第一篇:2012高中数学单元训练不等式的证明(二)
课时训练37不等式的证明
(二)【说明】 本试卷满分100分,考试时间90分钟.一、选择题(每小题6分,共42分)
a2b
21.设0<x<1,a、b为正常数,的最小值是()x1x
A.4abB.2(a2+b2)
C.(a+b)2D.(a-b)
2答案:Ca2b2
解析:令x=cosθ,θ∈(0,),则=a2sec2θ+b2csc2θ=a2+b2+a2tan2θ+b2cot2θ≥2x1x
a2+b2+2ab=(a+b)2.2.若a、b∈R,a2+b2=10,则a-b的取值范围是()
A.[-2,25]B.[-2,2]
C.[-,]D.[0,]
答案:A
解析:设a=cosθ,b=sinθ,则a-b=(cosθ-sinθ)=2·cos(θ+-2,2].3.已知a∈R+,则下列各式中成立的是()
A.cos2θ·lga+sin2θ·lgb<lg(a+b)B.cos2θ·lga+sin2θ·lgb>lg(a+b)
C.acos2)4bsin=a+bD.acosbsin>a+b 22
2答案:A
解析:cos2θlga+sin2θlgb<cos2θlg(a+b)+sin2θlg(a+b)=lg(a+b).4.设函数f(x)=ax+b(0≤x≤1),则a+2b>0是f(x)>0在[0,1]上恒成立的()
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件
答案:B
解析:a+2b>0a+b>0f(121)>0,不能推出f(x)>0,x∈[0,1];反之,f(x)>0,x∈[0,1]2
1f()>0a+2b>0.2
5.(2010重庆万州区一模,7)已知函数y=f(x)满足:①y=f(x+1)是偶函数;②在[1,+∞)上为增函数.若x1<0,x2>0,且x1+x2<-2,则f(-x1)与f(-x2)的大小关系是()
A.f(-x1)>f(-x2)B.f(-x1)<f(-x2)
C.f(-x1)=f(-x2)D.f(-x1)与f(-x2)的大小关系不能确定 答案:A
解析:y=f(x+1)是偶函数f(x+1)=f(-x+1)f(x+2)=f(-x).又x1+x2<-2,-x1>2+x2>2,故f(-x1)>f(2+x2)=f(-x2).6.(2010湖北十一校大联考,9)定义在R上的偶函数y=f(x)满足f(x+2)=-f(x)对所有实数x都
成立,且在[-2,0]上单调递增,a=f(37),b=f(),c=f(log18),则下列成立的是()222
A.a>b>cB.b>c>aC.b>a>cD.c>a>b
答案:B 解析:由f(x+2)=-f(x)有f(x+4)=f(x),∴T=4,而f(x)在R上为偶函数又在[-2,0]上单调递增,所以f(x)在[0,2]上单调递
减.b=f(1137)=f(-)=f(),c=f(log18)=f(-3)=f(1),a=f().22222
∵31>1>,∴b>c>a.22
227.设a、b、c、d∈R,m=a2b2+c2d2,n=(ac)(bd),则()
A.m<nB.m>nC.m≤nD.m≥n
答案:D
解析:设A(a,b),B(c,d),O(0,0),∵|OA|+|OB|≥|AB|,∴得m≥n.二、填空题(每小题5分,共15分)
8.设x>0,y>0,A=
答案:A<B
解析:A= xyxy,B=,则A,B的大小关系是__________________.1xy1x1yxyxy=B.1xy1xyx11y
9.已知x2+y2=1,对于任意实数x,y恒有不等式x+y-k≥0成立,则k的最大值是____________.答案:-
2解析:设x=cosθ,y=sinθ,k≤x+y=sinθ+cosθ=2sin(θ+
-2.10.设{an}是等差数列,且a12+a112≤100,记S=a1+a2+…+a11则S的取值范围是______________.答案:[-552,552] ),∴k≤-2.∴k的最大值为
4aa112aa11aa11解析:由1≥(1)1∈[-52,52].222
∴S=a1+a2+…+a11 22
=(a1+a11)+(a2+a10)+…+(a5+a7)+a6 =11(a1+a11)∈[-552,552].2
三、解答题(11—13题每小题10分,14题13分,共43分)
11.若x,y均为正数,且x+y>2.求证: 1y1x与中至少有一个小于2.xy
1y1x1y1x与均不小于2,即≥2且≥2,则1+y≥2x,1+x≥2y.相加得xxyy证明:假设
2+x+y≥2(x+y),推出x+y≤2,与题设x+y≥2矛盾.故假设错误.n(n1)(n1)2
12.已知an=223+…+n(n1)(n∈N),求证:<an<对n∈N*
22*恒成立.证明:an>222+…+n2=1+2+3+…+n=n(n1), 2
1nn22n(n1)2
而an<[(1+2)+(2+3)+…+(n+(n+1))]=+(1+2+3+…+n)=<.2222
13.若a,b,c为三角形三边,x,y,z∈R,x+y+z=0,求证:a2yz+bzzx+c2xy≤0.证明:∵z=-x-y,∴a2yz+b2zx+c2xy=a2y(-x-y)+b2x(-x-y)+c2xy=-b2x2-(a2+b2-c2)yx-a2y2,∴原不等式f(x)=b2x2+(a2+b2-c2)yx+a2y2≥0.
