果r=1,那么P点在什么位置?
生:P点在以原点为圆心,半径为1的圆上.
师:这个圆我们会经常用到,给它起个名字,叫单位圆,单位圆是以原点为圆心,以单位长度为半径的圆.(板书)1.单位圆
师:设角α的终边与单位圆的交点是P(x,y),那么有sinα=y,cosα=x.
师:我们前面说的都是三角函数的代数定义,能不能将正弦值、余弦值等量几何化,也就是用图形来表示呢?因为数形结合会给我们的研究带来极大的方便,请同学们想想,哪些图形与这些数值有关呢?
(同学可能答不上来,教师给出更明确的提示.)
师:sinα=y,cosα=x,而x,y是点P的坐标,根据坐标的意义再想一想.
师:对点来说,是它的位置代表了数,点本身并不代表数.能不能找到一个图形,自身的度量就代表数?
生:可以用面积,比如一个正数可以对应着一个多边形的面积,每一个多边形的面积对应着唯一一个正数. 师:很好.但这是一个二维的图形,而且多边形的边数也不确定,我们还应遵循求简的原则.有没有简单的图形呢?
生:是不是能用线段的长度来表示? 师:说说你的理由.
生:线段的长度与正数是一一对应的,所以每一个正数可以用一条线段来作几何形式. 师:正数可以这样去做,零怎么办呢?能用线段来表示吗? 生:(非常活跃)当然行了,让线段两个端点重合,线段长就是零了.
师:可以画这样一个示意图,线段一个端点是A,另一个端点是B,当A,B重合时,我们说AB是0;当A,B不重合时,我们说AB是一个正实数.那么负数怎么办呢?能不能想办法也用线段AB表示?
生:线段的长度没有负数.
生:我能不能这样看,A点在直线l上,B点在l上运动,如果B在A的右侧,我就说线段AB代表正数;如果B和A重合,就说线段AB代表0;如果B在A的左侧,就说线段AB代表负数.
(教师不必理会学生用词及表述的漏洞.主要是把学生的注意力吸引到对知识、概念的发现上来.)
师:正数与正数不都相等,负数和负数也不都相等,你只是规定了正负还不够吧?!
生:可以再加上线段AB的长度.这样所有的实数都能对应一条线段AB,以A为分界点,正数对应的点B在A的右侧,而且加上长度,B点就唯一了.
师:他的意见是对线段也给了方向.与直线规定方向是类似的.那么如何建立有向线段与数的对应关系?(板书)2.有向线段
师:顾名思义,有方向的线段(即规定了起点与终点的线段)叫做有向线段,那么如何建立有向线段与数的对应关系呢?这需要借助坐标轴.平行于坐标轴的线段可以规定两种方向.如图2,线段AB可以规定从点A(起点)到点B(终点)的方向,或从点B(起点)到点A(终点)的方向,当线段的方向与坐标轴的正方向一致时,就规定这条线段是正的;当线段的方向与坐标轴的正方向相反时,就规定这条线段是负的.如图中AB=3(长度单位)(A为起点,B为终点),BA=-3(长度单位)(B为起点,A为终点),类似地有CD=-4(长度单位),DC=4(长度单位).
师:现在我们回到刚才的问题,角α与单位圆的交点P(x,y)的纵坐标恰是α的正弦值,但sinα是可正、可负、可为零的实数,能不能找一条有向线段表示sinα?
生:找一条有向线段跟y一致就行了,y是正的,线段方向向上,y是负的,线段方向向下,然后让线段的长度为|y|. 师:理论上很对,到底选择哪条线段呢?我们不妨分象限来看看.
生:如果α是第一象限的角,过P点向x轴引垂线,垂足叫M(无论学生用什么字母,教师都要将其改为M),有向线段MP为正,y也是正的,而且MP的长度等于y,所以用有向线段MP表示sinα=y.
(图中的线段随教学过程逐渐添加.)
