人教版乘法分配律教案
人教版乘法分配律教案1
教学目标
1、知识与技能:理解和掌握乘法分配律;初步感受运用乘法分配律进行简算。
2、数学思考:通过让学生参与知识的形成过程,培养学生概括、分析、推理的能力,并渗透“从特殊到一般,再由一般到特殊”的认识事物的方法,提高数学的应用意识。
3、解决问题:灵活运用乘法分配律进行简便计算。
4、情感与态度:使学生欣赏到数学运算简洁美,体验“乘法分配律”的价值所在,从而提高学习数学的兴趣和学习数学的主动性。
一、激问导学
创设情境激趣引思
提出问题筛选重心
活动一:买衣服
1、阅读理解:你发现那些数学信息?
2、思考问题:请选择数学信息解答。
3、汇报、交流
二、自主体验
发表、反思:学生激活经验,尝试体验,引发观点
活动二:计算周长
1、请你介绍这个长方形的`周长有哪些
部分组成?
2、请根据所给的数据计算它的周长。
3、汇报计算情况。
三、合作体验
方法探究、学法指导、领悟提炼、培养学习能力活动三:观察、对比
1、思考:你有什么发现?
2、结合活动说一说列式的含义。
3、试一试:你能用字母把列式转化为公式吗?
4、汇报、交流。
5、归纳、总结。
四、实践体验
综合实践体验,拓展延伸,感悟内化,对知识进行多元化运用体验。
1、在横线上填上适当的数。
(1)(24+8)×125=____×____+____×_____
(2)25×(20-4)=25×____ - 25×____
(3)45×9+55×9=(____+____)×_____
(4)8×27+73×8=8×(_____+_____)
2、下面各题可以用乘法分配律计算吗?为什么?把能用的写出来。
(1)(12+31)+82(2)17×17+15×16
(3)14×9+9×36(4)(24+37)×8
3、思考题。
(1)9×47+53×9
(2)25×(100-4)
五、课堂学习体验小结
学生课堂学习评价,教师课堂教学反思,多元体验,共同发展通过今天的学习,你有哪些收获?在计算中,你有哪些好的建议?(a-b)×c= ?请你结合“买衣服活动”课后思考。
人教版乘法分配律教案2
教学目标:
知识与技能
1、理解乘法分配律的意义,并能正确地描述。
2、初步懂得运用乘法分配律进行简算。
过程与方法
1、让学生参与乘法分配律的归纳过程,培养学生概括、分析、推理的能力。
2、使学生了解从特殊到一般,再由一般到特殊这种认识事物的方法。
情感态度与价值观
通过观察、验证、归纳等数学活动,使学生体验数学问题的探索性,感受数学思考过程的条理性。使学生感受数学和现实生活的联系,培养学生学习数学的兴趣。
教学重难点:
重点
充分感知并归纳乘法分配律。
难点
理解乘法分配律的意义,充分感知并归纳乘法分配律。
教学准备:
多媒体课件。
教学设计:
一、创设情景,引入新课
同学们,你们看了自然环境被破坏而出现的沙尘暴、水土流失等一些情景的图片,有什么想说的吗?
生:1、我想大声的呼吁:请不要再滥伐树木了,不然的话沙尘暴会更厉害。
2、请保护好我们共同的家园吧!
3、要保护我们的家园,还要大量植树。
师:说的`太好了。要保护我们的家园就要植树造林,种植花草。同学们,你们还记得前段时间学校植树活动的情况吗?
(多媒体展示植树的场景,并附文字:一共有25个小组参加植树活动,每组里4人负责挖坑、种树,2人负责抬水、浇树)
二、探究新知
1、探究乘法运算定律
(1)发现问题,提出问题,独立解决问题
师:同学们,你都得到了哪些数学信息?
学生回答。
师:根据这些信息,你能提出什么问题?
生:一共有多少同学参加了这次植树活动?
教师随学生的回答板书问题。
师:请根据这些信息解决这个问题。
学生列式计算。
(2)交流解决问题的方法
生展示汇报:
(4+2)×25 4×25+2×25
=6×25 =100+50
=150(人) =150(人)
师:谁和第一位同学的算式一样?请举手。谁来说一说你们解决问题的步骤?
生:先用加法算出每组有几人,再乘25算出一共有多少人?
师:谁和第二位同学的算式一样?请举手。谁来说一说第二种方法解决问题的步骤?
