30°,45°,60°角的三角函数值_教学设计_教案

时间:2019-05-13 00:41:08下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《30°,45°,60°角的三角函数值_教学设计_教案》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《30°,45°,60°角的三角函数值_教学设计_教案》。

第一篇:30°,45°,60°角的三角函数值_教学设计_教案

教学准备

1.教学目标

(一)教学知识点:

1.经历探索30°、45°、60°角的三角函数值的过程,能够进行有关的推理.进一步体会三角函数的意义

2.能够进行30°、45°、60°角的三角函数值的计算.3.能够根据30°、45°、60°的三角函数值说明相应的锐角的大小.(二)思维训练要求:

1.经历探索30°、45°、60°角的三角函数值的过程,发展学生观察、分析、发现的能力.2.培养学生把实际问题转化为数学问题的能力.(三)情感与价值观要求:

1.积极参与数学活动,对数学产生好奇心.培养学生独立思考问题的习惯.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.2.教学重点/难点

教学重点

1.探索30°、45°、60°角的三角函数值.2.能够进行含30°、45°、60°角的三角函数值的计算.3.比较锐角三角函数值的大小.教学难点

进一步体会三角函数的意义.3.教学用具

课件

4.标签

30°,45°,60°角的三角函数值

教学过程

Ⅰ.创设问题情境,引入新课

[问题]为了测量一棵大树的高度,准备了如下测量工具:①含30°和60°两个锐角的三角尺;②皮尺.请你设计一个测量方案,能测出一棵大树的高度.(用多媒体演示上面的问题,并让学生交流各自的想法)[生]我们组设计的方案如下:

让一位同学拿着三角尺站在一个适当的位置B处,使这位同学拿起三角尺,她的视线恰好和斜边重合且过树梢C点,30°的邻边和水平方向平行,用卷尺测出AB的长度,BE的长度,因为DE=AB,所以只需在Rt△CDA中求出CD的长度即可.[生]在Rt△ACD中,∠CAD=30°,AD=BE,BE是已知的,设BE=a米,则AD=a米,如何求CD呢? [生]含30°角的直角三角形有一个非常重要的性质:30°的角所对的边等于斜边的一半,即AC=2CD,根据勾股定理,(2CD)2=CD2+a2.CD= a.则树的高度即可求出.[师]我们前面学习了三角函数的定义,如果一个角的大小确定,那么它的正切、正弦、余弦值也随之确定,如果能求出30°的正切值,在上图中,tan30°=,则CD=atan30°,岂不简单.你能求出30°角的三个三角函数值吗? Ⅱ.讲授新课

1.探索30°、45°、60°角的三角函数值.[师]观察一副三角尺,其中有几个锐角?它们分别等于多少度? [生]一副三角尺中有四个锐角,它们分别是30°、60°、45°、45°.[师]sin30°等于多少呢?你是怎样得到的?与同伴交流.[生]sin30°=().sin30°表示在直角三角 形中,30°角的对边与 斜边的比值,与直角三角形的大小无关.我们不妨设30°角所对的边为a(如图所示),根据“直角三角形中30°角所对的边等于斜边的一半”的性质,则斜边等于2a.根据勾股定理,可知30°角的邻边为a,所以sin30°=.[师]cos30°等于多少?tan30°呢? [生]cos30°=().tan30°=()

[师]我们求出了30°角的三个三角函数值,还有两个特殊角——45°、60°,它们的三角函数值分别是多少?你是如何得到的? [生]求60°的三角函数值可以利用求30°角三角函数值的三角形.因为30°角的对边和邻边分别是60°角的邻边和对边.利用上图,很容易求得sin60°=(),cos60°=(),tan60°=().[生]也可以利用上节课我们得出的结论:一锐角的正弦等于它余角的余弦,一锐角的余弦等于它余角的正弦.可知sin60°=cos(90°-60°)=cos30°= cos60°=sin(90°-60°)=sin30°=.30°、45°、60°角的三角函数值需熟记,另一方面,要能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小.为了帮助大家记忆,我们观察表格中函数值的特点.先看第一列30°、45°、60°角的正弦值,你能发现什么规律呢? [生]30°、45°、60°角的正弦值分母都为2,分子从小到大分别为,随着角度的增大,正弦值在逐渐增大.[师]再来看第二列函数值,有何特点呢? [生]第二列是30°,45°、60°角的余弦值,它们的分母也都是2,而分子从大到小分别为,余弦值随角度的增大而减小.[师]第三列呢? [生]第三列是30°、45°、60°角的正切值,首先45°角是等腰直角三角形中的一个锐角,所以tan45°=1比较特殊.[师]很好,掌握了上述规律,记忆就方便多了.下面同桌之间可互相检查一下对30°、45°、60°角的三角函数值的记忆情况.相信同学们一定做得很棒.2.例题讲解(多媒体演示)[例1]计算:(1)sin30°+cos45°;