(*)
∵Δ=(a2+b2-c2)2-4a2b2=[(a2+b2+2ab)-c2][(a2+b2-2ab)-c2]=(a+b+c)(a+b-c)(a-b+c)(a-b-c),a,b,c为三角三边,∴Δ<0.∴b2>0,∴f(x)>0对x∈R恒成立,即(*)表示,∴原不等式得证.14.已知:a∈R+,求证:a+4a1a4
a≥17.4
证明:∵a∈R+,设t=a+4a≥2a14=4,则左式=f(t)=t+(t≥4)ta
∴f(t)=(t12)+2在t≥4上递增.t
117=得证.44∴f(t)≥f(4)=4+
第二篇:2012高中数学单元训练不等式的证明(一)
课时训练36不等式的证明
(一)【说明】 本试卷满分100分,考试时间90分钟.一、选择题(每小题6分,共42分)1.设0<x<1,则a=2x,b=1+x,c=
中最大的一个是()1x
A.aB.bC.cD.不能确定 答案:C
解析:因0<x<1,故 1-x2>0,即1+x<
1221,b<c,又1+x-2x=(x)+>0,故a<1x2
2b,即最大的是C.2.(2010北京东城区一模,4)已知a<0,b<-1,则下列不等式成立的是()
aaaa>2B.2>>a bbbbaaaaC.>2>aD.>a>2 bbbb
A.a>答案:C
a
>0,b>-1.则b2>1.b
1a
∴2<1.又∵a<0,∴0>2>a.bbaa
∴>2>a.故选C.bb
解析:∵a<0,b<-1,则
3.设a>b>0,则下列关系式成立的是()A.ab>(ab)C.aabb=(ab)答案:A 解析:ab÷(ab)
ab
ab
ab2
B.ab<(ab)
ab
ab2ab2的大小不确定
ab2
D.aabb与(ab)
ab2
a=()b
ab2
a,因a>b>0,故ab>1,a-b>0,()
b
ab2
>1.4.设a,b∈R+,且ab-a-b≥1,则有()
A.a+b≥2(2+1)B.a+b≤2+
1C.a+b<2+1D.a+b>2(2+1)答案:A
解析:由ab≥1+a+b(5.若0<x<
ab2)≥1+a+b,将a+b看作一整体即可.2
,设a=2-xsinx,b=cos2x,则下式正确的是()2
A.a≥bB.a=bC.a<bD.a>b 答案:D
解析:a-b=2-xsinx-cos2x
x2x2x22
=sinx-xsinx+1=(sinx-)+1-,因为0<x<,所以0<<<1.所以a-b>0.22441626.设a,b,c为△ABC的3条边,且S=a2+b2+c2,P=ab+bc+ca,则()
A.S≥2PB.P<S<2PC.S>PD.P≤S<2P 答案:D
解析:2(S-P)=2a2+2b2+2c2-2ab-2bc-2ac=(a-b)2+(b-c)2+(a-c)2≥0,∴S≥P.2P=2ab+2bc+2ca=(ab+bc)+(bc+ca)+(ca+ab)=b(a+c)+c(a+b)+a(c+b)>b2+c2+a2=S,∴2P>S.7.若a,xy∈R+,且x+y≤axy恒成立,则a的最小值是()A.22B.2C.2D.1 答案:B
解析:因(xy
xy)2=1+2xy2xy≤1+=2, xyxy
故xy
xy的最大值为2.即amin=2.二、填空题(每小题5分,共15分)
8.在△ABC中,三边a、b、c的对角分别为A、B、C,若2b=a+c,则角B的范围是___________.答案:0<B≤
3a2c2b23a23c22ac29a2c22ac1解析:cosB=≥.2ac8ac8ac
2∴0<B≤.339.已知ab+bc+ca=1,则当____________时,|a+b+c|取最小值_________________.答案:a=b=c=
解析:|a+b+c|2=a2+b2+c2+2ab+2bc+2ac≥3ab+3bc+3ac=3.10.民用住宅的窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比越大,采光条件越好,则同时增加相等的窗户面积与地板面积,采光条件变_____________(填“好”或“坏”).答案:好 解析:设窗户面积为a,地板面积为b,则a<b,且aama.≥10%,设增加面积为m,易知bbmb
三、解答题(11—13题每小题10分,14题13分,共43分)
11.已知函数f(x)=x2+ax+b,当p、q满足p+q=1时,试证明pf(x)+qf(y)≥f(px+qy)对任意实数x、y都成立的充要条件是:0≤p≤1.证明:pf(x)+qf(y)-f(px+qy)
=p(x2+ax+b)+q(y2+ay+b)-(px+qy)2-a(px+qy)-b
=p(1-p)x2+q(1-q)y2-2pqxy