生:根据收集到的信息,先分别算出负责挖坑种树的人数和抬水浇树的人数,再把这两部分合起来算出一共有多少人?
师:回答的很好。我们来看4×25和2×25分别表示什么?还有不同的想法吗?
生:我也是先算出每组有几人?即(4+2)×25。
师:同学们用不同的方法解决了这个问题,请大家一起回答这次植树活动的学生一共有多少人?(150人)
2、探究乘法分配律
(1)探讨
师:同学们用不同的方法解决了这个问题并且计算结果相同,那么,这两个算式之间有什么关系?
出示:(4+2)×25 4×25+2×25
生:两个算式的结果相等,在这两个算式中间可以用等号连接。
师:谁能用自己的语言来描述这个等式。
生1:4加2的和乘25等于4乘25加上2乘25。
2:4加2的和乘25等于先把4和2分别与25相乘再相加。
师:刚才同学们是先算出每组有几人,再算一共有多少人,算式为25×(4+2)。想一想:计算25乘4加2的和还可以怎样算呢?动手试试再把想法说给同桌听。
师:谁来给大家说自己的想法?
生:25乘4加2的和,可以先把25分别与4和2相乘,再相加。也就是先算25×4和25×2,再把两个积相加。即25×(4+2)=25×4+25×2
(2)举例观察
师:我们知道了4加2的和与25相乘,可以先把4和2与25分别相乘,再相加。请你再举出几个这样的例子,写在本子上。你怎么来说明你写的算式左右两边是相等的?
师:谁来汇报你写的式子,师随生汇报板书。请同学们观察这两组等式以及自己写的等式,有什么发现?请先和同学交流。
(3)交流概括
师:谁来说说自己的发现?
生:我发现,两个数的和与一个数相乘,可以把两个数分别与这个数相乘求出积,再把积相加。
师:两个数的和与一个数相乘,可以把两个数分别与这个数相乘求出积,再把积相加。这就叫乘法分配律。
板书课题:乘法分配律。
师:刚才同学们写的算式都对,那我们可不可以用一个算式就能表示出所有的式子?
生试着在练习本上写,并抽学生汇报。
生1:a、b表示两个加数,c表示因数。a加b的和乘c等于a乘c加b乘c。即(a+b)×c=a×c+b×c。
生2:a表示因数,b、c表示两个加数,a乘b加c的和等于a乘b加上a乘c。即a×(b+c)=a×b+a×c。
三、巩固练习
1、在□里填上适当的数。
(15+20)×12=□×12+□×12
25×(4+9)=□×4+□×9
8×(10+5)=□×□+□×□
75×24=75×□+75×□
2、把左右两边相等的算式用线连接起来。
48×12+52×12 15×18+26×18
(15+18)×26 25×40+25×4
25×(40+4)(48+52)×12
14×(45-5)11×4+25×4
(11×25)×4 14×45-14×5
乘法分配律
教学目标
1.使学生理解乘法分配律的意义.
2.掌握乘法分配律的应用.
3.通过观察、分析、比较,培养学生的分析、推理和概括能力.
教学重点
乘法分配律的意义及应用.
教学难点
乘法分配律的反应用.
教具学具准备
口算卡片、投影仪.
教学步骤
一、铺垫孕伏
1.口算.
(27+73)×8
40×9+40×1
14×(10+2)
10×6+10×4
2.用简便方法计算.(说明根据什么简算的)25×63×4
3.师生比赛,看谁算得又对又快.
20×5+5×80
(1250+125)×8
让学生说明是怎样算的?
二、探究新知
1.导入
:
刚才的比赛老师算得快,是因为老师又运用了乘法的一个法宝,知道了乘法的又一个定律可以使运算简便,你们想知道吗?这就是我们今天要研究的内容.(板书课题:乘法分配律).
2.教学例6:
(1)出示例6:演示课件“乘法分配律”出示例6 下载
(2)引导学生观察每组的两个算式.
(3)教师提问:从上面的例子你发现了什么规律?
(4)学生明确:每组中的两个算式都可以用等号连接.
教师板书:(18+7)×6=150
18×6+7×6=150
(18+7)×6=18×6+7×6
(5)教师出示:20×(15+9)=480
20×15+20×9=480
20×(15+9)=20×15+20×9
学生分组讨论:每组中算式所表示的意义.
(6)反馈练习:按题要求,请你说出一个等式.(投影出示)
(__+__)×__=__+__×
教师提问:像符合这种条件的式子还有许多,那么这些算式到底有什么规律呢?
