反比例函数教学反思
反比例函数教学反思1
常见的错误:
(1) 没有注意定义中的条件;弱视题设条件;
(2) 思考不全面,造成漏解、误解;
(3) 根据函数图形性质判断函数图像在坐标系中位置,系数与图像的`位置关系不容易判断;
(4) 抛物线与x轴的交点数由 决定,而学生不易把此知识点与一元二次方程联系起来应用;
为了减少因审题不当,而出现错误解答,在复习时,我们要求学生,在读题时让学生把关键字词化着重记号。
例1:已知一次函数 的图像与y轴的交点为(0,-4),求m
错解:将坐标(0,-4)代入函数解析式,得 ,解之得m=1或m=2.
错误原因:上述解法没有紧扣一次函数定义中“ ”这一条件,当m=2时,m-2=0,此时函数就不是一次函数,故应舍去。
正解:m=1
例2:当x为何值时,函数 与x轴只有一个交点?
典型错误原因:因为函数 与x轴只有一个交点,所以 =0,即4+4m=0,解得m=-1.
错因分析:认为 必是二次函数,忽略了m=0这种情形。
正确答案:因为函数 与x轴只有一个交点, 所以m=0或 =0,解得m=0或m=-1.
总结:(1)正确判断函数的类型;
(2)注意各种函数的条件;
(3)注意理解题意,把关键字词作标示,引起学生解题时注意,答题时全面考虑问题;
反比例函数教学反思2
这一课主要的教学任务是探究反比例函数的比例系数k的几何意义,研究与反比例函数有关的面积问题。
课堂设计程序是:例题1研究从双曲线上任意一点P作坐标轴的垂线,围成的长方形PQOR的面积与k的关系,进而进行题目的变化,得到从双曲线上任意一点P作x、y轴的垂线三角形PQO的面积与k的关系,得到从双曲线上任意一个动点P作坐标轴的垂线,围成的长方形S1、S2、S3的面积总有S1=S2=S3;例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的直线围成的矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习;例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的`能力。
在学生进行到反比例函数的研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的解析式的题目类型学生的达成率不够好,要加强这方面的训练。
反比例函数教学反思3
一.预见到的问题
1.学生可能记不清圆锥体积公式,影响教学进度,
2.学生对分米厘米的换算可能会出现问题,
3.使用小组会占时间长,独立完成,小组交流,个别展示,每一环节都要时间,所以可能完不成教学任务。
二.课堂效果
1.回顾思考部分占用时间较多,用了4分钟,学生在写基本公式时没有写到体积公式,没有达到为本节学生打基础的目的。评课老师意见,学生说出公式后应写在黑板上,不如老师直接给出节约时间。我的想法是,学生这样写出后互相交流提高了复习面,虽然他们提到的面积公式例题中用不着,但在练习中都会用到,所以虽占用时间较多,却不是没有效果。在后边学习中,主要困难是圆锥体积公式学生都回意不起来,通过这个小波折,学生对圆锥体积公式掌握的比老师直接给出要好。
2.例题由小组研讨后,教师没有板书,只是让学生看书对照答案写出解题过程,目的是想让学生掌握规范的解题过程,整理思维。但由于研究解题思路占用时间多,所以这部分没有专门给时间,是与尝试运用一起完成的。
3.解题思路在例1后马上给出,使学生明确了解题的过程,有助于他们条理清晰的完成下面的'习题,在完成习题中感觉到了学生对解题思路的认识清楚,应用较好。
4.尝试运用环节占时太长,学生完成后,找一生板演,该生在单位换算处出现了问题,在让其他同学改题时,找了一位很聪明但学习不踏实的学生去改,结果他也没有做对,在公式变形处出现了问题。这样一来时间都耗费过去了,只好由老师草草收场。评课时,老师们指出,改错应找优秀生,才能达到示范的目的,我想确实是,由中等生板演后,优生改两种颜色的笔对比,把问题显现无遗,可成为很好的教学资源,以后要注意。另外,时间紧教师就跟着紧张了,处理两题时显得草率,这个地方是本节课出现的不该是难点的难点,应继续找学生改正题,或教师详细讲解,以帮助学生解决问题。
三.自评
本节课没有达到预设的效果,主要原因是太理想化,学生没有达到预期的水平,在不该出问题的地方出现问题,占用时影响了教学进程。小组没有达到预想的合作效果,没有达到所有学生都参与研讨,仍然存在看客,这需要在以后的教学中通过各种手段加以改进。注意给学生规律性的知识,有意识的培养学生这方面的能力。
反比例函数教学反思4
我在反比例函数的意义的教学中做了一些尝试。由于学生有一定的函数知识基础,并且有正比例的研究经验,这为反比例的数学建模提供了有利条件,教学中利用类比、归纳的数学思想方法开展数学建模活动。
一、创设情景,引入新课。
我选择了课本上的探究素材,让学生从生活实际中发现数学问题,从而引入学习内容。因为反比例的意义这一部分的内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种相互交流、相互合作、相互帮助的关系,让学生主动、自觉地去观察、分析问题再组织学生通过充分讨论交流后得出它们的相同点,概括、发现规律,在此基础上来揭示反比例的意义,构建反比例的数学模型就显得水到渠成了。
二、深入探究,理解涵义
为了使学生进一步弄清反比例函数中两种量之间的数量关系,加深理解反比例的涵义,体验探索新知、发现规律的乐趣。我设计了例题1使学生对反比例的一般型的变式有所认识,设计例题2使学生从系数、指数进一步领会反比例的解析式条件,至此基本完成反比例的数学的建模。以上活动力求问题有梯度、由浅入深的开展建模活动。教学中按设计好的.思路进行,达到了预计的效果。此环节暴露的问题是:学生逐渐感受了反比关系,但在语言组织上有欠缺,今后应注意对学生数学语言表达方面的训练。
三、应用拓展:
设置例题3的目的是让学生得到求反比例函数解析式的方法:待定系数法。提高学生的分析能力并获得数学方法,积累数学经验。设置两个练习,让学生充分理解并掌握反比例函数的应用。
另外课堂中指教者的示范作用体现的不是很好,板书不够端正,肢体语言的多余动作,需要在今后的教学过程中严格要求自己,方方面面进行改善!本次公开课得到备课组长刘燕老师的认真指导。
反比例函数教学反思5
《新课程标准》强调教学过程是师生交往、共同发展的互动过程.在教学过程中要处理好传授知识与培养能力的关系,注重培养学生的独立性,引导学生质疑、调查、探究,在实践中学习,使学习成为在教师指导下主动的、富有个性的过程.课堂应较多地出现师生互动、平等参与的生动局面,学习方式开始逐步多样化,乐于探究、主动参与、勤于动手成为教学过程中教师的共识.为此,本节课主要通过开放式的提出问题,让学生经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征,体会事物是有规律地变化着的观点.用科学的'方法解决问题,培养学生科学的态度与精神.借助于多媒体课件,让学生更能直观的知道图象的形成过程,有助于学生对数学知识的理解和掌握.