(2)sin260°+cos260°-tan45°.分析:本题旨在帮助学生巩固特殊角的三角函数值,今后若无特别说明,用特殊角三角函数值进行计算时,一般不取近似值,另外sin260°表示(sin60°)2,cos260°表示(cos60°)2.解:(1)sin30°+cos45°=(),(2)sin260°+cos260°-tan45° =()2+()2-1=()+()-1=0.[例2]一个小孩荡秋千,秋千链子的长度为2.5 m,当秋千向两边摆动时,摆角恰好为60°,且两边的摆动角度相同,求它摆至最高位置时与其摆至最低位置时的高度之差.(结果精确到0.01 m)分析:引导学生自己根据题意画出示意图,培养学生把实际问题转化为数学问题的能力.解:根据题意(如图)可知,∠BOD=60°,OB=OA=OD=2.5 m,∠AOD= ×60°=30°,∴OC=OD•cos30° =2.5× ≈2.165(m).∴AC=2.5-2.165≈0.34(m).所以,最高位置与最低位置的高度约为0.34 m.Ⅲ.随堂练习多媒体演示 1.计算:

(1)sin60°-tan45°;(2)cos60°+tan60°;(3)sin45°+sin60°-2cos45°.2.某商场有一自动扶梯,其倾斜角为30°.高为7 m,扶梯的长度是多少? 解:扶梯的长度为 =14(m),所以扶梯的长度为14 m.Ⅳ.课时小结 本节课总结如下:

(1)探索30°、45°、60°角的三角函数值.sin30°=,sin45°=,sin60°= ; cos30°=,cos45°=,cos60°= ; tan30°=,tan45°=1,tan60°=.(2)能进行含30°、45°、60°角的三角函数值的计算.(3)能根据30°、45°、60°角的三角函数值,说出相应锐角的大小.Ⅴ.课后作业习题1.3第1、2题

课堂小结

学了这节课,你有什么收获?

课后习题 完成课后练习题。

板书

30°,45°,60°角的三角函数值

第二篇:任意角三角函数教案(推荐)

问题1 本章研究的问题是三角函数,函数的研究离不开平面直角坐标系,这在第一节中已经有所感受。现在请你回忆初中学过的锐角三角函数的定义,并思考一个问题:如果将锐角置于平面直角坐标系中,如何用直角坐标系中角的终边上的点的坐标表示锐角三角函数呢?

(设计意图:将已有知识坐标化,分化难点。用新的观点再认识学生的已有知识经验,发挥其正迁移作用,同时使本课时的学习与学生的已有知识经验紧密联系,使知识有一个熟悉的起点,扎实的固着点。)

预计的回答:学生可以回忆出初中学过的锐角三角函数的定义,但是在用坐标语言表述时可能会出现困难——即使将角置于坐标系中但是仍然习惯用三角形边的比值表示锐角三角函数,需要教师引导学生将之转换为用终边上的点的坐标表示锐角三角函数。

解答过程:

:如图1,在直角△POM中,∠M是直角,那么。

(2)坐标化:如图2,建立平面直角坐标系,设点P的坐标为(x,y),那么,于是。

问题2 回忆弧度制中1弧度角的几何解释,它是借助于单位圆给出的,能否从中得到启示将上述定义的形式化简,化简的依据是什么?写出最简单的形式。(设计意图:引入单位圆。深化对单位圆作用的认识,用数学的简洁美引导学生进行研究,为定义的拓展奠定基础。该问题与问题1结合,分步推进,降低难度,基本尊重教材的处理方式。)

预计的困难:由于学生只接触过一次单位圆,对它所能起的作用只有一般的了解,所以需要教师的引导。也可以引导学生从形式上对上述定义化简,使得分母为1,之后通过分母的几何意义将之与单位圆结合起来。

解答过程:

