第一篇:反比例函数教学设计
课题 17.4 反比例函数教学设计
教材分析
在学反比例函数前已经学过正比例函数和一次函数,九下学习二次函数,教材的编写意图是由简单到复杂,先直线再曲线。因此学好反比例函数对以后学习二次函数有很大的帮助。另一方面一次函数与反比例函数、二次函数有着非常紧密的联系,所以在复习反比例函数时把一次函数与它进行对比更有利于学好函数的有关知识。
学情分析
学生对于数学的学习兴趣比较浓厚,课堂上能积极发言,思考,交流互动,形成了互助合作的好习惯.在本节课学习之前,学生已较好地掌握了正比例函数和一次函相关内容,因此本节的学习中,师适当地引导之后.可放心地让生合作交流,自主探索.在练习的设置中可由浅入深,适当地提高,让生动脑思考,交流探讨充分地参与到学习中来.教学目标
1、通过具体的情境、让学生经历由实例领会函数和反比例函数概念的过程,从而进一步体会反比例函数的意义。
2、观察、比较、加深对反比例函数的图象和性质的理解,建立函数知识体系。
3、在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。
教学重点
反比例函数的图像和性质在实际问题中的运用
教学难点
难点是反比例函数性质的应用。
教学方法
鉴于教材特点及学生的年龄特点、心理特征和认知水平,采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。
通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——自主——交流——总结”的学习活动过程,同时在教学中,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。
学法指导
本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。
教学过程
一.知识回顾 :
让学生小组交流总结反比例函数的相关知识,形成知识网络,做到心中有数,学以致用。二.自主完成:
十个问题的设计考查反比例函数的定义及解析式的不同形式,反比例函数图象的位置、增减性,重点是巩固基础知识和一般的解题方法。利用所学知识,解决问题,学生先自主完成,然后通过学生代表精讲加深理解,。
第2,5,9, 10小题易错处必要时教师精讲。第5题强调 “必须限定在每一个象限内”,设计的主要目的是平时在作业中错误率也较高,再次讲解以加深理解和记忆。
三.议一议(合作交流)
九个小组组内交流这三个问题的学习成果,达成共识后举手示意老师本组交流完毕。
组间交流学习成果,此时边分析边讲解,讲解时学生不仅要说出结论,更要说出思维过程(说做法、说思路、说规律、说关键点),教师要观察和帮助学困生或组。
教师指定三个组学生讲解,及时鼓励学生总结补充。四.能力提升
第1题是对待定系数法求函数关系式的考查
充分利用“图象”这个载体,随时随地渗透数形结合的数学思想.一学生板演解题过程。注重规范书写.第2题是对反比例函数,一次函数与方程,面积的综合考查。学生代表分析引导,激发学生的求知欲,关注“学困生”;请两名学生上台分析.关注学生的思维。五.当堂检测:
反馈学生掌握情况。六.课堂小结
通过这节课的学习,你有什么收获?
本节复习课主要复习反比例函数的概念、图像、性质、应用等内容,夯实基础提高应用。
七、作业
能力提升第2题过程,课本64页习题17.5第5题
板书设计
17.4 反比例函数
1.定义
2.确定表达式 3.图象 4.性质
评价设计
本节课采用的评价方法主要有:观察、抽问,和练习抽查等。教学中注意随时观察学生对学习的态度表现,如注意力集中的程度、情感的参与和行为参与的情况;通过提问和练习,评价学生对学习内容的认知程度,如对学习内容的思维反应是否积极、跟进;课堂练习、答问的正确程度;练习的正确率等。根据学生的情况及时调整教学内容和过程,以较好地实现教学目标
第二篇:反比例函数教学设计
17.1.2 反比例函数的图象和性质(2)教学设计 学习课题:17.1.2 反比例函数的图象和性质(2)
学习内容:教材P44-45 学习目标:
1、能用待定系数法求反比例函数的解析式.
2、能用反比例函数的定义和性质解决实际问题.
学习重点:反比例函数图象性质的应用.
学习难点:反比例函数图象图象特征的分析及应用。学习准备:
1、如何画反比例函数图象。
2、反比例函数有哪些性质。
学习过程:
一、探究研讨: 【活动1】老师在黑板上写了这样一道题:“已知点(2,5)在反比例函数y=
?的图象上,x•试判断点(-5,-2)是否也在此图象上.”题中的“?•”是被一个同学不小心擦掉的一个数字,请你分析一下“?”代表什么数,并解答此题目.
【活动2】已知反比例函数的图象经过点A(2,6)
(1)这个函数的图象分布在哪些象限?y随x的增大而如何变化?