在“反比例函数的图象和性质”这一课的教学过程中,“数”与“形”的转化,是贯穿始终的一条主线。主要反映在以下几个方面。 第一,反比例函数的图象和性质,是“数”与“形”的统一体,由“解析式”到“作图”,再到“性质”,都充分体现了由“数”到“形”,再由“形”到“数”的转化过程,是数形结合思想的具体应用。本课的教学设计与实施中,通过“描点法”作图、观察几个具体的反比例
函数的图象、课件演示展示“由动点生成函数图象”,很好地反映了“数”、“形”之间的这种内在的联系。第二,在“列表取值为何不能取零”、“反比例函数的图象为何与坐标轴不会相交”、“特殊的反比例函数性质能否推广到一般”这几个问题中,如果单纯依靠观察图象,是无法得出具有“说服力”的结论的,这就需要“回归”解析式,再引导学生进行分析。即我们可以借助直观图形,帮助我们思考相关的问题,但仅有图形的直观是不够的,必须考虑“已经”形式化的“数”的本质“特征”,使“数”、“形”之间达到统一。于是,在教学中,我们同样关注了对“解析式”的分析。第三,在总结得出反比例函数的图象和性质之后,我们为学生提供了一组题目,目的也是为学生提供一个体会“数形结合”、应用“数形结合”分析问题的平台,使学生经历利用“图形直观”来认识、解决与函数有关问题的过程。
不足与改进:在整个课堂教学过程中,教师围绕主题、有针对性的提出问题,学生小组合作探讨问题得出结论,然而部分小组在合作探究上还有所欠缺,讨论的不够激烈完善。我的改进设想是:留给时间让学生提出问题,师生共同讨论、交流,让学生的学习更富有主动性;在画出反比例函数的图象后,没有让学生趁热打铁“看图说话”,说出具体的图象的特征;在画出反比例函数的图象后,追加这样一个问题:“请同学们仔细观察图象并进行讨论,这个反比例函数的图象区别于一次函数的图象有那些不同的特征呢?” 留给时间让学生讨论、交流,这样改进之后,必将能更大的激发学生的探索热情,更能
体现学生的创新能力,同时也为进一步学习反比例函数的图象的特征埋下伏笔,能增强学生学习的信心.
反比例函数教学反思6
反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应加强反比例函数与正比例函数的对比:应该有意识地加强反比例函数与正比例函数之间的对比,对比可以从以下几个方面进行:(1)两种函数的关系式有何不同?两种函数的图像的特征有何区别?(2)在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?(3)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。
课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中去,自主探索,大胆发表自己的观点,让学生在自主探索中获得了不断的发展。主要表现在:
1、思维往往是从动手开始的,在教学中,引导学生用多种感官参与到知识的`生成过程中。
2、重视合作交流,使学生在合作交流的过程中真
握作图的技能
3、相互评价可以培养学生之间团结合作的精神
在数学课堂教学中,评价的形式有很多,但较多的是由教师对学生的学习作出的评价,教师扮演着“裁判员”的角色。而在这节课中,除了教师对学生的评价外,更重视了学生之间的相互评价,让学生在相互评价中既培养了能力,又寻找到了问题解决的方法,最终达到自我矫正的目标。
4、让学生养成在众多意见中进行甄别、选择的习惯,使学生在实践的过程中形成了自己独特的数学学习方法
反思今后在教学中我需要解决的问题,主要是要注重提高学生分析问题、解决实际问题的能力。
数形结合是数学学习的一个重要思想,也是我们学习数学的一个目的。近几年中考都有这方面的考题,所占分值也不少,我在教学中加强了这方面的指导,但基础差的同学仍然不会做,今后在这教学中要在这方面下功夫,使学生牢固掌握基本知识,提高基本技能,发展数学能力。
通过这节课给我带来了更深的启示:在素质教育不断发展的今天,作为教师,我们应该不断更新自己的教学观念,要有崭新的科学指导思想,以创造性的教学劳动唤起学生的学习数学的创新意识,提高学生学习数学的积极性,让学生充分从事数学探究活动,发挥学生学习的自主性、主动性,让学生在探索中不断地发展。
反比例函数教学反思7
反比例函数作为一类重要的函数,也是中考必考内容之一,本节课首先从反比例函数的概念,表达形式,图象及性质,k的几何意义几个方面进行复习,在知识的复习梳理过程中,进行的较为顺利,本节课设计上是知识点的复习梳理之后,通过典型例题的分析,变式题的习作交流,学生获得一定的解题方法和解题思路,并能正确的运用反比例函数的性质进行问题的分析,从而解决问题。总体上来说,我完成了预设的目标,教学当中也出现了一些难得的小插曲,使得学生对知识对方法有了更深层次的印象和理解,例如涉及到的反比例函数y=-k2-1/x中对于k2学生有些认为应是正数,有些认为是非负数,但是经过学生的讨论、争辩、判断,最终达成共识,当然这本身也是学生的易错之处,此处出了问题我觉得是难能可贵的',说明学生对一个数的平方的理解与反比例函数系数的理解出现了混淆,此处便可得到澄清。
还有最后一道题,本是一道开放性题,答案自然不是唯一,而这道题的解答也颇为精彩,学生在举出一个比例系数为负的反比例函数后,师生进行判断共评之后便可结束对此题的评价。在我“谁还能举出不同的函数?”的追问下,终于有学生中了我的“圈套”,举出了一个正比例函数,之后通过师生讨论、结合题中关键条件的判断下最终否定了正比例函数及二次函数。本节课学生能积极参与而且善于思考,并且大部分学生都能正确运用反比例函数的图象、性质等解决问题,教学任务也轻松完成。我觉得算是一节成功的课。
不足之处是:
1、未能调动全体学生的积极性及参与意识。
2、最后一题未能再将其挖深,总结。
总之,在今后的教学过程中,我觉得要让学生完全的动起来可能才是最有意义的,也才是新课标对教师和学生的要求,让学生真正成为学习的主人。我将不断改进自己的教学方法,做到因材施教,做好课堂的引导者,让学生在思考中进步,在交流中获得知识,从而能真正感受到学以致用的快乐。
反比例函数教学反思8
今天讲授了一节新课《反比例函数》(苏科版八年级下册第九章第一节内容),从教学设计到课堂教学,课后仔细回味,觉得有很多值得反思的地方。
关于教学设计:
备课时,我仔细研读教材,认为本节课无论是重点和难点都是让学生掌握反比例函数的概念,以及如何与一次函数及一次函数中的正比例函数的区别。所以,我在讲授新课前安排了对“函数”、“一次函数”及“正比例函数”概念及“一次函数”和“正比例函数”一般式的复习。
为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。
情境设置:
汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。
(1) 你能用含v的代数式来表示t吗?
设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。 为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。
k 一般式变形:y=k/x ,可以变形为: (1)y=kx^-1 ,(2)xy=k (其中k均不为0)
通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。
为加深难度,我又补充了几个练习:
1、当m为何值时,函数y=(m2+2m)xm2-m-1是反比例函数.