生:如果α是第二象限角,sinα=y是正数,也得找一条正的线段.因为α的终边在x轴上方,与第一象限一样,作PM垂直x轴于M,MP=sinα.
师:第一、二象限角的正弦值几何表示都是MP,那么第三、四象限呢?注意此时sinα是负值.
生:这时角α的终边在x轴下方,P到x轴的距离是|y|=-y.所以还是作PM垂直x轴于M,MP方向向下,长度等于-y,所以sinα=y.
师:归纳起来,无论α是第几象限角,过α的终边与单位圆的交点P作x轴的垂线,交x轴于M,有向线段MP的符号与点P的纵坐标y的符号一致,长度等于|y|.所以有MP=y=sinα.我们把有向线段MP叫做角α的正弦线,正弦线是角α的正弦值的几何形式.(板书)
3.三角函数线
(1)正弦线——MP 师:刚才讨论的是四个象限的象限角的正弦线,轴上角有正弦线吗?
生:当角α的终边在x轴上时,P与M重合,正弦线退缩成一点,该角正弦值为0;当角α终边与y轴正半轴重合时,M点坐标为(0,0),P(0,1),MP=1,角α的正弦值为1;当α终边与y轴负半轴重合时,MP=-1,sinα=-1,与象限角情况完全一致. 师:现在来找余弦线.
生:因为cosα=x(x是点P的横坐标),所以把x表现出来就行了.过P点向y轴引垂线,垂足为N,那么有向线段NP=cosα,NP是余弦线. 师:具体地分析一下,为什么NP=cosα?
生:当α是第一、四象限角时,cosα>0,NP的方向与x轴正方向一致,也是正的,长度为x,有cosα=NP;当α是第二、三象限角时,cosα<0,NP也是负的,也有cosα=NP. 师:这位同学用的是类比的思想,由正弦线的作法类比得出了余弦线的作法,其他同学有没有别的想法?
生:其实有向线段OM和他作的有向线段NP方向一样,而且长度也一样,也可以当作余弦线.
师:从作法的简洁及图形的简洁这个角度看,大家愿意选哪条有向线段作为余弦线? 生:OM.(板书)
(2)余弦线——OM 师:对轴上角这个结论还成立吗?(学生经过思考,答案肯定.)
师:我们已经得到了角α的正弦线、余弦线,它们都是与单位圆的弦有关的线段,能不能找到单位圆中的线段表示角α的正切呢?
生:肯定和圆的切线有关系(这里有极大的猜的成分,但也应鼓励学生.)
坐标等于1的点,这点的纵坐标就是α的正切值. 师:那么横坐标得1的点在什么位置呢? 生:在过点(1,0),且与x轴垂直的直线上. 生:这条直线正好是圆的切线.(在图3-(1)中作出这条切线,令点(1,0)为A.)师:那么哪条有向线段叫正切线呢?不妨先找某一个象限角的正切线.
生:设α是第一象限角,α的终边与过A的圆的切线交于点T,T的横坐标是1,纵坐标设为y′,有向线段AT=y′,AT可以叫做正切线.
师:大家看可以这样做吧?!但第二象限角的终边与这条切线没有交点,也就是α的终边上没有横坐标为1的点.
生:可以令x=-1,也就是可以过(-1,0)再找一条切线,在这条切线上找一条有向线段表示tanα.
师:我相信这条线段肯定可以找到,那么其他两个象限呢?
生:第三象限角的正切线在过(-1,0)的切线上找,第四象限角的正切线在过(1,0)的切线上找.
师:这样做完全可以,大家可以课下去试,但我们还是要求简单,最好只要一条切线,我们当然喜欢过A点的切线(因为这条直线上每个点的横坐标都是1),第一、四象限角与这条直线能相交,AT是正切值的反映,关键是第二、三象限的角.(如果学生答不出来,由教师讲授即可.)师(或生):象限角α的终边如果和过A点的切线不相交,那么它的反向延长线一定能和这条切线相交.因为△OMP∽△OAT,OM与MP同号时,OA与AT也同号;OM与MP异号时,OA与AT也异号,(板书)
(3)正切线——AT 师:的确像刚才同学们说的,正切线确实是单位圆的切线的一部分,那么轴上角的正切线又如何呢?注意正切值不是每个角都有.