(2)点B(3,4)、C(-
214,-4)和D(2,5)是否在这个函数的图象上? 2
5【活动3】如图是反比例函数y=(m-5)/x的图象的一支。根据图象回答下列问题:(1)图象的另分布在哪些象限?常数m的取值范围是什么?
(2)在函数的图象的某一支上任取点A(a,b)和点B(,b′)。如果a﹥a′,那么
b和b′有怎样的大小关系?
二、巩固练习:
1、P45-
1、2
2、判断下列说法是否正确
(1)反比例函数图象的每个分支只能无限接近x轴和y轴,•但永远也不可能到达x 轴或y轴.()3中,由于3>0,所以y一定随x的增大而减小.()x
2(3)已知点A(-3,a)、B(-2,b)、C(4,c)均在y=-的图象上,则a
x
(2)在y=
(4)反比例函数图象若过点(a,b),则它一定过点(-a,-b).()
3、设反比例函数y=
3m的图象上有两点A(x1,y1)和B(x2,y2),且当x1<0 ,在图象的每一支上,y随x•xk的图象有一个交点的纵坐标是2,求(1)x时,有y1 . 4、点(1,3)在反比例函数y=的增大而 . 5、正比例函数y=x的图象与反比例函数y=x=-3时反比例函数y的值;(2)当-3 三、提升能力: 1、三个反比例函数(1)y= kk1k (2)y= 2(3)y=3 在x轴上方的图象如图所示,由此xxx推出k1,k2,k3的大小关系 2、直线y=kx与反比例函数y=-求S△ABC. 3、已知函数y=-kx(k≠0)和y=-足为C,则S△BOC=_________. 6的图象相交于点A、B,过点A作AC垂直于y轴于点C,x4的图象交于A、B两点,过点A作AC垂直于y轴,垂x4、已知正比例函数y=kx和反比例函数y=析式及另一交点的坐标. 3的图象都过点A(m,1),求此正比例函数解x5、如图所示,已知直线y1=x+m与x轴、y•轴分别交于点A、B,与双曲线y2=分别交于点C、D,且C点坐标为(-1,2). (1)分别求直线AB与双曲线的解析式; (2)求出点D的坐标; (3)利用图象直接写出当x在什么范围内取何值时,y1>y2. 四、反思归纳 k(k<0)x1、本节课学习的内容: 反比例函数的性质及运用 (1)k的符号决定图象_________. (2)在每一象限内,y随x的变化情况,在不同象限,_________运用此性质. (3)从反比例函数y= k的图象上任一点向一坐标轴作垂线,这一点和垂足及坐标原点x所构成的三角形面积S△=_________. (4)性质与图象在涉及点的坐标,确定解析式方面的运用 2、数学思想方法归纳: 《反比例函数》的教学设计 一、教学目标(一)知识与技能 1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似 关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.3.探索现实生活中数量间的反比例关系,能判断一个给定的函数是否为反比例函数.(二)过程与方法 1结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.2经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(三)情感与价值观要求 1.从现实情境和已有知识经验出发研究两个变量之间的相互关系,进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观 点。体验数学来源于生活实际,激发学生学习数学的热情和兴趣。2.结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.二、教学重点 经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.三、教学难点 领会反比例函数的意义,理解反比例函数的概念.四、教学方法: 利用多媒体教学平台,采用教师引导,学生自主探索和小组合作相结合的教学方式。教具准备 投影片两张 第一张:(记作A)第二张:(记作B) 五、教学过程 (一)知识链接: 函数、一次函数和正比例函数定义、性质等。(二).创设问题情境,引入新课 1、我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1600km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1600,则t和v之间的关系是什么呢?肯定不是正比例函数和一次函数的关系,那么它们之间 的关系究竟是什么关系呢?这就是本节课我们要揭开的奥秘.2、新课讲解 (1)反比例函数定义。投影片:(A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么? ①你能用含有t的代数式表示v吗? ②当 t分别为 20,40,60,80,100时,v分别为多大? 当t越来越大时,v怎样变化?当t越来越小呢? ③变量t是v的函数吗?为什么? 师生讨论后给出: 一般地,如果两个变量x、y之间的关系可以表示成(k为常数,k≠0)的形式,那么称y是x的反比例函数.从 中可知x作为分母,所以x不能为零.(2).做一做 投影片(B)①.一个矩形的面积为200平方厘米,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么? ②.某村有耕地380公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么? 解析:1)由面积等于长乘以宽可得xy=200.则有y=200/x.变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.2)根据人均占有耕地面积等于总耕地面积除以总人数得m=380/n.给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m=380/n符合反比例函数的形式,所以是反比例函数 3.课堂练习随堂练习(P131)4.活动与探究 已知y-1与 成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数? 