=pq(x-y)2.∵(x-y)2≥0,∴欲使pq(x-y)2≥0对任意x、y都成立,只需pq≥0p(1-p)≥0p(p-1)≤00≤p≤1.故0≤p≤1是pf(x)+qf(y)≥f(px+qy)成立的充要条件.12.若a、b∈R+且a+b=1,求证:a11b≤2.2
2证明:a11b≤2 22
11b≤4 22a+b+1+2a
a
ab+11b≤1 22ab1+≤1 2
41ab≤.4
ab21∵ab≤()=成立, 24
∴原不等式成立.13.已知a、b、x、y∈R+且11,x>y.ab
求证:xy.xayb
证法一:(作差比较法)∵xybxay, xayb(xa)(yb)
11且,a、b∈R+, ab又
∴b>a>0.又x>y>0,∴bx>ay.∴bxayxy>0,即.(xa)(yb)xayb
证法二:(分析法)
∵x、y、a、b∈R+,∴要证
0,∴b>a>0.又x>y>0,14.给出不等式11xy,只需证明x(y+b)>y(x+a),即证xb>ya,而同>abxaybxb>ya显然成立,故原不等式成立.≥x21c
x2c1c(x∈R).经验证:当c=1,2,3时,对于x取一切实数,不等式c
都成立,试问c取任何正数时,不等式对任何实数x是否都成立,若成立,则证明,若不成立,求c的取值范围.解析:由x21c
x2c
1≥1c ≥c+x2c+x2c1 c
1≥0)≥0 (x2c-c)+ 1x2c1-(x2c-c)(1-xcc2
假设x∈R时恒成立,显然x2c-c≥0
即有1-1
xcc2≥0 1x2c·≥1x2≥-c c
左边x2≥0,而右边不恒≤0,故此不等式不能恒成立.若恒成立则必有1-c≤0 c
c210,c≥1时恒成立.c又c0,
第三篇:高中数学不等式证明常用方法
本科生毕业设计(论文中学证明不等式的常用方法
所在学院:数学与信息技术学院
专 业: 数学与应用数学
姓 名: 张俊
学 号: 1010510020 指导教师: 曹卫东
完成日期: 2014年04月15日)
摘 要
本文主要是对高中学习阶段不等式证明方法的概括和总结.不等式的证明方法多种多样,其中有比较法,分析法,综合法,反证法,数学归纳法,放缩法等常见的方法,另有一些学生比较不熟悉但也经常采用的方法,如构造法,向量法,求导法,换元法等等.关键词: 不等式的证明;函数的构造;极值;导数
ABSTRACT
This paper is mainly on the high school stage the inequality proof method and summarized.The inequality proof methods varied, including comparison, analysis, synthesis, reduction to absurdity, mathematical induction, scaling and other common methods, and some students are not familiar with but also the methods used, such as construction method, vector method, derivation method, method and so on.Key words:
The inequality proof;function;extreme value;derivative
目 录
1.构造函数法 ·········································1 1.1 移项法构造函数 ·································1 1.2 作差法构造函数
·····························2 1.3 换元法构造函数
·····························2 1.4 从条件特征入手构造函数
······················3 1.5 主元法构造函数 ··································3 1.6 构造形似函数 ····································4 2.比较法 ·············································4 2.1 作差比较法 ······································4 2.2 作商比较法 ······································5 3.放缩法 ············································5 4.判别式法 ············································6 5.反证法 ············································7 6.向量法 ···········································8 7.不等式证明的具体应用 ································9 参考文献 ··············································11