生:当角α终边在x轴上时,T和A重合,正切线退缩成了一个点,正切值为0;当角α终边在y轴上时,α的终边与其反向延长线和过A的切线平行,没有交点,正切线不存在,这与y轴上角的正切值不存在是一致的. 师:可以看到正切线的一个应用——帮助我们记忆正切函数的定义域.现在我们归纳一下任意角α的正弦线、余弦线、正切线的作法.
设α的终边与单位圆的交点为P,过P点作x轴的垂线,垂足为M,过A(1,0)点作单位圆的切线(x轴的垂线),设α的终边或其反向延长线与这条切线交于T点,那么有向线段MP,OM,AT分别叫做角α的正弦线、余弦线、正切线.
利用三角函数线,我们可以解决一些简单的有关三角函数的问题.(板书)
4.三角函数线的应用
例1 比较下列各组数的大小:
分析:三角函数线是一个角的三角函数值的体现,从三角函数线的方向看出三角函数值的正负,其长度是三角函数值的绝对值.比较两个三角函数值的大小,可以借助三角函数线.(由学生自己画图,从图中的三角函数线加以判断.)
(画出同一个角的两种三角函数线). 师:例1要求我们根据角作出角的三角函数线,反过来我们要根据三角函数值去找角的终边,从而找到角的取值范围.(板书)
例2 根据下列三角函数值,求作角α的终边,然后求角的取值集合.
分析:
P1,P2两点,则OP1,OP2是角α的终边,因而角α的取值集合为
(3)在单位圆过点A(1,0)的切线上取AT=-1,连续OT,(4)这是一个三角不等式,所求的不是一个确定的角,而是适合三、小结及作业
单位圆和三角函数线是研究三角函数的几何工具,它是数形结合思想在三角函数中的体现.我们应掌握三角函数线的作法,并能运用它们解决一些有关三角函数的问题,注意在用字母表示有向线段时,要分清起点和终点,书写顺序要正确. 作业
(1)复习课本“用单位圆中的线段表示三角函数”一节.
(2)课本习题P178练习第7题;P192练习十四第9题;P194练习十四第22题;P201总复习参考题二第20题. 课堂教学设计说明
关于三角函数线的教学,曾有过两个设想:一是三种函数线在同一节课交待,第二节课再讲应用;另一个设想是,第一节课只出正弦线、余弦线及它们的应用,第二节课引入正切线,及三线综合运用,如比较函数值的大小、给值求角、解简单的三角不等式,证明一些三角关系式.本教案选择了前者,原因是利于学生类比思维.在实际教学中,由于教师水平不同,学生的水平也不相同,教案中的例题可能讲不完,或根本不讲,但是宁可不讲例题,也要让学生去猜、去找三角函数的几何形式,我希望把三角函数线的发现过程展现给学生,教师不能包办代替.
数形结合思想是中学数学中的重要数学思想,在教学中应不失时机地加以渗透.通过三角函数线的学习,使学生了解数形结合的“形”不单有函数图象,还有其他的表现形式.至于在解决有关三角函数的问题时用函数图象还是用三角函数线,则要具体情况具体分析,如证明等式sin2α+cos2α=1,研究同一个角的正余弦值的大小关系,都以三角函数线为好.
第二篇:三角函数教案
三角函数
1教学目标
⑴: 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形
⑵: 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. ⑶: 渗透数形结合的数学思想,培养学生良好的学习习惯.