2、(1)y与x成反比例,已知x=3时,y=-6,求当x=时,y的值。
(2)y与x-1成反比例,已知x=3时,y=-6,求当x=2时,y的值。
3、y是x的反比例函数,z是x的正比例函数,则y与z成什么关系?
关于课堂教学:
由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。
在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到
如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。
对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的.题型,班级中成绩偏下的同学也能很好的掌握。
而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。
经验感想:
1、课前认真准备,对授课效果的影响是不容忽视的。
2、教师的精神状态直接影响学生的精神状态。
3、数学教学一定要重概念,抓本质。
4、课堂上要注重学生情感,表情,可适当调整教学深度。
反比例函数教学反思9
一、本节课的整体设计
第一步:预习,学生通过自学课本、独立完成导学案,完成自己会的,找出并标记出不会的,完成预习。
第二步:组内合学,通过组内对学、群学,展示学会的,学会不会的。教师设计引导,完成对反比例函数更清晰和准确的认识。
第三步:班级展示,通过学生对学习情况的展示,教师有针对性的进行课堂点拨追问,完成本节课的.学习。
第四步:整理反思,通过课堂学生与学生之间,教师与学生之间的互动交流,修正学案内容,并形成自己的反思总结。
第五步:达标测评,对本节课的基础知识和技能进行学习反馈,教师了解掌握学生学习情况,便于下一阶段的学习。
二、本节课突出了“四本”的基本要求
1、以学生为本,整个课堂充分放手让学生去学习,以学生为主体,调动了学生的积极性。
2、以文为本,课堂活动以课本为基础,围绕课本知识展开活动,突出了课本的设计意图。
3、以实为本,课堂真实有效,学练结合,具有很高的实用性。
4、以真为本,课堂不做假,真实的展现了学生的学习思路和思考过程,课堂以真为本更显实效和高效。
三、本节课的不足
1、教师放手不够,还是担心学生学不到位,没有充分的放手把学习还给学生。
2、课堂的整个流程还需进一步细致打磨,让每一个环节更适合学生的学习,才能有更高效的学习效率。
不足之处还需各位专家老师指正,谢谢!
反比例函数教学反思10
这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。
本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。
但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。
总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。
反思三:
这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的.性质而得到二次函数的性质。花费了一番周折,说明去掉这个中介,直接让学生从单调性来接受二次函数性质是困难的。
真正的形成往往来源于真实的自主探究。只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。
首先,要设计适合学生探究的素材。教材对二次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。但是能让学生理解和接受的知识才是最好的。如果牵强的引出来,不一定是好事。
其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。探究教学是追求教学过程的探究和探究过程的自然和本真。只有这样探究才是有价值的,真知才会有生长性。要表现过程的真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。追求自然,就要适当放开学生的手、口、脑,例如本文中的“走向”问题,“向上爬”、“向下走”等,如果是讲授注入式,我们就听不到学生真实的声音了。
最后,教师在学生探究真知之旅上应是一个促进者、协作者、组织者。要做善于点燃学生探究欲望和智慧火把的人,要善于让学生说教师要说的话,做教师想做的事,这就是一个成功的促进者。数学教学的过程是师生共同活动、共同成长与发展的过程。【二次函数的图像和性质教学反思5篇】文章二次函数的图像和性质教学反思5篇出自
反比例函数教学反思11
实际问题与反比例函数的第三课时,主要是进行学生训练,从学生的训练情况看,涉及到反比例函数的知识内容学生掌握得还是很好的,主要是利用反比例函数的增减情况确定“至少”与“至多”问题的确定。但是,从学生的练习情况看,对课本55页的6、7两题和61页的第11题的最后一问,不少学生用算术方法分步列式进行计算的,在理解上有难度,在解决和应用上方法单一,没有用方程思想解决问题,说明了学生的数学能力有待加强。
分析其原因,最重要的一点是学生阅读和理解实际问题的'意思不够,不能整体把握题目的意思,因此采用逐个击破的处理方法,一个一个地列出表示各个不同意义的计算式,向目标逼近。不少同学就不能解决这样的问题。可以看出,教师还是要在学生遇到复杂问题时,给他们鼓励,教育他们耐心地研读问题(有学生没有静心理解题义);给他们方法,指导他们断句和分层,圈点关键词,整体把握数量关系;给他们示范,这里主要是对提问的处理,可以直接设元,还可以间接设元。
在课前预设的最后一题中,学生用面积关系解决问题的解题经验不够,对于已知本题AP与DE垂直,要探究两个变量AP与DE的函数关系,应该想到三角形APD的面积,而三角形APD的面积是矩形ABCD面积的一半,学生解决本题有难度。
反比例函数教学反思12
数学知识来源于生活,同时也服务与生活,在教学这一课时我从实际引入,采用了大量的生活情境,为同学创造了探索知识的条件,将学生参与到获取新知识的过程中去,将抽象的'知识形象化,让学生在不知不觉中接受了新知识;在与旧知识的对比中掌握了新知识;在阶梯式的练习中,巩固了新知识。
在教学设计上,分为四步:
第一、复习正比例函数的有关知识,目的是让学生回顾函数知识,为学习反比例函数作好铺垫。
第二、给出了三个实际情景要求列出函数关系式,通过归纳总结这些函数的特征,得出反比例函数的定义。通过学习讨论得出反比例函数的几种形式,自变量的取值范围。
第三,在学生理解反比例意义的基础上,让学生尝试判断给出的例子是否成反比例。
第四、通过做一做的三个练习进一步巩固新知。
教学之路是每天每节课点点滴滴的积累,这条路的成功秘诀只有一个:踏实!对于我,任重而道远,我将默默前行,提高自己,让我教的每一个孩子更优秀。
反比例函数教学反思13
反比例函数的内容比较抽象、难懂,是学生怕学的内容。如何化解这一教学难点,使学生有效地理解和掌握这一重点内容呢?我在反比例函数的意义的教学中做了一些尝试。学生已有一定的函数知识基础,并且有正比例的研究经验,这为反比例的数学建模提供了有利条件,教学中我利用类比、归纳的数学思想方法开展数学建模活动。
一、创设情景,激发求知欲望。
我选择了百米赛跑中时间与速度的关系等素材组织活动,让学生从生活实际中发现数学问题,从而引入学习内容,这不仅激发了学生学习数学的兴趣,还激起了学生自主参与的积极性和主动性,为自主探究新知创造了现实背景并激发了积极的情感态度。因为反比例的意义这一部分的.内容的编排跟正比例的意义比较相似,在教学反比例的意义时,我以学生学习的正比例的意义为基础,在学生之间创设了一种相互交流、相互合作、相互帮助的关系,让学生主动、自觉地去观察、分析问题再组织学生通过充分讨论交流后得出它们的相同点,概括、发现规律,在此基础上来揭示反比例的意义,构建反比例的数学模型就显得水到渠成了。
二、深入探究,理解涵义