江苏第二师范学院2014届本科生毕业设计(论文)
众所周知,生活中存在着大量的不等量关系.不等量关系是基本的数学关系,它在数学研究与应用中起着不可忽视的作用,因此,研究不等式的方法至关重要,许多数学家在这一领域取得丰硕的成果,他们的成就举世瞩目,无可替代.不等式的证明是高中学习阶段的重要内容之一,纵观近几年的高考,不等式的证明每年都有涉及,一般都出现在最后一题,可见它的困难和重要程度,因此不等式证明的学习既是重点也是难点,无论是求最值还是求不定量的范围都需要用到不等式的证明.所以,有必要对不等式的证明方法做一个全面的,科学的,系统的总结和归纳.1.构造函数法
1.1移项法构造函数
【例1】 已知函数f(x)ln(x1)x,求证:当x1时,恒有
11ln(x1)x.x1分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数
11,从其导数入手即可证明.g(x)ln(x1)x1证:先证左边,令g(x)ln(x1)111x1, 则g(x) x1x1(x1)2(x1)2 当x(1,0)时,g(x)0;当x(0,)时,g(x)0 , 即g(x)在x(1,0)上为减函数,在x(0,)上为增函数,故函数
g(x)在(1,)上的最小值为g(x)ming(0)0, ∴当x1时,g(x)g(0)0,即ln(x1)110 x1 ∴ ln(x1)1 再证右边,f(x)1(左边得证).x11x1 x1x1 ∴ 当1x0时,f(x)0,即f(x)在x(1,0)上为增函数, 当x0时,f(x)0,即f(x)在x(0,)上为减函数, 于是函数f(x)在(1,)上的最大值为f(x)maxf(0)0, 1
江苏第二师范学院2014届本科生毕业设计(论文)
因此,当x1时f(x)f(0)0,即ln(x1)x0
∴ ln(x1)x(右边得证).综上可知,当x1时,有11ln(x1)x x1【启迪】: 如果f(a)是函数f(x)在区间上的最小(大)值,则有f(x)f(a)
(或f(x)f(a))那么要证不等式,只要求函数的最小值不超过0就可得证. 1.2作差法构造函数
【例2】 当x(0,1)时,证明:(1x)ln(1x)x.分析:本题是一个单边不等式,很难直接看出两者有什么联系,因此联想到采用作差的方法,将两个函数变为一个函数.作差法是最直接把两者结合的方法且求导
后能很容易看出两者的联系.证:做函数f(x)(1x)ln(1x)x,易得f(0)0,221x)2x,当x0时,f'(x)0
而f'(x)ln(1x)2ln(又得,f''(x)22ln(1x)222[ln(1x)x],1x1x1x 当x(0,1)时,f''(x)0
∴f'(x)在x(0,1)上递减,即f'(x)f'(0)0,即f(x)在(0,1)递减
∴f(x)f(0)0,从而原不等式得证.【启迪】: 本题先构造出一个函数并利用所设函数的导数判断函数的单调性,再根据单调
性的性质来证明原不等式如果一阶导数无法判断两个关系,可以采用二阶导数
来先判断一阶导数关系,再来判断原函数的关系.1.3换元法构造函数
122xxyy3.1xy2 【例3】 已知 ,求证:222 分析:本题看上去毫无联系,但发现xy经常出现在三角代换中.于是可以采用 换元法进行尝试,则结果显而易见.证:因为 1 其中12x2y22,所以可设xrcos,yrsin,22r22,02.1212 ∴xxyyrrsin2r(1sin2)
江苏第二师范学院2014届本科生毕业设计(论文)
1sin2, 222121322 r(1sin2)rr 22232121 而r3,r 222122xxyy3.2【启迪】:当发现不等式题目中含有x2y2,或者别的与x,y有关的不等式,可以采用换
元法.将x,y进行替换,再找两者的关系来进行论证.1.4从条件特征入手构造函数
【例4】 若函数yf(x)在R上可导且满足不等式xf(x)f(x)恒成立,且常数