单位圆中定义锐角三角函数:如图3,线段OP=1,点P的坐标为(x,y),那么锐角α的三角函数可以用坐标表示为:。

(说明:单位圆的定义建议在弧度制一节中给出。)

依据:三角形相似,比值与具体的点的位置没有关系。

问题3:上述定义是借助于单位圆,利用角的终边与单位圆的交点的坐标给出的,它可以推广到任意角的三角函数,请你写出任意角的三角函数的定义。分小组分别写出角α的终边位于第二、三、四象限和x轴、y轴上时的三角函数。(设计意图:具体认识任意角的三角函数,突现本课时的研究重点。如果问题太一般化,如设计为:上述定义可以推广到任意角的三角函数,请写出任意角的三角函数的定义。那么学生不知道“上述定义”是指哪个,而且不明白任意角该如何取。所以在问题设计中再次强调要借助于单位圆,利用坐标,限定学生的思维,以免太发散。再者在一般要求“写出任意角的三角函数”之后,又提出具体的活动方式:分小组针对不同位置的角分别写出其三角函数。这样将问题具体化,学生容易着手解决。写出定义的过程也是巩固推广的过程,而且这样做尽可能避免出现学生用计算器算cosπ的现象。)

活动形式:由学生分组独立完成之后再展示交流,形成具体而全面的认识。学生可能会在写出任意角的三角函数的定义时出现困难,教师的帮助不要具体,而是在思维上引导——用坐标表示,并引导学生正确认识三角函数的定义域。

预计的答案:如图4,针对其中的图(1)(2)(3)学生写出,针对其中的图(4)学生写出,针对其中的图(5)学生写出,tanα无意义。

结论:给出三角函数的定义:(略)。

问题4:根据上述过程,你能写出三角函数的定义域吗?你能用函数的定义对三角函数进行分析吗?

(设计意图:顺势而为形成定义,并将三角函数的定义进行同化,通过这样的活动强化学生对任意角三角函数定义的理解,达到对概念的初步精致。)

预计的困难:学生对三角函数的自变量认识可能会存在问题。

教师的引导:引导学生利用单位圆的几何意义解释正弦、余弦的值域。预计的答案:设α是一个任意角,它的终边与单位圆交于点P(x,y)。

例1 求的正弦、余弦和正切值。

(设计意图:巩固对定义的理解。)

分析:根据定义求解,先利用锐角三角函数知识求出点P的坐标,再根据定义求解。

解:如图5,可知在RTΔOPC中,∠OPC=30o,所以OC=,CP=,所以点P的坐标是。

根据定义可得:

练习1(P15练习3)完成下列表格中的前两列:

例2 已知角α的终边经过点P(-3,-4),求角α的正弦、余弦和正切值。

(设计意图:通过问题的转化,进一步加深对定义的理解。)

分析:通过相似求出角α的终边与单位圆的交点坐标,之后再根据定义求解。解:如图6,由已知可得: |OP0|=。

设角α的终边与单位圆交于点P(x,y),分别过点P和P0作x轴的垂线MP,M 0P0,则

又|OP|=1,根据∽Δ,可得,即,所以。

所以。

(说明:上述书写过程基本与例1统一,这样可以将该题目的求解思路同化,降低学习难度。)

问题5 通过本课时的学习你有哪些收获,请从知识、思想方法经验等方面进行小结。此外你还有哪些需要质疑之处。

(设计意图:引导学生小结,并进一步思考。通过质疑引导学生全面认识三角函数,虽然在课堂上不研究其他3个三角函数,但是可以让学生有一个全面的认识,培养思维的严谨性。通过三角函数定义的一般化,引导学生用辩证的观点认识事物,理解三角函数。)

小结:知识:(略);

思想方法:(略);

经验:用函数的观点认识三角函数,用单位圆的几何特征研究三角函数。

拓展1:3个数可以形成6个比值,为什么只对其中的三个比值进行定义和研究,其他3个比值又能对应什么函数呢?有兴趣的同学可以自己查阅资料进行研究。

拓展2:通过求解例2,你能发现还可以怎么定义任意角的三角函数呢?请阅读教材的旁白。这是三角函数定义的等价定义。

六、目标检测设计 1.P15练习1,2,3;

(设计意图:初步应用定义和等价定义。)2.习题1.2A组2。

(设计意图:培养学生类比、对比解决问题能力。)