引导学生观察:等号左右两边算式的规律性
启发学生回答:首先是等号左边两个数的和同一个数相乘.
其次是等号右边两个加数分别同一个数相乘再把两个积相加.
最后是等号左右两边的两个算式相等.
3.教师概括运算定律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变.这叫做乘法分配律.
4.反馈练习:
横线上能填几?为什么?
(32+35)×4=__×4+__×4
(62+12)×3=__×__+__×__
教师:为了简便易记,如果用a、b、c表示3个数, 乘法分配律用字母怎样表示?
根据练习学生从而得出:
(a+b)×c=a×c+b×c
使学生明确:有的题两个数的和同一个数相乘比较简便,有的题把两个加数分别同这个数相乘,再把两个积相加比较简便.
5.教学例7:演示课件“乘法分配律”出示例7 下载
(1)出示例7:102×43
启发学生想:能否把算式改成乘法分配律的形式,然后应用运算定律进行简算?
引导学生对比:(100+2)×43,102×(40+3)这两种算式哪种比较简便?
使学生明确:两个数相乘,把其中一个比较接近整
十、整百、整千的数改写成一个整
十、整百、整千的数与一个数的和,再应用乘法分配律可以使计算简便.
教师板书:
(转载自本网http://www.xiexiebang.com,请保留此标记。)(2)出示9×37+9×63
引导学生观察:这类题目的结构形式是怎样的?有什么特点?
教师提问:根据乘法分配律,可以把原式改写成什么形式?
根据学生的回答教师板书:9×37+9×63 =9×(37+63)=9×100
=900
学生讨论:这样算为什么简便?
师生共同总结:①这类题目的结构形式的特点是式子的运算符号一般是×、+、×的形式,也就是两个积的和.
②在两个乘法式子中,有一个相同的因数,也就是两个数的和要乘的那个数.
③另外两个不同的因数,是两个能凑成整
十、整百、整千的加数.
(3)揭示教师算得快的奥秘
上课开始时,我们已经比赛看谁算得快,如(1250+125)×8,老师就是应用的乘法分配律使计算简便.现在你们会了吗?
三、巩固发展 演示课件“乘法分配律”出示练习下载
1.练习十四第1题.
根据运算定律在□里填上适当的数.
(43+25)×2=□×□+□×□
8×47+8×53=□×(□+□)
3×6+6×7=□×(□+□)
8×(7+6)=8×□+□×□
2.在横线上填上适当的数.
(1)(24+8)×125=__×__+__×
(2)25×(20+4)=25×__+25×__
(3)45×9+ 55×9=(__+__)×__
(4)8×27+73×8=8×(__+__)
其中做(3)、(4)题之前教师要提醒学生明确此类题,必须是两个积里有相同的因数,才能把相同的因数提到括号外面,然后让学生独立填写.
3.把相等的算式用等号连接起来:
(1)32×48+32×52 32×(48+52)(2)(24+8)×8 24×5+24×8
(3)20×(l+15)0×17+20×15
(4)(40+28)×5 40×5+ 28
(5)(10×125)×8 10×8+125×8
(6)4×(30+25)4×30×4×25
学生做后共同订正,并讨论(2)、(4)、(5)、(6)为什么不能用等号连接起来?
4.选择题:
(1)28×(42+29)与下面的()相等
①28×42+28×29 ②(28+42)×(28+29)③28×42×29
(2)与a×8-b×8相等的式于是()
①(a+b)×8 ②(a-b)×(8+8)③(a-b)×8
(3)与(10+8+9)×5相等的式子是()
①10×5+8×5+9×5 ②10+5×8+5×9 ③10×5+5×8+9
5.练习十四第4题,投影出示.
一辆凤凰牌自行车420元,一辆永久牌自行车405元.现在各买三辆.买凤凰车和永久车一共用多少元?
四、课堂小结
今天我们学习了乘法分配律,知道了两个数的和与一个数相乘,等于两个数分别与这个数相乘,再把两个积相加.希望同学们在以后的计算中能够灵活运用乘法的运算定律使一些计算简便.
五、布置作业
练习十四第3题.
用简便方法计算下面各题.
(80+8)×25 35×37+65×37
32×(200+3)38×29+38
板书设计
您可以访问本网(www.xiexiebang.com)查看更多与本文《数学教案-乘法分配律》相关的文章。