a ,b满足0ab,求证:af(a) xf(x),(x)f(x)此时可以得到F(x)的导数为xf F(x)0,所以F(x)在R上为增函数,f(a)f(b) af(a)bf(b)0ab, 得证.【启迪】:把条件进行简单的变形后,很容易发现它是一个函数积的导数,因此可以构造出 F(x),求导后即可得到证明结果.1.5主元法构造函数 【例5】 设a,b,c,dR,且满足(abc)求证:abbcca22(a2b2c2)4d,3d 分析:本题初看含有四个未知量,且题目中只含一条不等式,因此解题时必须从这条 不等式入手,对其进行变换.证:把a看成未知量进行化简,得一元二次不等式 2(bc)a(bc)24d0 22xaf(x)x2(bc)x(bc)4d 用替换,构造一个函数 a2x2前面的系数大于0,所以该抛物线开口向上 且当xa时,f(a)0.224(bc)4[(bc)4d]0 其判别式 江苏第二师范学院2014届本科生毕业设计(论文) d.同理把b,c看成未知量,可得cad,abd 叠加可得abbcca3d.化简,得bc【启迪】:有些复杂的不等式可以看成一个未知量的简单不等式,再找几个未知量之间的关系,进行证明.1.6构造形似函数 【例6】 当abe时,证明ab.分析:要证ab,只要证lnababablnba,即证明blnaalnb0, 也就是要证明blnxxlnb,因此构造函数 f(x)blnxxlnb,然后只需要证明 证:要证ab,只要证lnabaf(x)单调递减就可以了.blnb xblnba即证blnaalnb0 设f(x)blnxxlnb(xbe),则f(x) be,xb lnb1, b1f(x)0 xf(x)在(e,)上单调递减.ab f(a)f(b)故blnaalnbblnbblnb0 ba 即blnaalnb ab.【启迪】:在证明简单不等式时,可以采用求导等变换来构造出一些相似的函数,再利用函 数的单调性来证明简单不等式.2.比较法 2.1作差比较法 【例1】 若0x1,证明loga(1x)loga(1x),(a0,a1).分析:用作差法来做,则需去掉绝对值,必须要分a1和0a1两种情况来考虑 问题.证:(1)当0a1时,01x1,11x2 loga(1x)loga(1x)loga(1x)loga(1x)loga(1x) 0x1,01x 1loga(1x)0,得证.(2)当a1时,01x1,11x2 loga(1x)loga(1x)loga(1x)loga(1x)loga(1x) 0x1,01x1 22222 江苏第二师范学院2014届本科生毕业设计(论文) loga(1x)0,得证.综合(1)(2)可得loga(1x)loga(1x).【启迪】:当不等式两边的式子比较相近,或者是对数式子时可以采用作差法来尝试.2.2作商比较法 【例2】 设a,bR,且a0,b0,求证(ab)ab22aabb.分析:发现作差变形后符号很难判断,且无法化简,考虑到两边都是正数,可以作商, 判断比值和1的大小关系,从而来证明不等式.证:ab0,(ab)abab20,将不等式两边相除,ba2baa()2 baabb 得(ab)ab2aab2bbaa21.当ab时,()baab10, 当0ba时,b2baaa02()()1.由指数函数的单调性可知,bbbaaa0aab2()()1.10 当0ab时,,同理可得bbb2 综上所述,对于任意的正实数a,b都有(ab)ab2aabb.【启迪】:当遇到作差法无法解决的问题时可以采用作商法来证明不等式,使用作商法的前 提条件是不等式两边均要大于0,一般为指数函数的形式.3.放缩法 2n1an(nN) 【例1】 已知数列an的前n项和为sn12(1)设xn(2n1)sn,求证:数列xn为等差数列.11115..........(2)当n2时,2.222xnxnxx321n22n 分析:本题分为两小题,第一小题是考察数列的知识,是为第二小题做的铺垫,在做 第二小题时,需要采用放缩来证明,来把不等式的左边放大来比较.2n1(snsn1) 证:(1)当n2时,sn12 江苏第二师范学院2014届本科生毕业设计(论文) 化简,得(2n1)sn2(2n1)sn1 由已知条件得xn 其通项公式为xn xn是以首项为x1xn12,即xnxn12 2公差d2的等差数列,2n.1111..........(2)2222 xnxnxx1n22n11111......] [2222 4n(n1)(n2)(2n)11111......] [4n(n1)n(n1)(n1)(n2)(2n1)(2n)1111111[()()()......4n1nnn1n1n 2111111n1()]()()2n12n4n12n42n(n1)1n1 42(n1)26(n1)411 44 2(n1)6n14 令f(n)2(n1),当n2时,f(n)的值随着n的增大而增 n1 大,f(n)f(2), 111136 即4 44f(2)616322(n1)6n1111152.222..........xnxn1xn2x2n32【启迪】: 采用放缩法题目一般比较开放,且没有固定的放缩范围,一般比较灵活,且方法 较多.4.