3.完成教材P13的探究,之后完成P15练习4,6,把结果填在书上。(设计意图:将作业作为课堂教学的延伸,培养学生自主学习的能力和习惯。)七.设计思路 1.突出单位圆的作用。具体表现在三个方面:第一是将锐角三角函数坐标化,引入单位圆;第二是利用单位圆写出任意角的三角函数;第三是利用单位圆写出定义域及正弦、余弦的值域;第四是在例2的解决过程中建立单位圆与一般定义的关系。

2.用函数同化三角函数。给出任意角的三角函数的定义之后,用函数的定义对三角函数进行分析,将之纳入到已有的认知结构中,并使得原有认知结构发生顺应变化。

3.力求在数学的自然、必要和学生的认知之间寻找平衡点。根据听课时出现的问题,在本教学设计中采取了下列处理方式。(1)先坐标化再引入单位圆,降低认知台阶。

从锐角三角函数到任意角三角函数这一段的处理基本尊重教材,这是因为在听课过程中发现如果将“坐标化”与“单位圆”两个问题同时抛给学生,虽然能体现出做这两个工作的必要性,但是跨度较大,学生感到困难,解决问题的过程费时费力,不但不能使学生感受到学习的必要性,反而制约了学生的思维。

(2)将问题分解、具体化,通过具体认识一般。

在形成任意角的三角函数的定义时将问题解剖,并采取分组合作的组织方式,旨在将抽象的问题具体化,降低难度。让学生根据角的不同位置写出定义,特别是对于象限角也进行了相同的处理办法,这是因为学生的思维从具体问题开始,而且要形成“初始效应”,在新概念学习伊始就使得它植根于学生的已有认知结构中,并形成强烈的意识——用新定义解决问题,而不再用计算器或其他办法。

(3)解题思路求同,强化定义的作用。

1、例2两个题目的解决思路都是相同的:先求出角的终边与单位圆交点的坐标,之后再根据定义求解。差别在于求角的终边与单位圆交点的坐标的具体方法不同,这些求法都是学生已经具备的技能。据此建议教材中将例2的解题过程修改,将利用相似求线段长的计算前置,分步完成即降低了难度,又统一了思路,突出了定义的作用。

(4)将作业作为课堂教学的有效延伸,给学生思考的空间。

作业中的第3项的设计,其意是使得学生的作业不但有模仿的,更有需要独立思考的,培养学生的能力。

2009-04-09 人教网 关闭 打印

推荐给朋友 大

【上一篇】“任意角三角函数定义”的教学认识与设计 【下一篇】让教学更自然、简明、有效

第三篇:二倍角的三角函数教学设计

§3 二倍角的三角函数

一、教学目标

1、知识与技能

以两角和正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式,理解推导过程,掌握其应用。

2、过程与方法

通过二倍角的正弦、余弦和正切公式的推导,体会转化化归、由一般到特殊的数学思想方法。

3、情感、态度、价值观

通过学习,使同学对三角函数之间的关系有更深的认识,增强学生逻辑推理和综合分析能力。

二、教学重、难点

教学重点:以两角和的正弦、余弦和正切公式为基础,推导二倍角正弦、余弦和正切公式; 教学难点:二倍角的理解及其灵活运用.三、教材分析

本节在学习了两角和与差的三角函数的基础上,进一步学习具有“二倍角”关系的正弦、余弦、正切公式,它既是两角和与差的公式的特殊化,又为以后的学习提供了理论基础,因此,对这一节的学下就显得尤为重要。

四、教学流程与教学内容

(一)情景引入

生活中我们常常遇见这样一个现象:对于一件商品,刚出现的时候,价格会非常高,随着时间的推移,商品的价格会逐渐下降,甚至于出现打折的情况,反过来看其实就是原始价格是现在价格的多少倍。对于这个“倍”字,我们自然而然的想到乘法和除法,对于乘法我们知道就是加法的另外一种运算,例如:6=3+3=32。同样的角与角之间也有一个倍数关系,例如: 60度角是30度角的二倍,角2是角的二倍。而对于角都有三角函数值,那么角2的三角函数值怎样计算呢?由乘法我们可以知道2,那么对于角2就可以转换成角。首先回顾一下两角和与差的正弦、余弦和正切公式

sin()sincoscossin ; sin()sincoscossin cos()coscossinsin ;cos()coscossinsin

tan()tantantantan) ; tan(1tantan1tantan我们由此能否得到sin2,cos2,tan2的公式呢?(学生自己动手推导并说明过程)【设计意图】高中学生已经具有丰富的生活经验和一定的科学知识,因此选择感兴趣的、与其生活实际密切相关的素材,此情景设计应该有助于学生对知识的发生发展的理解,而对于这一部分知识只有先理解了,后面对于公式的记忆和应用才能信手拈来。

(二)公式推导: sin2sinsincoscossin2sincos;

cos2coscoscossinsincos2sin2;

tan2tan思考:

1、把上述关于cos2的式子能否变成只含有sin或cos形式的式子呢?

tantan2tan.