2学情分析
学生在具备了解直角三角形的基本性质后再对所学知识进行整合后利用才学习直角三角形边角关系来解直角三角形。所以以旧代新学生易懂能理解。
3重点难点
重点:直角三角形的解法
难点:三角函数在解直角三角形中的灵活运用 以实例引入,解决重难点。
4教学过程 4.1 第一学时 教学活动 活动1【导入】
一、复习旧知,引入新课
一、复习旧知,引入新课
1.在三角形中共有几个元素? 2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?
答:(1)、三边之间关系 : a2 +b2 =c2(勾股定理)(2)、锐角之间关系:∠A+∠B=90°(3)、边角之间关系
以上三点正是解的依据.
3、如果知道直角三角形2个元素,能把剩下三个元素求出来吗?经过讨论得出解直角三角形的概念。
复习直角三角形的相关知识,以问题引入新课
注重学生的参与,这个过程一定要学生自己思考回答,不能让老师总结得结论。
PPT,使学生动态的复习旧知
活动2【讲授】
二、例题分析教师点拨
例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=,a=,解这个直角三角形. 例2在Rt△ABC中,∠B =35o,b=20,解这个直角三角形
活动3【练习】
三、课堂练习学生展示
完成课本91页练习
1、Rt△ABC中,若sinA= ,AB=10,那么BC=_____,tanB=______.
2、在Rt△ABC中,∠C=90°,a=,c=,解这个直角三角形.3、如图,在△ABC中,∠C=90°,sinA= AB=15,求△ABC的周长和tanA的值
4、在Rt△ABC中,∠C=90°,∠B=72°,c=14,解这个直角三角形(结果保留三位小数).活动4【活动】
四、课堂小结
1)、边角之间关系 2)、三边之间关系
3)、锐角之间关系∠A+∠B=90°.
4)、“已知一边一角,如何解直角三角形?”
活动5【作业】
五、作业设置
课本 第96页习题28.2复习巩固第1题、第2题.
第三篇:难以割舍的“三角函数线”
难以割舍的“三角函数线”
【摘要】对一道典型的三角函数练习题,应用任意角三角函数的定义及三角函数线进行认真分析,反思教学,化抽象为直观,化单纯的数式理解为数形结合理解,就能轻松达到从整体上把握三角函数的有关性质的教学目的。
【关键词】三角函数数形结合直观性质
【中图分类号】G632 【文献标识码】A 【文章编号】1674-4810(2014)15-0124-01
很多学生对如何学好三角函数普遍存在内容抽象、不好理解的感觉,究其深层次的原因,是对任意角的三角函数的定义没有学好。本文试图从一道练习题,展示说明由三角函数的定义对如何理解好三角函数的性质的重要性,反思教学,达到从整体上把握三角函数的有关性质的教学目的。
练习题:定义在R上的函数f(x),当sinx≤cosx时,f(x)=cosx;当sinx>cosx时,f(x)=sinx给出以下结论:(1)f(x)是周期函数;(2)f(x)的最小值为-1;(3)当且仅当x=2kπ(k∈Z)时,f(x)取最大值;(4)当且仅当
时,f(x)为减函数;(5)f(x)的图象上相邻最低点的距离为2π。其中正确命题的序号是
(把你认为正确命题的序号都填上)。
做这类开放式的填空题,往往运用所学的知识点较多,学生很难正确完成,错误率较高。但仔细思考,本题仍然离不开研究三角函数的最常规的方法,即研究三角函数的图象及其性质,但是如何研究呢?在教学中,我不断反思三角函数的定义及单位圆中三角函数线直观表现三角函数中自变量与函数值之间的关系,发现它可以化抽象为直观、化单纯的数式理解为数形结合理解,轻松就能达到从整体上把握三角函数的有关性质的教学目的。