判别式法 7 【例1】 已知xyz5,xyz9,求证x,y,z都属于1, 3222 江苏第二师范学院2014届本科生毕业设计(论文) 分析:实系数一元二次方程ax2bxc0有两个不等实根、有两个相等实根、没有实根的充要条件是: b 记4ac0、b24ac0、b24ac0. b24ac,称其为方程是否有实根的判别式.同时也是与方程对应的 函数、不等式的判别式.此题含有三个未知数,所以要进行替换.222z5xyxyz9中 证:有条件可得,代入 化简可得:x 2(y5)xy25y80 xR,且方程有解,根的判别式b24ac0 2277y1,.即(y5)4(y5y8)0,解得1y,即3377 同理,替换x,y可得z1,,x1,.33 得证.【启迪】:本题看似复杂,含有三个未知量,其实只需要简单的几个步骤就解决了,因此在解决这类问题时,第一步是替换未知量,第二部把另一个未知量看成已知量,再 用根的判别式来确定范围.5.反证法 【例1】 设0a,b,c1,求证:(1a)b,(1b)c,(1c)a,不可能同时大于.分析:本题的结论为否定形式,适合用反证法来证明,假设命题不成立,从而导出矛 盾.证:假设(1a)b,(1b)c,(1c)a三个数都大于, 则有(1a)b111,(1b)c,(1c)a 444 又0a1,0b1,0c1 111(1a)b,(1b)c,(1c)a.222 7 江苏第二师范学院2014届本科生毕业设计(论文)(1a)b(1b)c(1c)a 2ab1abab(1a)b 又由基本不等式得,221bc1ca(1b)c,(1c)a, 把上面三个式子相加得(1a)b(1b)c(1c)a3 2 显然与相矛盾,所以假设不成立.(1a)b,(1b)c,(1c)a,不可能同时大于.4【启迪】:命题中出现“至少”,“都”,“同时”,“至多”等字样时,可以采用反证法, 反证的关键在于找出与命题相反的结论,然后再用假设的条件推出矛盾.6.向量法 a2b2c212.【例1】设a1,b1,c1,证明: b1c1a1 分析:本题只有一个已知条件,且结论也无法化简,因此可以想到高中最直接的方法 向量法,构造两个向量.利用向量的知识进行解决.m 证:设(a2b2c2,),n(b1,c1,a1)b1c1a1m 则na2b2c2b1c1a1 b1c1a1abc 222abc abc3cosb1c1a1a2b2c2abc3 b1c1a1a2b2c2abc b1c1a1abc33 abc3 abc3 23 江苏第二师范学院2014届本科生毕业设计(论文) a1,b1,c1.a2b2c212.两边同时平方可得 b1c1a1 得证.7.不等式证明的具体应用 1125【例1】 已知a0,b0,且ab1,求证(a)(b) ab4分析:本题是高中阶段一道普通的不等式证明题,如让学生独立完成,可得到如下解决 方法.解法一:分析法 1125(a)(b) 要证,ab4222 只要证4ab4ab25ab40, 即证4ab233ab80,1ab或ab8.即因为a0,b0,ab1,所以ab8不成立.1ab 又因为1ab2ab,所以.得证.解法二:作差比较法 ab1,a0,b0 ab2ab,ab 41125a21b2125 (a)(b)ab4ab44a2b233ab8(14ab)(8ab)0 4ab4ab1125 (a)(b).ab4 解法三:三角代换法 ab1,a 0,b0 江苏第二师范学院2014届本科生毕业设计(论文) 故设asin,bcos,0, 21122)(cos)则原式(sin22sincossin4cos42sin2cos22 4sin22(4sin2)216 24sin222 sin214sin2413.1122.(4sin2)1625,24sin241125 (a)(b).ab422本题归纳与小结:本题一共采用了3种不同的方法,第一种是从问题入手,对问题进行一步 步的剖析,有逆向思维的方式,是把问题具体化,把所要证明的问题转化 为所学的知识,或者已知条件.只要分析的过程合理,一般过渡的结论很 容易得到.第二种方法也是根据问题入手,不同的是它把问题直接改变为 一道运算式,这样就把问题变为运算式结果与零比较大小,因为题目所给的数字往往让在解题时无从下手,无法想出这个数字从何而来,一但转化 为零后,解题时只需要考虑对算式的变形,最后只需判断算式的正负号.第三种方法使用范围比较小,它一般具有特殊的条件如ab1, a2b21这种情况下会考虑三角代换,采用三角代换最需要注意的是 角的范围,一般学生在采用代换时往往忘记角的范围,从而无法确定三角 函数值的范围,容易产生多解或错解.这种方法好处在于已经知道了三角 值的范围,且三角函数含有多种变形方式可以对式子进行更好的化简.并 且利用三角值的确定性能很快的得到所求式子的范围.本题三种方法均 可采用,根据学生个人的掌握程度来选择方法.本论文主要对高中不等式的常用证明方法进行简单的总结,使中学生在证明不等式时有法可依,能尽快的找到适合的方法,主要介绍构造法,作差法,放缩法,判别式法,反证法,向量法这些常用的方法.