1tantan1tan2cos2cos2sin21sin2sin212sin2;

cos2cos2sin2cos2(1cos2)2cos21.

2、把上述关于cos2,sin2的式子能否变成只含有tan形式的式子呢?

3、二倍角公式中,“倍”字如何理解?(1)sin4(2)cos6(3)

2tan22(sincos)

(4)2221tan2【设计意图】让学生深刻理解体会二倍角之间的倍数关系,学生通过自己动手检验公式是否正确,从中让学生自己发现并总结。

(三)例题讲解 例

1、已知sin

(四)巩固练习(1)sin15cos15(2)2cos(3)sin225,0<<,求sin2,cos2,tan2,sin的值.132281

8cos28

(4)8sin(5)cos(6)448cos48cos24cos12

2sin42

11

1tan1tan

(五)直击高考 已知函数f(x)23sinxcosx2cos2x,求f(x)的最大值和最小正周期。(学生在此题的基础上提出其他问题并解决)

【设计意图】:对于例题的讲解以及练习巩固和延伸,例题和练习都很简单,直接利用公式就可以解决,主要目的是帮助学生巩固三角函数倍角本质特征;而对于延伸的一个题目主要是引导学生自主探究三角函数有关问题的思想方法以及三角函数的综合应用。

(六)课堂小结:(1)二倍角的正弦、余弦、正切公式

(2)对公式的理解以及灵活运用,注意“倍”角是相对的

(七)课后作业:

1、教材123页 练习1 题2、4

2、思考:如何得到三倍角公式?

五、课后反思

教学设计紧扣课程标准的要求,重点放在二倍角三角函数的理解上。背景很简单,就是对乘法的理解,认知过程符合学生的认知特点和学生的身心发展规律,这样有利学生的思考。通过问题引导学生自主探究二倍角的三角函数的生成过程,让学生在情境中活动,在活动中体验数学与自然和社会的联系、新旧知识的内在联系,在体验中领悟数学的价值,使学生在理解数学的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。《课标》把发展学生的数学应用意识和创新意识作为其目标之一, 在教学中不仅要突出知识的来龙去脉还要为学生创设应用实践的空间, 促进学生在学习和实践过程中形成和发展数学应用意识,提高学生的直觉猜想、归纳抽象、数学地提出、分析、解决问题的能力, 发展学生的数学应用意识和创新意识,使其上升为一种数学意识,自觉地对客观事物中蕴涵的一些数学模式作出思考和判断。在解答问题的过程中体验到从数学的角度运用学过的数学思想、数学思维、数学方法去观察生活、解决实际问题,增进了他们对数学的理解和应用数学的信心。

第四篇:任意角的三角函数教学设计

《任意角的三角函数》教学设计

一、教学内容分析

本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。

二、学生情况分析

本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。

三、教学目标

知识与技能目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义;能根据任意角的三角函数的定义求出具体的角的各三角函数值;能根据定义探究出三角函数值在各个象限的符号。

方法与过程目标:在定义的学习及概念同化和精致的过程中培养学生类比、分析以及研究问题的能力。

情感态度与价值观: 在定义的学习过程中渗透数形结合的思想。

四、教学重、难点分析:

重点:理解任意角三角函数(正弦、余弦、正切)的定义。难点:引导学生将任意角的三角函数的定义同化,帮助学生真正理解定义。

五、教学方法与策略:

教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学.六、教具、教学媒体准备:

为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角三角函数与它的终边上点的坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维.

七、教学过程

(一)教学情景

1.复习锐角三角函数的定义

问题1:在初中,我们已经学过锐角三角函数.如图(课件2)在直角△ABC中,∠B是直角,那么根据锐角三角函数的定义,锐角A的正弦、余弦和正切分别是什么?

设计意图:帮助学生回顾初中锐角三角函数的定义.