为了使学生进一步弄清反比例函数中两种量之间的数量关系,加深理解反比例的涵义,体验探索新知、发现规律的乐趣。我设计了问题二使学生对反比例的一般型的变式有所认识,设计问题三使学生从系数、指数进一步领会反比例的解析式条件,至此基本完成反比例的数学的建模。以上活动力求问题有梯度、由浅入深的开展建模活动。教学中按设计好的思路进行,达到了预计的效果。此环节暴露的问题是:学生逐渐感受了反比关系,但在语言组织上有欠缺,今后应注意对学生数学语言表达方面的训练。
三、应用拓展:
设置问题的目的是让学生得到求反比例函数解析式的方法:
待定系数法。提高学生的分析能力并获得数学方法,积累数学经验。此环节学生基本达到预定效果。从生活走向数学,从数学走向社会。
教学是一个充满遗憾的过程,通过反思能够不断的提高设计的能力、应付课堂上突发事件的技巧,从而将教学机智发挥到最高,减少教学当中的遗憾,学生通过反思完善自己的知识体系,将最近发展区的知识与新的知识单位进行结合,提炼学习技巧达到创造性学习的目的。
反比例函数教学反思14
本节课的教学优点:
一、定位较准,立足于本校学情。由于学生基础较差,本节复习是按知识点复习,目的是落实知识点和掌握一些基本的题型,通过教学来看目标已达成。
二、习题设计合理,立足于思维训练。本节课每个知识点都设计了针对性的练习,通过练习学生的解体技巧、方法、思维都得到了解决。
三、注重了数学思想方法的渗透。在反比例函数的性质教学时,紧紧抓住关键词语,突破难点。性质强调“在同一象限内”,而我们学生往往忽略这个问题,无论是怎样的两点,都直接用性质,对此,采用讨论的观点,结合图像观察,让学生看到理解到:在同一象限内可直接用性质,不在同一象限内,一、二象限的.点的纵坐标永远大于三、四象限内点的纵坐标。这样,非常明了的让学生把最容易混淆的知识分清了,突破难点的同时及时总结出这其中体现出的数学思想方法:分类讨论和数形结合的思想方法。不足之处:
一、预见性不够。这主要体现在知识回顾中的第二题,本来打算一点而过,结果学生的回答偏离了老师的预想,老师势必站在学生的角度给他们一一纠正,从而浪费了时间,自己对于突发事件的处理灵活性还不够,掌控课堂的能力有待提高。
二、对学生的情感关注太少。如果在一开始就用生动活泼激趣的语言导入课题,在教学过程中对少数同学的回答能及时给予表扬和激励,不但能消除学生的紧张情绪,也能激发学生的兴趣,坚定学习的信心。
三、角色转换不彻底。在整个课堂教学过程中,教师围绕主题、围绕学生提问的多,给学生提问的时间和机会很少.不能大胆放心把课堂交还给学生.
今后还需要改进的地方:
一、在上课过程中,要始终关注学生的情感。因为学生的学习是认知和情感的结合,只有给了他们情感上的极大满足,学生才会获得渴望成功的动力,我们的自主学习活动才能收到应有的效果。
二、不断学习新的教育理论,不断更新教学观念,使数学教育面向全体学生,实现——人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清”庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思中学会了倾听,学会了交流、合作,学会了分享,体验了学习的乐趣,交往的快慰。
反比例函数教学反思15
经过二周的教学,对学生的学习有了初步的了解,本班学生的差生比较多,优秀生也不尖,在完成作业时不够积极主动,交作业没有及时,有可能在家没完成或者早晨想到学校后抄袭别人的作业。完成作业的质量也不高,每次作业全对的学生只有少数的几个。
课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中去,自主探索,大胆发表自己的'观点,让学生在自主探索中获得了不断的发展。主要表现在:
1 、思维往往是从动手开始的,在教学中,引导学生用多种感官参与到知识的生成过程中。
2 、重视合作交流,使学生在合作交流的过程中真正掌握作图的技能
3 、相互评价可以培养学生之间团结合作的精神 在数学课堂教学中,评价的形式有很多,但较多的是由教师对学生的学习作出的评价,教师扮演着“裁判员”的角色。而在这节课中,除了教师对学生的评价外,更重视了学生之间的相互评价,让学生在相互评价中既培养了能力,又寻找到了问题解决的方法,最终达到自我矫正的目标。
4 、让学生养成在众多意见中进行甄别、选择的习惯,使学生在实践的过程中形成了自己独特的数学学习方法
反思今后在教学中我需要解决的问题,主要是要注重提高学生分析问题、解决实际问题的能力。
数形结合是数学学习的一个重要思想,也是我们学习数学的一个目的。近几年中考都有这方面的考题,所占分值也不少,我在教学中加强了这方面的指导,但基础差的同学仍然不会做,今后在这教学中要在这方面下功夫,使学生牢固掌握基本知识,提高基本技能,发展数学能力。
反比例函数教学反思
反比例函数教学反思1
师:请谈谈你的收获与体会。
生1:通过这节课的学习,我学会了用反比例函数去解决一些实际问题。
生2:我还了解了有关杠杆定律的一些知识,为以后学习物理奠定了基础。
生3:各个问题的形式虽然不一样,我们可以归于函数模型解决,今天就是利用反比例函数模型解题的。
师:学习了本节的内容,这位同学有一种建立数学模型解题的意识。
生4:用数学知识还可以解决一些物理问题。
生5:数学来源于生活,生活中处处有数学,运用数学可以解决很多问题,这更坚定了我学好数学的信心。
教师归纳:1.解决有关反比例函数实际问题的.流程如下:
2.利用反比例函数解决实际问题时,既要关注函数本身,又要考虑变量的实际意义。
反思:教师引导,学生争先恐后谈收获,特别强调了建立函数模型解决实际问题的思考方法。然后教师归纳出解决实际问题的流程图,以及所要引起注意的问题,起到了画龙点睛的教学效果。这样的课堂小结能放能收,还能上升到数学思想方法的高度进行思考,无疑是成功的。
反比例函数教学反思2
这一课主要的教学任务是探究反比例函数的比例系数k的几何意义,研究与反比例函数有关的面积问题。
课堂设计程序是:
例题1研究从双曲线上任意一点P作坐标轴的垂线,围成的长方形PQOR的面积与k的关系,进而进行题目的变化,得到从双曲线上任意一点P作x、y轴的垂线三角形PQO的面积与k的关系,得到从双曲线上任意一个动点P作坐标轴的垂线,围成的长方形S1、S2、S3的面积总有S1=S2=S3;
例题2揭示了正比例函数的图象与反比例函数的图象两个交点的关系(关于原点对称),过两个交点并且垂直于坐标轴的直线围成的矩形的面积(等于k的绝对值的4倍),进而进行题目的变化,得到几种三角形的面积和平行四边形的面积,由学生及时进行相应的练习;
例题3把一次函数与反比例函数相结合,进行了比较简单的综合应用,让学生进行面积的和差组合,培养学生分析问题解决问题的能力。
在学生进行到反比例函数的`研究时,数形结合的思想就能够应用自如了,学生的学习情况还是比较好的。回想起来,还是结合个方面的知识内容,用待定系数法求函数的解析式的题目类型学生的达成率不够好,要加强这方面的训练。
利用待定系数法求反比例函数的解析式是学生必会内容,本课教学有一次函数的基础,所以学生学习起来并不感到有多困难的。因此,本课在学习用待定系数法求函数的解析式的前面安排函数性质的复习,学习和巩固“在每个象限内”的反比例函数的增减情况的有关应用问题,例如第4小题,A(a,b),B(a-1,c)在反比例函数y=k/x(k<0)的图象上,探究a的各种不同的取值情况下,b与c的大小关系。
用待定系数法求反比例函数的解析式,安排了两个例题两个练习,题量不多重在使学生自主学习,这里着重加强对数形结合思想的应用,培养学生通过图形研究问题的习惯,另外,例题2需要学生结合三角形全等的几何知识解决点的坐标的探究,去年期末考试的最后一道试题也是在平面直角坐标系下几何问题的研究,学生不是很熟悉的,因此,培养学生各种背景下数学问题的研究很有必要。
由于在上面两块内容上用了很多时间,本课对比例系数k的几何意义没有作研究,安排在下一课再作学习。
反比例函数教学反思3
一、教材分析
反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。因此反比例函数的概念与意义的教学是基础。
二、学情分析
由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标
知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式.