分析:由y与x成反比例可知y= ,得y-1与 成反比例的关系式为y-1= =k(x+2),由x= 1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1, k=1.即表达式为y-1=x+2, y=x+3.由上可知y是x的一次函数.六.课时小结 本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.七.课后作业习题5.1 八.板书设计 板书设计: 反比例函数 1、定义:一般地,如果两个变量x,y之间的关系可以表示成:y=k/x(k为常数,K≠0)的形式,那么称y是x的反比例函数。 2、注意: ①常数K≠0; ②自变量x不能为零(因为分母为0时,该分式没意义); ③当 y=k/x 可写为乘积的形式 时注意x的指数为—1。④确定了k,这个函数就确定了。教学反思: 在这节课中,我认为最成功之处是比较充分地调动了学生的积极性、主动性。从生活中买房的例子出发,从一开始就吸引了学生的注意力,充分引发了学生学习的兴趣,从而使得这节课能得以发挥。由于学生的兴趣得以激发,所以在教授新课的过程中,师生得以互动。在正反比例解析式及其性质的比较中,学生能自主分析,解决问题。在图象概念比赛中,许多学生能积极指出其他同学的优缺点,并且不断发现不足之处。这样让学生自己发现问题,自己解决问题,既提高了他们语言表达的本领,更为后面学习图象性质做了铺垫。当对图象性质进行小组讨论时,许多学生能积极思考,互相反驳,互相提问解决问题,并且运用类比方法进行分析。应当说这节课让学生得到了一个良好的自主学习的环境,整节课学生积极举手发言,场面比较热烈,使我也能充分发挥。在课程设计中,我将反比例函数比较数学化的问题实际化,从实际出发又回到实际也是比较合理的。由于现在学生知识面的扩大,数学教学应该为实际服务越来越被大家接受,因此我认为联系实际是很重要的。 在这节课中,多媒体教学也起了举足轻重的地位。在电脑课件的帮助下,这节课变得比较充实丰富。而电脑动杂问题变得简单化。当然这节课存在很多不足之处。例如后半节课有些紧凑这节课在设计过程中多多少少忽略了学生的想法,在备课过程中,没有备好学生,站在学生的角度去设计课堂,这方面做的很不够,有些问题的处理方式不是恰到好处,思考问题的时间不是很充分;还有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性;另外课堂中指教者的示范作用体现的不是很好,肢体语言也不够丰富,鼓励的话显得很单一,而且投影片上在新课导入的时候还出现了差错,总之,我会在以后的教学中注意以上存在的问题。 综观整堂课,严谨亲切有余,但活泼激情不足,显得平铺直叙的感觉,缺少高潮和亮点;在今后的教学中要严格要求自己,方方面面进行改善! 一、教学设计应符合学生的认知规律,以学生的实践活动作为学生思维的切入点,创建了活泼而富有活力的课堂氛围。.重视对学生能力的培养。除培养学生积极思考、主动发言的能力外,还培养了学生的审美能力、空间观念,发展了创造力,丰富了想象力以及动手操作能力.学生在教师的引导下自主体验、建构知识,实现了知识的再创造。学生通过小组活动,在合作学习中增强与他人的合作意识。 二、本节课的学习方式主要采用探究性学习与接受性学习相结合方式,重点放在反比例函数图象的特征与性质的探究与掌握上,力求通过这一过程使学生感受从“特殊”到“一般”的认知过程,感悟数形结合、分类、归纳、运动与变化的数学思想。 三、本节课知识点的传授主要采用了与正比例函数相对照的方式进行的,这是根据现代建构主义的理论,从思维的最近发展区,通过有关知识的联想激活学生原有的函数知识,巧妙的引导学生发现正,反比例函数之间的区别与联系,掌握新知。由于本章内容是学生第一次接触函数思想,是学生认知上的一个难点,所以本节课引入时引导学生观察变量之间的对应关系,为下节函数内容做好铺垫。 反比例函数教学设计(通用6篇) 作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的反比例函数教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。 教学目标 (一)教学知识点 1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(二)能力训练要求 结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(三)情感与价值观要求 结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点 经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点 领会反比例函数的意义,理解反比例函数的概念.教学方法 教师引导学生进行归纳.教具准备 投影片两张 第一张:(记作5.1A) 第二张:(记作5.1B) 教学过程 Ⅰ.创设问题情境,引入新课 [师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.Ⅱ.新课讲解 [师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数? 1.复习函数的定义 [师]大家还记得函数的定义吗? [生]记得.在某变化过程中有两个变量x,y.若给定其中一个变量x的值,y都有唯一确定的值与它对应,则称y是x的函数.[师]大家能举出实例吗? [生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.[师]请看下面的问题.电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.(1)你能用含有R的代数式表示I吗? (2)利用写出的关系式完成下表: R/Ω20406080100 I/A 当R越来越大时,I怎样变化?当R越来越小呢? (3)变量I是R的函数吗?为什么? 请大家交流后回答.[生](1)能用含有R的代数式表示I.由IR=220,得I=.(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.(3)变量I是R的函数.由IR=220得I=.当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.