师生活动:教师提出问题,学生回答. 2.认识任意角三角函数的定义

问题2:在上节教科书的学习中,我们已经将角的概念推广到了任意角,现在所说的角可以是任意大小的正角、负角和零角.那么任意角的三角函数又该怎样定义呢?

设计意图:引导学生将锐角三角函数推广到任意角三角函数.

师生活动:在教学中,可以根据学生的实际情况,利用下列问题引导学生进行思考:

(1)能不能继续在直角三角形中定义任意角的三角函数? 以此来引导学生在平面直角坐标系内定义任意角的三角函数.

(2)在上节教科书中,将锐角的概念推广到任意角时,我们是把角放在哪里进行研究的?

进一步引导学生在平面直角坐标系内定义任意角的三角函数.在此基础上,组织学生讨论。

(3)如图2,在平面直角坐标系中,如何定义任意角的三角函数呢?

(4)终边是OP的角一定是锐角吗?如果不是,能利用直角三角形的边长来定义吗?如图3,如果角θ的终边不在第I象限又该怎么办?

问题3:大家现在能不能给出任意角三角函数的定义了?

设计意图:引导学生在定义锐角三角函数的基础上,进一步给出任意角三角函数的定义.

师生活动:由学生给出任意角三角函数的定义,教师进行整理.

问题4:你能否给出正弦、余弦、正切函数在弧度制下的定义域? 设计意图:通过利用定义求定义域,既完善了三角函数概念的内容,同时又可帮助学生进一步理解三角函数的概念.

师生活动:学生求出定义域,教师进行整理. 例1:(题目在课件8中)

设计意图:从最简单的问题入手,通过变式,让学生学习如何利用定义求不同情况下函数值的问题,进而加深对定义的理解,加强定义应用中与几何的联系,体会数形结合的思想.

3.练习(在课件9中)

设计意图:通过应用三角函数的定义,加强对三角函数概念的理解. 4.小结

问题5:锐角三角函数与解直角三角形直接相关,初中我们是利用直角三角形边的比值来表示其锐角的三角函数.通过今天的学习,我们知道任意角的三角函数虽然是锐角三角函数的推广,但它与解三角形已经没有什么关系了.你能再回顾一下任意角三角函数的定义吗?

设计意图:回顾和总结本节课的主要内容.

八、作业设计:

教科书P106习题1.2题.

设计意图:根据本节课所涉及到的三角函数定义应用的几个方面,从教科书中选择作业题.试图通过作业,让学生进一步理解三角函数的概念,并从中评价学生对三角函数概念理解的情况.

九、教学反思:

上述教学设计及具体教学实施过程我认为有以下几点意义:

1.教学设计紧扣课程标准的要求,重点放在任意角的三角函数的理解上。背景创设符合学生的认知特点和学生的身心发展规律——具体到抽象,现象到本质,特殊到一般,这样有利学生的思考。

2.情景设计的数学模型很好地融合初中对三角函数的定义,也能很好引入在直角坐标系中,很好将锐角三角函数的定义向任意角的三角函数过渡,同时能够揭示函数的本质。

3.通过问题引导学生自主探究任意角的三角函数的生成过程,让学生在情境中活动,在活动中体验数学与自然和社会的联系、新旧知识的内在联系,在体验中领悟数学的价值,它渗透了蕴涵在知识中的思想方法和研究性学习的策略,使学生在理解数学的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。这和课程标准的理念是一致的。

第五篇:任意角的三角函数教学设计

《任意角的三角函数》第一课时 教学设计

会宁县第二中学数学教研组

曹蕊

一、教学内容分析

本节课是三角函数这一章里最重要的一节课,它是本章的基础,主要是从通过问题引导学生自主探究任意角的三角函数的生成过程,从而很好理解任意角的三角函数的定义。在《课程标准》中:三角函数是基本初等函数,它是描述周期现象的重要数学模型,在数学和其他领域中具有重要的作用。《课程标准》还要求我们借助单位圆去理解任意角的三角函数(正弦、余弦、正切)的定义。

二、学生情况分析

本课时研究的是任意角的三角函数,学生在初中阶段曾经研究过锐角三角函数,其研究范围是锐角;其研究方法是几何的,没有坐标系的参与;其研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其正迁移。

三、教学目标

知识与技能目标:借助单位圆理解任意角的三角函数(正弦、余弦、正切)的定义;能根据任意角的三角函数的定义求出具体的角的各三角函数值;能根据定义探究出三角函数值在各个象限的符号。