江苏第二师范学院2014届本科生毕业设计(论文) 参考文献 [1]雷小平.证明不等式的常用方法.太原科技[A],2002(1):54~55 [2]丁海军.证明不等式的常用方法.自然科学版[J],2009:55~57 [3]曹军芳.高中数学中不等式证明的常用方法.佳木斯教育学院报[A],2014(1):220~221 [4]孔凡哲.证明不等式正确性的几种常用方法.武汉教育学院报,1995(3):31~33 [5]刘志雄.谈不等式证明的常用方法.重庆师专学报,1999(4):101~103 [6]徐志科.王彦博.利用导数证明不等式的几种方法.自然科学版[A],2013(7):7~8 [7]李天荣.曹玉秀.中学数学不等式的证明方法.临沧师范高等专科学校学报,2013(2):88~90 [8]严万金.浅谈中学数学不等式的证明的常见技巧及方法策略.数学教育[A],2012(2):64 [9]封平平.不等式证明方法初探.新课程学习[J],2012:72~73 [10]黄俊峰.袁方程.证明不等式中的常用方法.数学教学研究[J],2012(8):28~30 [11]程勋跃.不等式证明的方法与技巧.课程教育研究[A],2012:60~61 [12]孙桂枝.不等式证明方法集萃.数学学习与研究[J],2012:81~82 [13]甘志国.例谈常用方法证明不等式.理科考试研究[J],2012:13~15 [14]何振光.不等式证明的常用方法.教与学[J],2012:92 [15]李占光.廖仲春.刘福保.高中数学中不等式的证明方法归纳.长沙民政职业技术学院学报 [A],2012(4):108~109 数学基础知识与典型例题 数学基础知识与典型例题(第六章不等式)答案 例1.C例2.B例3.675 例4.n3+1>n2+n 例5.提示:把“”、“2”看成一个整体.解:∵3=2(2)() 又∵2≤2(2)≤6,1≤()≤1 ∴1≤3≤7,∴3的取值范围是1,7 例6.A例7.A例8.B 例9.B例10.4例11.B 例12.D 例13.C 例14.D 例15.(1)(1x21 例16.解:原不等式等价于x 0,x21 x 1.当x>0时,上述不等式组变成x2情形1 1,1x2x1.解得:1x 情形2 当x<0时,上述不等式组变成 x21, x2x1.解得1x 所以原不等式解集为{|1x12{x|1x1 2例17.解: 原不等式等价于x2x 3x2 ax 0.由于x2x30对xR恒成立,∴x2ax0,即x(xa)0当a>0时,{x|xa或x0}; 当a=0时,{x|xR且x0}; 当a<0时,{x|x0或xa}.例18.证明:令y=2x22x1 x2x1,去分母,整理得(y-2)x2+(2-y)x+y+1=0.⑴当y≠2时,要方程有实数解,须Δ=(2-y)2-4(y-2)(y+1)≥0得-2≤y≤2,又∵y≠2∴-2≤y<2; ⑵当y=2时,代入(y-2)x2+(2-y)x +y+1=0中,得 3=0,矛盾.∴综上所述, - 2≤y<2得证.例19.综合法提示 ab) 另外本题还可用几何法.证明: 先考虑a、b、c为正数的情况,这时可构造出图形:以a+b+c为边长画一个正方形,如图,则AP1 PP12 P2B ABabc).显然AP1PP1 2P2B ≥AB,abc).当a、b、c中有负数或零时,显然不等式成立.例20.答案见高中数学第二册(上)第27页例 1可用分析法,比较法,综合法,三角换元法以及向量法等证 例21.提示:利用aaaabcabc abc 例22.高中数学第二册(上)第17页习题9 法一:构造函数法 证明:∵ f(x)= xm x + m(m>0)= 1-x + m在(0, + )上单调递增,且在△ABC中有a + b > c>0,∴ f(a + b)>f(c),即 a + bc a + b + m> c + m。 又∵ a,b R*,∴aamb bm aba + ba + b + m + a + b + m = a + b + m,∴aambbmc c.m法二:分析法 证明:要证aambbmc cm,只要证a(b + m)(c + m)+ b(a + m)(c + m)-c(a + m)(b + m)>0,即abc + abm + acm + am2 + abc + abm + bcm + bm2-abc-acm-bcm-cm2>0,即abc + 2abm +(a + b-c)m2>0,由于a,b,c为△ABC的边长,m>0,故有a + b> c,即(a + b-c)m2>0。 所以abc + 2abm +(a + b-c)m2>0是成立的,因此 aambbmc cm.例23.5400,例24.