解决问题:能从实际问题中抽象出反比例函数并确定其表达式. 情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际.
四、教学重难点
重点:理解反比例函数意义,确定反比例函数的表达式.
难点:反比例函数表达式的确立.
五、教学过程
(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;
(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单
位:m)随宽x(单位:m)的变化而变化。
请同学们写出上述函数的表达式
14631000(2)y= tx
k可知:形如y= (k为常数,k≠0)的函数称为反比例函数,其中xx(1)v=
是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际. 由于是分式,当x=0时,分式无意义,所以x≠0。
当y= 中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。此时y就不是反比例函数了。
举例:下列属于反比例函数的是
(1)y= (2)xy=10 (3)y=k-1x (4)y= -
此过程的目的是通过分析与练习让学生更加了解反比例函数的概念 问已知y与x成反比例,y与x-1成反比例,y+1与x成反比例,y+1与x-1成反比例,将如何设其解析式(函数关系式)
已知y与x成反比例,则可设y与x的函数关系式为y=
k x?1
k已知y+1与x成反比例,则可设y与x的函数关系式为y+1= xkxkxkxkx2x已知y与x-1成反比例,则可设y与x的函数关系式为y=
已知y+1与x-1成反比例,则可设y与x的.函数关系式为y+1= k x?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
例:已知y与x2反比例,并且当x=3时y=4
(1)求出y和x之间的函数解析式
(2)求当x=1.5时y的值
解析:因为y与x2反比例,所以设y?k,只要将k求出即可得到yx2
和x之间的函数解析式。之后引导学生书写过程。能从实际问题中抽象出反比例函数并确定其表达式最后学生练习并布置作业
通过此环节,加深对本节课所内容的认识,以达到巩固的目的。
六、评价与反思
本节课是在学生现有的认识基础上进行讲解,便于学生理解反比例函数的概念。而本节课的重点在于理解反比例函数意义,确定反比例函数的表达式.应该对这一方面的内容多练习巩固。
反比例函数教学反思4
这节课,我讲授的内容是《反比例函数的图像和性质》第二小节,讲完之后感受颇深:这节课从学生的角度出发,针对下面的中学实际儿设计的,没有流于形式,教学目的'就是“用”,所以第三环节“自主检测”是检查以下学生对性质的理解和运用情况,“思考”则是对性质的进一步探究:
①题是学生直接观察图像,并给解释清楚;
②题让学生动手操作,容易得到轴对称性;
③题中心对称性,学生不易观察,但设计了动画演示;“例题解答”是对方法和性质的总结实践,使学生懂得在平时解题中要善于总结和积累。“走进中考”是为了让学生认识中考题型,是教学为中考服务,这样既激发了学生学习的积极性,有给予了学生冲刺中考的动力!
但也让我感到不足之处很多;
1、把学生估计过高,欠缺对学生的引导铺垫
2、准备仍不充分,觉得轴对称性通过学生的折叠很容易得到,故认为动画不用演示,所以没有设计动画演示,这使课上时间浪费较多。
3、应该让学生成为课堂的主人许多东西应该让他们自主探究并总结。
4、习题设计应该少而精。
5、课堂有前松后紧的感觉,时间没有合理分配。
通过这节课的讲解我发现学生存在一个普遍现象:
1、回答问题时思路不清,语言不规范。
2、学生不会写解题过程,书写还需改进。我看清自己在教学方面的不足之处,知道了自己今后努力的方向,“路漫漫其修远兮,吾将上下而求索
反比例函数教学反思5
一、备课反思:
本节课的教学内容是人教版八年级数学下册第十七章第二节第一课时的内容。本节课讨论了反比例函数的某些应用,在这些实际应用中,备课时注意到与学生的实际生活相联系,切实发生在学生的身边的某些实际情境,并且注意用函数观点来处理问题或对问题的解决用函数做出某种解释,用以加深对函数的认识,并突出知识之间的内在联系。本节的主要内容是让学生逐步形成用函数的观点处理问题意识,体验数形结合的思想方法。
二、教学反思:
教学时,能够达到三维目标的.要求,突出重点把握难点。能够让学生经历数学知识的应用过程,关注对问题的分析过程,让学生自己利用已经具备的知识分析实例。用函数的观点处理实际问题的关键在于分析实际情境,建立函数模型,并进一步提出明确的数学问题,注意分析的过程,即将实际问题置于已有的知识背景之中,用数学知识重新理解(这是什么?可以看成什么?),让学生逐步学会用数学的眼光考察实际问题。同时,在解决问题的过程中,要充分利用函数的图象,渗透数形结合的思想。
三、不足之处:
这节课如果能利用多媒体课件幻灯片的方式展示出来,例题的展示将会更快点,整节课将会更加丰满。当然,在教学实施中我也考虑到了这一点,所以在讲解例题的时候将每个例题的要点以简短的板书形式展示出来,在一定程度上也节省了时间。
以上便是我对这节研修课的感想和反思,也许存在其他没有考虑到或者不足之处,恳请各位老师批评指正!