下面就以三角函数的定义及三角函数线,来反思本题三角函数性质的教学,如上图,在直角坐标系xOy中,角x的顶点与原点重合,始边与Ox正半轴重合,终边与单位圆交于点P(或P'),过点P(或P')作PM⊥x轴(P' M'⊥x轴),分别得到正弦线MP(M'P'),余弦线OM(OM')本例是以sinx>cosx或sinx≤cosx作为条件给出函数关系式,显然当
或 时,OM=MP,OM'=M'P'即sinx=
cosx。所以,函数的解析式是当
时,f(x)=sinx,当2kπ- ≤x≤2kπ+(k∈Z)时,f(x)=cosx之间互换。当角x的终边绕原点从y=x(x>0)开始,按照逆时针方向旋转到y=x(x<0),此时f(x)=sinx,正弦线MP按照 的规律周而复始变化着;
同时,当终边从y=x(x<0)开始,按照逆时针方向旋转到y
=x(x>0)。此时f(x)=cosx,余弦线OM按照
的规律周而复始变化着。
由正弦线、余弦线的上述变化规律,可得到函数的以下性质:(1)周期性:自变量x每增加2π(角x的终边旋转一周),函数y=f(x)从正弦函数到余弦函数之间互换,并重复出现,所以函数的周期为2π。(2)奇偶性:角x与角x对应的函数线可能是正弦线与余弦线,不可能关于x轴对称或重合,所以函数为非奇非偶函数。(3)单调性,见表1。(4)最大值、最小值,如表2。
表1
角x 2kπ- ≤
x≤2kπ
(k∈Z)2kπ≤x≤2kπ
+(k∈Z)
2kπ+ ≤x≤
2kπ+(k∈Z)
2kπ+ ≤x≤
2kπ+(k∈Z)
函数 y=cosx y=cosx y=sinx y=sinx
函数线变化
单调性 递增 递减 递增 递减
表2
角x x=2kπ
函数 y=cosx y=sinx y=sinx或y=cosx
函数线变化 1 1
最值 最大值 最大值 最小值
总之,对于此类的三角函数题,教师若能紧紧抓住单位圆的三角函数线及定义,不断反思教学,就不难准确完成此类练习题,真正达到举一反
三、触类旁通的教学效果。
〔责任编辑:李锦雯〕
第四篇:三角函数教案及反思
课
题:三角函数的诱导公式
(一)教
者:王永涛(宁县四中)
教学目标:1.知识与技能:借助单位圆,推导出诱导公式,能正确运用诱导公式
将任意角的三角函数化为锐角的三角函数,掌握有关三角函数求值问
题。
2.过程与方法:经历诱导公式的探索过程,体验未知到已知、复杂到
简单的转化过程,培养化归思想。
3.情感、态度与价值观:感受数学探索的成功感,激发学习数学的热
情,培养学习数学的兴趣,增强学习数学的信心。
重
点:诱导公式二、三、四的探究,运用诱导公式进行简单三角函数式的求
值,提高对数学内部联系的认识。
难
点:发现圆的对称性与任意角终边的坐标之间的联系;诱导公式的合理运
用。
教学方法:合作探究式 教学手段:多媒体 教学过程:
一、前置检测
1.任意角α的正弦、余弦、正切是怎样定义的?
2.2kπ+α(k∈Z)与α的三角函数之间的关系是什么?
3.你能求sin750°和sin930°的值吗?
二、精讲点拨
知识探究
(一):π+α的诱导公式(师生共同探究)。
思考1:210°角与30°角有何内在联系?240°角与60°角呢? 思考2:若α为锐角,则(180°,270°)范围内的角可以怎样表示?
思考3:对于任意给定的一个角α,角π+α的终边与角α的终边有什么关系?
思考4:设角α的终边与单位圆交于点P(x,y),则角π+α的终边与单位圆的交点坐标如何?
思考5:根据三角函数定义,sin(π+α)、cos(π+α)、tan(π+α)的值分别是什么?
思考6:对比sinα,cosα,tanα的值,π+α的三角函数与α的三角函数有什么关系?