答案见2005-7-30高中数学第二册(上)第13页例 46、当你发现有“非凡天赋”,就“疯狂地造梦”吧! Think great thoughts and you will be great!伟大的理想,会让你变得伟大! 一个人的梦想有多么伟大,他就有多么伟大! 伟大的目标,即使吹起牛来都很爽!所以,目标一定要远大!你人生才会过得充实而干劲十足! 我在这十多年疯狂英语的奋斗路上,我发现一个真理: “人的潜能无限!相信自己,就能创造奇迹;怀疑自己,人生就会在可怜、悲惨中度过!” 每个人其实都是一座宝藏!“相信自己”是人生最重要的品格,“I can ”是家庭给孩子最宝贵的财富。 而可悲的是,大多数的父母并没有给自己孩子这把“最重要的钥匙”,因为他们的父母,和他们所处的时代,也没有给他们这把钥匙。 我们太多人,就像是在黑暗中苦苦摸索,当我们发现有这把钥匙的时候,已经年过30岁了„„ 其实,成功根本不用等到30!10岁、20岁就可以很成功!而“相信自己”就是人生最大的成功源头。 在此,我非常急切地想与大家分享一个“18岁就成功的故事”,告诉你如果发现自己有“非凡天赋”时,就疯狂地造梦想吧,从此,你就会自发地苦练,并为自己的家庭带来梦中渴求的一切。 在丁俊晖8岁时,父亲送给他一件特别的礼物——一支台球杆。他很快发现:儿子在台球桌上有非凡的天赋,两年下来,已经打遍当地无敌手。 有一次,爸爸让小俊晖与台球名将亨得利一起合影照相,没想到他却口吐狂言:“我跟他照什么相,我以后把球打好了,别人找我照相还差不多,总有一天我要战胜他。” 看到儿子有如此雄心大志,父亲做出了一个惊人的决定:卖掉家乡的房子,辞去工作,全家搬迁到陌生的广东东莞,让儿子专心学习台球,成为职业台球手。为了节省开销,他们没有租住球馆宿舍,只是在宿舍走道的尽头蹭了张床,木板隔出一个6平方米的空间,全家三口只睡一张单人床。隔板外,是宿舍楼公厕,闷热、蚊虫叮咬、厕所异味„„竟然令13岁的丁俊晖含泪向父母发誓:一定要用球杆,为他们打回一套房子!从此,他把台球当成了自己一辈子奋斗的职业。 丁俊晖练球常常进入到痴迷的状态,整天与台球为伴,很快,父亲送给他的台球杆被练断了。修理后又接着打,不久又断了„„反反复复,一支杆要打断6、7次,变得不能再打了,才换新球杆。 即使这样,他父亲还时刻提醒、监督他,有时刚吃完饭,丁俊晖在一边坐着休息的时间稍长一点,父亲就过来催促:“你去房间练球吧,空调已帮你开好了。”他父亲说:“人做事一定要坚定,做一件事就要把它做好,如果连这点精神和承担失败的勇气都没有,做其他事也不可能成功!人活着就要轰轰烈烈,在有生之年做些事,但我不会强加给他没兴趣的东西做。我坚信我儿子是5000年才出一个的神童!” 也许,是先有了伟大的丁俊晖父亲,才有了18岁成为世界级台球冠军的丁俊晖。现在丁俊晖已经在老家买了新房,他实现了当初许下的用球杆为父母挣回一套房的承诺!用手中的球杆,兑现了夺得世界冠军的诺言! 所以,伟大的梦想造就伟大的人生!Great dreams make great men! 目标定得小,成绩就小。有大志才会有大成就! Think little goals and expect little achievements.Think big goals and win big success! 资料来源:回澜阁教育 免费下载 天天更新 2.5不等式的证明 一、教学重点 1、理解比较法、综合法、分析法的基本思路。 2、会运用比较法、综合法、分析法证明不等式。 比较法 (一)作差法 一开始我们就有定义: 对于任意两个实数有,也就是说,证明两实数 大小,我们可以作差,然后进行变形,判断其差的符号(将差和0作比较),从而证明不等式。 例1 求证:证明: 几何意义: 函数的图像始终在函数的图像之上 A1个单位B 训练作差法基本能力,并让学生从不同角度理解不等式 例2 设 求证: 证明: 作差 / 6 这题让学生说,主要训练作差法,为之后作商铺垫 (二)作商法 设实数,则有 作商,与1比较 例2 设证明: 求证: / 6 在作差法的基础上提出作商,让学生体会这两者各自的优点 综合法 从已知条件出发,利用已知的命题和运算性质作为依据,推导出求证的结论。 例3 求证:若,则有 证明: 在教授综合法的同时,给出这个基本不等式 例4 已知(1),求证: (2) 证:(1) / 6(2) 这题主要为1的妙用,为学生做题拓宽新的思路 分析法 从要证的结论出发,经过适当的变形,分析出使这个结论成立的条件,把证明结论转化为判定这些条件是否成立,从而判断原结论成立。 要证 例4 若,则有,如果有,那么只要证明了,就有 / 6 在教授分析法的同时,给出这个基本不等式 例5 设,则有 先证 再证 / 6 在教授分析法的同时,给出这个绝对值不等式,学生以后也能用 / 6第四篇:高中数学不等式
第五篇:高中数学2.5不等式的证明教案