方法与过程目标:在定义的学习及概念同化和精致的过程中培养学生类比、分析以及研究问题的能力。

情感态度与价值观: 在定义的学习过程中渗透数形结合的思想。

四、教学重、难点分析:

重点:理解任意角三角函数(正弦、余弦、正切)的定义。难点:引导学生将任意角的三角函数的定义同化,帮助学生真正理解定义。

五、教学方法与策略:

教学中注意用新课程理念处理教材,采用学生自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.根据本节课内容、高一学生认知特点,本节课采用“启发探索、讲练结合”的方法组织教学.六、教具、教学媒体准备:

为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角与其终边和单位圆交点坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维.

七、教学过程

(一)教学情景

1.复习锐角三角函数的定义

问题1:在初中,我们已经学过锐角三角函数.如图1(课件中)在直角△POM中,∠M是直角,那么根据锐角三角函数的定义,∠O的正弦、余弦和正切分别是什么?

设计意图:帮助学生回顾初中锐角三角函数的定义.

师生活动:教师提出问题,学生回答. 2.认识任意角三角函数的定义

问题2:在上节教科书的学习中,我们已经将角的概念推广到了任意角,现在所说的角可以是任意大小的正角、负角和零角.那么任意角的三角函数又该怎样定义呢?

设计意图:引导学生将锐角三角函数推广到任意角三角函数.

师生活动:在教学中,可以根据学生的实际情况,利用下列问题引导学生进行思考:

(1)能不能继续在直角三角形中定义任意角的三角函数? 以此来引导学生在平面直角坐标系内定义任意角的三角函数.

(2)在上节教科书中,将锐角的概念推广到任意角时,我们是把角放在哪里进行研究的?

进一步引导学生在平面直角坐标系内定义任意角的三角函数.在此基础上,组织学生讨论。

(3)如图2,在平面直角坐标系中,如何定义任意角θ的三角函数呢?

(4)终边是OP的角一定是锐角吗?如果不是,能利用直角三角形的边长来定义吗?如图3,如果角θ的终边不在第I象限又该怎么办?

问题3:大家有没有办法让所得到的定义式变得更简单一点? 设计意图:为引入单位圆进行铺垫.

师生活动:教师提出问题后,可组织学生展开讨论.在学生不能正确回答时,可启发他们思考下列问题:

我们在定义1弧度的角的时候,利用了一个什么图形?所用的圆与半径大小有关吗?用半径多大的圆定义起来更简单易懂些?

问题4:大家现在能不能给出任意角三角函数的定义了?

设计意图:引导学生在借助单位圆定义锐角三角函数的基础上,进一步给出任意角三角函数的定义.

师生活动:由学生给出任意角三角函数的定义,教师进行整理. 例1:(题目在课件中)

设计意图:从最简单的问题入手,通过变式,让学生学习如何利用定义求不同情况下函数值的问题,进而加深对定义的理解,加强定义应用中与几何的联系,体会数形结合的思想.

问题5:你能否给出正弦、余弦、正切函数在弧度制下的定义域? 设计意图:通过利用定义求定义域,既完善了三角函数概念的内容,同时又可帮助学生进一步理解三角函数的概念.

师生活动:学生求出定义域,教师进行整理. 问题6:上述三种函数的值在各象限的符号会怎样?

设计意图:通过定义的应用,让学生了解三种函数值在各象限的符号的变化规律,并从中进一步理解三角函数的概念,体会数形结合的思想.

师生活动:学生回答,教师整理. 例2:(题目在课件中)

设计意图:通过问题的解决,熟悉和记忆函数值在各象限的符号的变化规律,并进一步理解三角函数的概念.

师生活动:在完成本题的基础上,可视情况改变题目的条件或结论,作变式训练.

问题7:既然我们知道了三角函数的函数值是由角的终边的位置决定的,那么角的终边每绕原点旋转一周,它的大小将会怎样变化?它所对应的三角函数值又将怎样变化?

设计意图:引出公式一,突出函数周期变化的特点,以及数形结合的思想. 师生活动:在教师引导下,由学生讨论完成. 例3:(题目在课件中)

设计意图:将确定函数值的符号与求函数值这两个问题合在一起,通过应用公式一解决问题,让学生熟悉和记忆公式一,并进一步理解三角函数的概念.