反比例函数教学反思6
在本节授课过程中,教学环节展开是顺畅的,学生在教师引导下,能够说出一次函数的图象特征及性质,并通过类比一次函数的研究方法,按照列表、描点、连线三个步骤画出反比例函数图象,通过观察所画出的反比例函数图象,得出该图象的“特征”和函数的“性质”。
但因为学生刚接触反比例函数图象,图象外在形式(双曲线)与一次函数图象(直线)之间存在较大的差异,学生还缺乏对反比例函数图象“整体形象”的把握。一方面,当反比例系数的绝对值较大时,部分学生画出的图形,不能完整地反映其图象“渐近”的特征;另一方面,在应用反比例函数(增或减)的性质,比较反比例函数的两个函数值大小时,学生不能有意识地从“自变量的正负”来考虑问题,这导致学生课后“目标检测”时,对部分问题的解决出现偏差。
此外,展开本节课学习的.一个重要的方法,就是“类比”。在教学过程中,教师极力引导学生“类比一次函数学习的方法”,最大限度地调动学生“合情推理”因素,以确保学习知识的“正迁移”效应,实际也会带来一些负面的影响,学生往往对属于一次函数和反比例函数“共性”的结论印象比较深刻,而对于反比例函数“个性”的结论,理解上反而会受到一些干扰。
反比例函数教学反思7
这部分内容就是中等偏下的学生容易混淆,还需掌握方法,加强记忆,强调必须利用图形去分析。通过教学,让学生对建模思想、图形结合思想及分类讨论思想都有了较清晰的认识,学会了分析问题的初步方法。
本章中二次函数上下左右的平移是我觉得上的比较成功的一部分,主要是借助多媒体,动态的展示了二次函数的平移过程,让学生自己总结规律,很形象,便于记忆。
但在教学中,我自认为热情不够,没有积极调动学生学习热情的语言,感染力不足。今后备课时要重视创设丰富而风趣的语言,来调动学生的积极性。
总之,在数学教学中不但要善于设疑置难,而且要理论联系实际,只有这样,才会吸引学生对数学学科的热爱。
反思三:
这节课,我对教材进行了探究性重组,同时放手让学生在探究活动中去经历、体验、内化知识的做法是成功的。通过充分的过程探究,学生容易得出也是最早得出了图象的性质,借助直观图象的性质而得到二次函数的性质。花费了一番周折,说明去掉这个中介,直接让学生从单调性来接受二次函数性质是困难的。
真正的形成往往来源于真实的自主探究。只有放手探究,学生的潜力与智慧才会充分表现,学生也才会表现真实的思维和真实的自我。在新课程理念的指导下,我们的一切教学都要围绕学生的成长与发展做文章,真正让学生理解、掌握真实的知识和真正的知识。
首先,要设计适合学生探究的素材。教材对二次函数的性质是从增减来描述的,我们认为这种对性质的表述是教条化的,对这种学术、文本状态的知识,学生不容易接受。当然教材强调所呈现内容的逻辑性、严密性与科学性是合理的。但是能让学生理解和接受的知识才是最好的。如果牵强的引出来,不一定是好事。
其次,探究教学的过程就是实现学术形态的知识转化为教育形态知识的过程。探究教学是追求教学过程的探究和探究过程的自然和本真。只有这样探究才是有价值的,真知才会有生长性。要表现过程的`真实与自然,从建构主义的观点出发,就是要尊重学生各自的经验与思维方式、习惯。结论是一致的,但过程可以是多元的,教师要善于恰倒好处地优化提炼学生的结论。追求自然,就要适当放开学生的手、口、脑,例如本文中的“走向”问题,“向上爬”、“向下走”等,如果是讲授注入式,我们就听不到学生真实的声音了。
最后,教师在学生探究真知之旅上应是一个促进者、协作者、组织者。要做善于点燃学生探究欲望和智慧火把的人,要善于让学生说教师要说的话,做教师想做的事,这就是一个成功的促进者。数学教学的过程是师生共同活动、共同成长与发展的过程。【二次函数的图像和性质教学反思5篇】文章二次函数的图像和性质教学反思5篇出自
反比例函数教学反思8
首先简单复习了一次函数、正比例函数的表达式,目的是想让学生清楚每种函数都有其特有的表达式,对反比例函数表达式的总结作了一个铺垫。其次利用题组(一)题组(二)对反比例函数的三种表示方法进行巩固和熟悉。
例题非常简单,在例题的处理上我注重了学生解题步骤的培养,同时通过两次变式进一步巩固解法,并拓宽了学生的思路。在变式训练之后,我又补充了一个综合性题目的例题,(在上学期曾有过类似问题的,由于时间的久远学生不是很熟悉)但在补充例题的处理上点拨不到位,导致这个问题的解决有点走弯路。
题组(三)在本节既是知识的巩固又是知识的检测,通过这组题目的处理,发现学生对本节知识的掌握还可以。从整体来看,时间有点紧张,小结很是仓促,而且是由老师代劳了,没有让学生来谈收获,在这点有些包办的趋势。
虽然在题目的'设计和教学设计上我注重了由浅入深的梯度,但有些问题的处理方式不是恰到好处,有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性。
反比例函数教学反思9
公开课上完了,总的感觉有成功的地方,也有不足之处。我认为本堂课成功的做法有以下几方面:
一、定位较准,立足于本校学情。
由于学生基础较差,本节复习是按知识点复习,目的是落实知识点和掌握一些基本的题型,通过教学来看目标已达成。
二、习题设计合理,立足于思维训练。
本节课每个知识点都设计了针对性的变式练习,通过练习学生的解体技巧、方法、思维都得到了训练。
三、注重了数学思想方法的渗透。
在反比例函数的性质教学时,紧紧抓住关键词语,突破难点。性质强调“在同一象限内”,而我们学生往往忽略这个问题,无论是怎样的两点,都直接用性质,对此,采用讨论的观点,结合图像观察,让学生看到理解到:在同一象限内可直接用性质,不在同一象限内,一、二象限的点的纵坐标永远大于三、四象限内点的纵坐标。这样,非常明了的让学生把最容易混淆的知识分清了,突破难点的同时及时总结出这其中体现出的数学思想方法:分类讨论和数形结合的思想方法。
四、大胆尝试信息技术教学。
“班班通”走进了课堂,信息技术的教学正冲击着传统的数学课堂,虽然白板的功能还没完全了解,使用的也不够熟练,但也能体现出信息技术在数学教学的灵活性、直观性,对本节课“反比例函数的性质”等多处教学都起到一定的作用,提高了课堂效率。
不足之处:
一、预见性不够。这主要体现在知识回顾中的第二题,本来打算一点而过,结果学生的回答偏离了老师的预想,老师势必站在学生的角度给他们一一纠正,从而浪费了时间,自己对于突发事件的处理灵活性还不够,掌控课堂的`能力有待提高。
二、对学生的情感关注太少。本来想营造一种和谐的课堂气氛,学生因为紧张回答问题不积极,不敢大胆发表自己的观点,课堂气氛死气沉沉,没有焕发出学生的激情。如果在一开始就用生动活泼激趣的语言导入课题,在教学过程中对少数同学的回答能及时给予表扬和激励,不但能消除学生的紧张情绪,也能激发学生的兴趣,坚定学习的信心。
三、角色转换不彻底。在整个课堂教学过程中,教师围绕主题、围绕学生提问的多,给学生提问的时间和机会很少.不能大胆放心把课堂交还给学生。
今后还需要改进的地方:
一、在上课过程中,要始终关注学生的情感。因为学生的学习是认知和情感的结合,只有给了他们情感上的极大满足,学生才会获得渴望成功的动力,我们的自主学习活动才能收到应有的效果。
二、不断学习新的教育理论,不断更新教学观念,使数学教育面向全体学生,实现——人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
三、注意评价的多元化,全面了解学生的数学学习历程,对数学学习的评价不仅要关注学生学习的结果,更要关注他们学习的过程,帮助学生认识自我,建立信心。
四、努力学习多媒体软件设计和制作,把它作为教师备课、教学改革的工具,使电脑、网络、光盘、白板等现代媒体成为像黑板、粉笔一样的得心应手的工具,恰如其分地应用于日常课堂教学中,真正为教学服务。
有反思才会有进步,作为身处课程改革第一线的教育工作者,应迅速转变传统的教育观念,勇于创新,积极接受挑战。
反比例函数教学反思10
今天讲授了一节新课《反比例函数》(苏科版八年级下册第九章第一节内容),从教学设计到课堂教学,课后仔细回味,觉得有很多值得反思的地方。
关于教学设计:
备课时,我仔细研读教材,认为本节课无论是重点和难点都是让学生掌握反比例函数的概念,以及如何与一次函数及一次函数中的正比例函数的区别。所以,我在讲授新课前安排了对“函数”、“一次函数”及“正比例函数”概念及“一次函数”和“正比例函数”一般式的复习。
为了更好的引入“反比例函数”的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的“思考”的问题的`位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。
情境设置:
汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。
(1) 你能用含v的代数式来表示t吗?