公式二 :sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα。
知识探究
(二)(三):-α,π-α的诱导公式(学生自主合作探究)。
引导学生回顾刚才探索公式二的过程,明确研究三角函数诱导公式的路线图:角间关系→对称关系→坐标关系→三角函数值间关系。为学生指明探索公式三、四的方向。
学生小组自主合作探究,然后让小组学生代表阐述探究的过程和结果。根据三角函数定义,得出-α的三角函数与α的三角函数的关系及π-α的三角函数与α的三角函数的关系。
公式三:sin(-α)= -sinα、公式四:sin(π-α)=sinα,cos(-α)=cosα、cos(π-α)=--cosα,tan(-α)=-tanα。
tan(π-α)=-tanα。思考1:利用π-α=π+(-α),结合公式二、三,你能得到什么结论? sin(π-α)= sin[π+(-α)] = -sin(-α)=sinα
cos(π-α)= cos[π+(-α)]= -cos(-α)=-cosα
tan(π-α)= tan[π+(-α)] = tan(-α)=-tanα
思考2:公式一~四都叫做诱导公式,他们分别反映了2kπ+α(k∈Z),π+α,-α,π-α的三角函数与α的三角函数之间的关系,你能概括一下这四组公式的共同特点和规律吗?
2kπ+α(k∈Z),π+α,-α,π-α的三角函数值,等于α的同名函数值,前面加上一个把a看成锐角时原函数值的符号。即“函数名不变,符号看象限”。
例1 利用公式求下列三角函数值:
(1)cos225°;
(2)sin660°;
(3)tan();
(4)cos(-2040°)。3[变式训练] 将下列三角函数转化为锐角三角函数,并填在题中横线上:(1)cos_______;9
(3)sin()_______;5例2 化简
(2)sin(1)_______;(4)cos(706')_______.cos1(80)sin(360)sin(180)cos(180)
[变式训练] 化简:
cos190sin(210)cos(350)tan58
5三、当堂检测
1.利用公式求下列三角函数值
7(2)sin();
(1)cos(420);6
79(3)sin(330);(4)cos();6
2.化简
sin3()cos(2)tan().(1)sin(180)cos()sin(180);(2)
四、总结提升
1.诱导公式都是恒等式,即在等式有意义时恒成立。
2.2kπ+α(k∈Z),π+α,-α,π-α的三角函数值,等于α的同名函数值,前面加上一个把a看成锐角时原函数值的符号。即“函数名不变,符号看象限”。
3.利用诱导公式一~四,可以求任意角的三角函数,其基本思路是:任意负角的三角函数→任意正角的三角函数→0~2π的角的三角函数→锐角三角函数。
五、布置作业
1书面作业:必做:课本29页习题1.3A组 1、2;
选做:课本29页习题B组1.2预习作业:《三角函数的诱导公式》
(二),试用所学推导公式(五、六)。
第五篇:反三角函数(教案)
第4节 反三角函数(2课时)
第1课时
[教材分析]:反三角函数的重点是概念,关键是反三角函数与三角函数之间的联系与区别。内容上,自然是定义和函数性质、图象;教学方法上,着重强调类比和比较。
另外,函数与反函数之间的关系,是本节内容中的一个难点,同时涉及上学期内容,可能是个值得复习的机会。
[课题引入]:在辅助角公式中,我们知道
其中cosasinxbcosxa2b2sinx,aab22,sinbab22,这样表述相当烦琐,我们想是否有比较简明的方法来表示辅助角呢?这就是我们今天要引入的问题——反三角函数。
[教学过程]:
师:首先我们回顾一下,什么样的函数才有反函数?