4、例5(题目在课件中)3.练习(在课件中)

设计意图:通过应用三角函数的定义,熟悉和记忆特殊角的三角函数值、三角函数值的符号、公式一,以及求三角函数值,加强对三角函数概念的理解.

4.小结

问题8:锐角三角函数与解直角三角形直接相关,初中我们是利用直角三角形边的比值来表示其锐角的三角函数.通过今天的学习,我们知道任意角的三角函数虽然是锐角三角函数的推广,但它与解三角形已经没有什么关系了.我们是利用单位圆来定义任意角的三角函数,借助直角坐标系中的单位圆,我们建立了角的变化与单位圆上点的变化之间的对应关系,进而利用单位圆上点的坐标或坐标的比值来表示圆心角的三角函数.你能再回顾一下我们是如何借助单位圆给出任意角三角函数的定义吗?

设计意图:回顾和总结本节课的主要内容.

八、作业设计:

教科书P.24习题1.2A组第6、8题.

设计意图:根据本节课所涉及到的三角函数定义应用的几个方面,从教科书中选择作业题.试图通过作业,让学生进一步理解三角函数的概念,并从中评价学生对三角函数概念理解的情况.

九、教学反思:

上述教学设计及具体教学实施过程我认为有以下几点意义:

1.教学设计紧扣课程标准的要求,重点放在任意角的三角函数的理解上。背景创设符合学生的认知特点和学生的身心发展规律——具体到抽象,现象到本质,特殊到一般,这样有利学生的思考。

2.情景设计的数学模型很好地融合初中对三角函数的定义,也能很好引入在直角坐标系中,很好将锐角三角函数的定义向任意角的三角函数过渡,同时能够揭示函数的本质。

3.通过问题引导学生自主探究任意角的三角函数的生成过程,让学生在情境中活动,在活动中体验数学与自然和社会的联系、新旧知识的内在联系,在体验中领悟数学的价值,它渗透了蕴涵在知识中的思想方法和研究性学习的策略,使学生在理解数学的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。这和课程标准的理念是一致的。

下载30°,45°,60°角的三角函数值_教学设计_教案word格式文档
下载30°,45°,60°角的三角函数值_教学设计_教案.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    任意角的三角函数教学设计

    任意角的三角函数(1) 一、教学内容分析: 高一年《普通高中课程标准教科书·数学(必修4)》(人教版A版)第12页1.2.1任意角的三角函数第一课时。 本节课是三角函数这一章里最重要的一......

    同角三角函数基本关系教学设计(推荐阅读)

    同角三角函数的教学设计 华南师范大学附属中学南海实验高级中学 蓝美健 教学目标 (一) 知识目标 1、 已知某角的正弦、余弦、正切中的一个,根据同角关系式,求其余两个三角函数......

    《特殊角的三角函数》教案

    《特殊角的三角函数》教案 濮阳县文留镇一中 杨芳 学习目标 一 知识 1.能推导并熟记30º、45º、60º角的三角函数值,并能根据这些值说出对应的锐角度数. 2.能熟练计算含有30......

    任意角的三角函数(教案)

    1.2.1任意角的三角函数 授课人:何艳峰 教学目标: (1) 让学生理解任意角的三角函数的定义。 (2) 让学生运用三角函数的定义求任意角的三角函数。 重点:运用任意角的三角函数的定义求......

    任意角的三角函数教案

    §1.2.1 任意角的三角函数 合肥市二十八中学漆学龙 教学目标 知识目标 1、掌握任意角的三角函数的定义。 2、已知角α终边上一点,会求角α的各三角函数值。 3、记住三角函......

    三角函数教学设计

    正弦函数的图像和性质 一、教材分析二、教法分析三、学法和能力培养 四、教学程序五、板书说明六、效果及评价说明 一、教材分析 4.8节是在前面已经学习过正、余弦函数的图......

    三角函数周期与最值教案

    三角函数的周期与最值, 授课人:王俊时间:2017-9- 12 授课班级:高三(5)班 授课内容:三角函数的周期与最值 教学目标: 1 掌握三角函数的最小正周期的求法。 2 掌握能化成形如yAsin(x)b......

    《任意角的三角函数》教学反思

    《任意角的三角函数》教学反思 肥东县长临河中学赵治龙 任意角三角函数的第一节课,其中心任务应该是让学生建立起计算一个任意角的三角函数与其终边上点的坐标之间的关系,并在......