设计意图:与前面复习内容相呼应,让同学们能在“做一做”和“议一仪”中感受两个量之间的函数关系,同时也能注意到与所学“一次函数”,尤其是“正比例函数”的不同。从而自然地引入“反比例函数”概念。 为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。
k 一般式变形:y=k/x ,可以变形为: (1)y=kx^-1 ,(2)xy=k (其中k均不为0)
通过对一般式的变形,让学生从“形”上掌握“反比例函数”的概念,在结合“思考”的几个问题,让学生从“神”神上体验“反比例函数”。
为加深难度,我又补充了几个练习:
1、当m为何值时,函数y=(m2+2m)xm2-m-1是反比例函数.
2、(1)y与x成反比例,已知x=3时,y=-6,求当x=时,y的值。
(2)y与x-1成反比例,已知x=3时,y=-6,求当x=2时,y的值。
3、y是x的反比例函数,z是x的正比例函数,则y与z成什么关系?
关于课堂教学:
由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。
在复习“函数”这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到
如何表达。我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。一路走来,非常轻松。
对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。
而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。
经验感想:
1、课前认真准备,对授课效果的影响是不容忽视的。
2、教师的精神状态直接影响学生的精神状态。
3、数学教学一定要重概念,抓本质。
4、课堂上要注重学生情感,表情,可适当调整教学深度。
反比例函数教学反思11
常见的错误:
(1) 没有注意定义中的条件;弱视题设条件;
(2) 思考不全面,造成漏解、误解;
(3) 根据函数图形性质判断函数图像在坐标系中位置,系数与图像的`位置关系不容易判断;
(4) 抛物线与x轴的交点数由 决定,而学生不易把此知识点与一元二次方程联系起来应用;
为了减少因审题不当,而出现错误解答,在复习时,我们要求学生,在读题时让学生把关键字词化着重记号。
例1:已知一次函数 的图像与y轴的交点为(0,-4),求m
错解:将坐标(0,-4)代入函数解析式,得 ,解之得m=1或m=2.
错误原因:上述解法没有紧扣一次函数定义中“ ”这一条件,当m=2时,m-2=0,此时函数就不是一次函数,故应舍去。
正解:m=1
例2:当x为何值时,函数 与x轴只有一个交点?
典型错误原因:因为函数 与x轴只有一个交点,所以 =0,即4+4m=0,解得m=-1.
错因分析:认为 必是二次函数,忽略了m=0这种情形。
正确答案:因为函数 与x轴只有一个交点, 所以m=0或 =0,解得m=0或m=-1.
总结:(1)正确判断函数的类型;
(2)注意各种函数的条件;
(3)注意理解题意,把关键字词作标示,引起学生解题时注意,答题时全面考虑问题;
反比例函数教学反思12
《新课程标准》强调教学过程是师生交往、共同发展的互动过程.在教学过程中要处理好传授知识与培养能力的关系,注重培养学生的独立性,引导学生质疑、调查、探究,在实践中学习,使学习成为在教师指导下主动的、富有个性的过程.课堂应较多地出现师生互动、平等参与的生动局面,学习方式开始逐步多样化,乐于探究、主动参与、勤于动手成为教学过程中教师的共识.为此,本节课主要通过开放式的提出问题,让学生经历画图、观察、猜想、思考等数学活动,向学生渗透数形结合的思想方法,让学生初步认识具体的反比例函数图象的特征,体会事物是有规律地变化着的观点.用科学的方法解决问题,培养学生科学的态度与精神.借助于多媒体课件,让学生更能直观的知道图象的形成过程,有助于学生对数学知识的理解和掌握.
在“反比例函数的图象和性质”这一课的教学过程中,“数”与“形”的转化,是贯穿始终的一条主线。主要反映在以下几个方面。 第一,反比例函数的图象和性质,是“数”与“形”的统一体,由“解析式”到“作图”,再到“性质”,都充分体现了由“数”到“形”,再由“形”到“数”的转化过程,是数形结合思想的具体应用。本课的教学设计与实施中,通过“描点法”作图、观察几个具体的反比例
函数的图象、课件演示展示“由动点生成函数图象”,很好地反映了“数”、“形”之间的这种内在的联系。第二,在“列表取值为何不能取零”、“反比例函数的`图象为何与坐标轴不会相交”、“特殊的反比例函数性质能否推广到一般”这几个问题中,如果单纯依靠观察图象,是无法得出具有“说服力”的结论的,这就需要“回归”解析式,再引导学生进行分析。即我们可以借助直观图形,帮助我们思考相关的问题,但仅有图形的直观是不够的,必须考虑“已经”形式化的“数”的本质“特征”,使“数”、“形”之间达到统一。于是,在教学中,我们同样关注了对“解析式”的分析。第三,在总结得出反比例函数的图象和性质之后,我们为学生提供了一组题目,目的也是为学生提供一个体会“数形结合”、应用“数形结合”分析问题的平台,使学生经历利用“图形直观”来认识、解决与函数有关问题的过程。
不足与改进:在整个课堂教学过程中,教师围绕主题、有针对性的提出问题,学生小组合作探讨问题得出结论,然而部分小组在合作探究上还有所欠缺,讨论的不够激烈完善。我的改进设想是:留给时间让学生提出问题,师生共同讨论、交流,让学生的学习更富有主动性;在画出反比例函数的图象后,没有让学生趁热打铁“看图说话”,说出具体的图象的特征;在画出反比例函数的图象后,追加这样一个问题:“请同学们仔细观察图象并进行讨论,这个反比例函数的图象区别于一次函数的图象有那些不同的特征呢?” 留给时间让学生讨论、交流,这样改进之后,必将能更大的激发学生的探索热情,更能
体现学生的创新能力,同时也为进一步学习反比例函数的图象的特征埋下伏笔,能增强学生学习的信心.