答:一一对应的函数具有反函数,最典型的例子就是单调函数具有反函数(但反之不真)。师:我们知道正弦函数ysinx在定义域R上是周期函数,当然不是一一对应的,因而没有反函数。但是,如果我们截取其中的一个单调区间,比方说我们研究函数:
ysinx,x,,这个函数是单调函数,因而有反函数。
22师:现在我们来求这个函数的反函数,那么求反函数有哪些步骤?(反解,互换x,y)(这里我们使用符号arcsin表示反解)反解得xarcsiny,互换得yarcsinx,其中x1,1,y,,这就是要求的反正弦函数。
221. 反正弦函数的图象
反正弦函数yarcsinx,x1,1与函数ysinx,x个函数图象关于直线yx对称。2. 反正弦函数的性质(由函数图象可得)
因此两,互为反函数,22,1,值域为①定义域为1,; 22,1上单调递增; ②yarcsinx在定义域1xarcsinx ③yarcsinx是奇函数,即对任意x1,1,有arcsin3. 反正弦函数的恒等式
①由“一一对应”的性质知:对任意值x1,1,在,上都有唯一对应的角22arcsinx,使得它的正弦值为x,即得恒等式sinarcsinxx,x1,1;
②由“一一对应”的性质知:对任意角x在1,1上都有唯一对应的值sinx,,,22,。22sinxx,x使得它的反正弦值为x,即得恒等式arcsin例题选编:
[例1]:求下列反三角函数值:(1)arcsin31 ;(2)arcsin0(3)arcsin 22解:利用恒等式1来理解题意(1): 记arcsin33sinx3sinx,也就是在,上找xsinarcsin22222一个角x,使得sinx3;(2)(3)类似。2说明:对于特殊值的反正弦函数值的处理,利用恒等式1理解是一种本人以为较为机械的方法;但不知是否适合于初学者,有待讨论。可能直接让他们感受概念会来得更为简单些吧,实际上教材P98的思路有点类似于本文的处理方式。[例2]:用反正弦函数值的形式表示下列各式中的x :(1)sinx3,x,,5221,x,,422(2)sinx(3)sinx3,x0, 3解:利用恒等式2来理解题意:
sinx(1)33sinxarcsin3,arcsin而x,,故有xarcsin;
555223sinxarcsin3,而xarcsin,,故不能直接利用恒3322(3)sinx等式2,需要利用诱导公式,将角度转化到,上,此时涉及讨论: 22若x0,33,则 arcsinsinxarcsinxarcsin332若x,,则x0,,故有 223sinxarcsin3xarcsin3 arcsin333sinxarcsinarcsin即xarcsin3。3[例3]:化简下列各式:
(1)arcsinsin(2)arcsinsin95sin3.49 (3)arcsin6解:此题直接利用恒等式2,当区间不满足要求时,需要利用诱导公式转化区间。(1),,由恒等式2得arcsinsin; 9229955转化了; arcsinsin,这里将6666(2)arcsinsinsin3.49arcsinsin0.49 sin30.49arcsin(3)arcsinsin0.490.49。arcsin[例4]:判断下列各式是否成立:(1)arcsin3312k,kZ ;(2)arcsin;(3)arcsin22332(4)arcsinarcsin;(5)sinarcsin22
3322(6)sinarcsin1010 解:(1)对;(2)错;(3)当k0时对;(4)错,[例5]:写出下列函数的定义域和值域:
(1)y2arcsinx;(2)yarcsinxx 解:(1)
31,1;(5)错;(6)对。
2x1,1x0,1,由反正弦函数的单调性知y0,(2)xx1,1x21515,,22这是典型的复合函数求值域问题,由ux2x1,1和反正弦函数的单调性可知: 41yarcsin,
42[例6]:求下列函数的反函数:(1)ysin2x,x, 443, 22(2)y2sinx,x(3)y21arcsinx 2sin2x2x,解:(1)反解得arcsinyarcsin(恒等式2的运用,注意区间)
互换x,y即得反函数为y1arcsinx 2sinxarcsinsinxx,互换x,y即得反函(2)反解得arcsinarcsin数为yarcsin。(3)
作业:P99 练习1、2、3
[课题总结]: [试题选编]: y2x2