反比例函数教学反思13
反比例函数图像的性质是反比例函数的教学重点,学生需要在理解的基础上熟练运用。为此应加强反比例函数与正比例函数的对比:应该有意识地加强反比例函数与正比例函数之间的对比,对比可以从以下几个方面进行:(1)两种函数的关系式有何不同?两种函数的图像的特征有何区别?(2)在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?(3)两种函数的取值范围有什么不同,常数的符号的改变对两种函数图像的变化趋势有什么影响?从这些方面去比较理解反比例函数与一次函数,帮助学生将所学知识串联起来,提高学生综合能力。
课堂中,我营造了宽松的学习氛围,让学生参与到学习过程中去,自主探索,大胆发表自己的观点,让学生在自主探索中获得了不断的发展。主要表现在:
1、思维往往是从动手开始的,在教学中,引导学生用多种感官参与到知识的生成过程中。
2、重视合作交流,使学生在合作交流的过程中真
握作图的技能
3、相互评价可以培养学生之间团结合作的精神
在数学课堂教学中,评价的形式有很多,但较多的是由教师对学生的学习作出的评价,教师扮演着“裁判员”的角色。而在这节课中,除了教师对学生的评价外,更重视了学生之间的相互评价,让学生在相互评价中既培养了能力,又寻找到了问题解决的方法,最终达到自我矫正的目标。
4、让学生养成在众多意见中进行甄别、选择的习惯,使学生在实践的过程中形成了自己独特的数学学习方法
反思今后在教学中我需要解决的问题,主要是要注重提高学生分析问题、解决实际问题的.能力。
数形结合是数学学习的一个重要思想,也是我们学习数学的一个目的。近几年中考都有这方面的考题,所占分值也不少,我在教学中加强了这方面的指导,但基础差的同学仍然不会做,今后在这教学中要在这方面下功夫,使学生牢固掌握基本知识,提高基本技能,发展数学能力。
通过这节课给我带来了更深的启示:在素质教育不断发展的今天,作为教师,我们应该不断更新自己的教学观念,要有崭新的科学指导思想,以创造性的教学劳动唤起学生的学习数学的创新意识,提高学生学习数学的积极性,让学生充分从事数学探究活动,发挥学生学习的自主性、主动性,让学生在探索中不断地发展。
反比例函数教学反思14
昨天听了李婷婷老师的一节问题发现生成课,老师准备充分,学生积极,交流讨论应用得当。课后蔡校长又对这堂课及时进行了点评和引领,使我对问题发现课,问题生成课有了新的认识,同时结合自己上课的情况进行了自我反思,现总结如下:
1.口号:李老师的学生设计的口号知识点概括的非常全面而且读起来朗朗上口,这是我值得学习的地方。回想自己的学生设计的口号,要么是知识点的罗列,要么是空洞的大话,每次设计都不如人意。在以后的教学中要对学生口号的设计重视起来,口号是学生预习的一种体现,也可以振奋学生的精神。
2.多媒体的使用:一直以来我有一种错误的认识,觉得在数学课上能用多媒体的地方太少了,今天看来,多媒体确实是省时省力的好帮手。也可以让学生时刻注意各项要求。
3.小组交流:李老师的小组交流有三种形式,2人小组交流,4人小组交流,8人小组交流,这三种交流方式要求各不相同,解决的任务也各不相同,一次比一次的`交流的深入,一次比一次有提高,这样交流无疑大大的提高了效率。回想自己在上课时的交流,每次交流完后成果总是不尽如人意,提不出问题,或者提的问题不好。我认为这种交流方式是本节课的一大亮点,也是我非常值得学习的地方。另外我认为在交流中要使每个人都有任务,每个人都是自己任务的责任人,尤其是在交流中去抓好小组长和学科长的作用,可使交流的有秩序的进行。
4.课堂记录:李老师班里的同学的课堂记录本记录的满满当当,工工整整,有组长学科长的批阅,也有老师的批阅,学生能对课上的知识点及时整理,或者是平时做错的一些题目,或者是重要的题型,这样学生课下在复习时才能有抓手,成绩当然会提高。这也是我学习的榜样。
5.评价:在一堂课将结束时,评价是非常重要的,既可对学生起到鼓励的作用,也可以起到激励的作用,蔡校长说“评价的过程就是提高的过程”,要让学生人人都会评价,人人都被评价,在评价别人的过程中也就提高了自己。
6.读:在平时学生的预习中,学生读的遍数肯定不够,主要是监督检查的力度还不够,老师督查的角色没有扮演好,所以在上课时总是嫌学生提不出好的问题,解决不了几个问题,其实学生的可塑性是很强的,关键是看老师怎样去管理,老师给学生设置一个怎样的平台。学生的预习做的好,在上课的时候可以做到事半功倍,在下一阶段的教学中,我要重视起学生的预习来。
以上是我对听李老师课的一些认识和看法,也是我今后努力的方向。
反比例函数教学反思15
学习用反比例函数解决实际问题,就是引导学生建立数学模型(反比例函数),把实际问题转化为数学问题,学生解决这类问题和解列方程解应用题一样,是学习上面的难点内容,除了要求学生研读题意,理顺数量关系,在学习研究问题时,通过实例使学生搞清基本量的关系,认准常量与变量,熟练等式变形,注意单位统一。
在进行新课学习之前,我就设计了这样的问题,在实际生活中有许多的例子存在着三个基本量满足a=bc的关系,当b为常量时,a与c成正比例,当c为常量时,a与b成正比例,当a为常量时,b与c成反比例,试举出具有a=bc的关系的例子,学生能够举出很多这样的例子,再利用这样的例子加以研究,例如有学生举出路程速度时间满足:路程等于速度乘以时间,速度为常量时,路程与时间成正比例;时间为常量时,路程与速度成正比例;路程为常量时,速度与时间成反比例。在继续研究问题时,学生对于问题中的常量变量及其函数关系就能够比较快地用变化的观念来理解了。布置学生学习第56页的《阅读与思考》:生活中的反比例关系。
课本上有几个不太妥当的地方:
例题2的第二小问用的是具体求出t=5时v=48,再进行问题的回答,学生较难理解,我在处理时,用函数的增减性加以解释,当0<t≤5时,v随t的增大而增大,所以v≥48。或者结合函数的图象加以认识,学生理解起来更为便利。
第54页的三个练习题都应该指明变量的单位,没有单位,函数关系式是不好确定的.。
在研究实际问题与反比例函数的关系时,一般的,自变量的取值范围为正数,所以画出的函数图象都是双曲线的一个分支,学生在做练习时没有注意这一点,本课要做说明。由这个作业讲评引出例题1熏药消毒的问题研究,首先提出释放药物之后的反比例函数自变量的取值范围,再关注到空气中的含药量与时间的函数关系是分段函数,进而有条理地求出解析式,第二、三小问是难点,结合图形直观地解读题目,可以借助直尺放置在图形上,使直尺平行于横轴,进行平移,表出直线与图形交点的横坐标的变化和意义,学生对这样的处理有比较好的理解,联系前面学习过的农作物受冻害的题目,这个难点还是可以很好地突破的。
对于课本第58页的两个数学活动,本来是很好的教学探究内容,由于没有在专门的课题活动课上研究,时间仓促,准备不好,走的还是只求结果之路,需要很好地改进。