[师]这位同学回答的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I=,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.投影片:(5.1A) 京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么? [师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt,则有t=.当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.[师]从上面的两个例题得出关系式 I= 和t=.它们是函数吗?它们是正比例函数吗?是一次函数吗? [生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢? [生]可以.由I= 与t= 可知关系式为y=(k为常数且k≠0).[师]很好.一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数.从y= 中可知x作为分母,所以x不能为零.3.做一做 投影片(5.1B) 1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么? 2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么? 3.y是x的反比例函数,下表给出了x与y的一些值: x-2-1 y 2-1 (1)写出这个反比例函数的表达式; (2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy=20.则有y=.变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m=.给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y的值.[生]设反比例函数的表达式为 y=.(1)当x=-1时,y=2; ∴k=-2.∴表达式为y=-.(2)当x=-2时,y=1.当x=-时,y=4; 当x= 时,y=-4; 当x=1时,y=-2.当x=3时,y=-; 当y= 时,x=-3; 当y=-1时,x=2.因此表格中从左到右应填 -3,1,4,-4,-2,2,-.Ⅲ.课堂练习 随堂练习(P131) Ⅳ.课时小结 本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.Ⅴ.课后作业 习题5.1 Ⅵ.活动与探究 已知y-1与 成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数? 分析:由y与x成反比例可知y=,得y-1与 成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1,k=1.即表达式为y-1=x+2,y=x+3.由上可知y是x的一次函数.板书设计 一、教学目标 1.利用反比例函数的知识分析、解决实际问题 2.渗透数形结合思想,提高学生用函数观点解决问题的能力 二、重点、难点 1.重点:利用反比例函数的知识分析、解决实际问题 2.难点:分析实际问题中的数量关系,正确写出函数解析式 三、例题的意图分析 教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。 教材第58页的例2是一道利用反比例函数的定义和性质来解决的实际问题,此题的实际背景较例1稍复杂些,目的是为了提高学生将实际问题抽象成数学问题的能力,掌握用函数观点去分析和解决问题的思路。 补充例题一是为了巩固反比例函数的有关知识,二是为了提高学生从图象中读取信息的能力,掌握数形结合的思想方法,以便更好地解决实际问题 四、课堂引入 寒假到了,小明正与几个同伴在结冰的河面上溜冰,突然发现前面有一处冰出现了裂痕,小明立即告诉同伴分散趴在冰面上,匍匐离开了危险区。你能解释一下小明这样做的道理吗? 五、例习题分析 例1.见教材第57页 分析:(1)问首先要弄清此题中各数量间的关系,容积为104,底面积是S,深度为d,满足基本公式:圆柱的体积=底面积×高,由题意知S是函数,d是自变量,改写后所得的函数关系式是反比例函数的形式,(2)问实际上是已知函数S的值,求自变量d的取值,(3)问则是与(2)相反 例2.见教材第58页 分析:此题类似应用题中的“工程问题”,关系式为工作总量=工作速度×工作时间,由于题目中货物总量是不变的,两个变量分别是速度v和时间t,因此具有反比关系,(2)问涉及了反比例函数的增减性,即当自变量t取最大值时,函数值v取最小值是多少? 例1.(补充)某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(千帕)是气体体积V(立方米)的反比例函数,其图像如图所示(千帕是一种压强单位) (1)写出这个函数的解析式; (2)当气球的体积是0.8立方米时,气球内的气压是多少千帕? (3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米? 分析:题中已知变量P与V是反比例函数关系,并且图象经过点A,利用待定系数法可以求出P与V的解析式,得,(3)问中当P大于144千帕时,气球会爆炸,即当P不超过144千帕时,是安全范围。根据反比例函数的图象和性质,P随V的增大而减小,可先求出气压P=144千帕时所对应的气体体积,再分析出最后结果是不小于立方米 六、随堂练习 1.京沈高速公路全长658km,汽车沿京沈高速公路从沈阳驶往北京,则汽车行完全程所需时间t(h)与行驶的平均速度v(km/h)之间的函数关系式为 2.完成某项任务可获得500元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式 3.一定质量的氧气,它的密度(kg/m3)是它的体积V(m3)的反比例函数,当V=10时,=1.43,(1)求与V的函数关系式;(2)求当V=2时氧气的密度 答案:=,当V=2时,=7.15 教学目标: 1、能利用反比例函数的相关的知识分析和解决一些简单的实际问题 2、能根据实际问题中的条件确定反比例函数的解析式。 3、在解决实际问题的过程中,进一步体会和认识反比例函数是刻画现实世界中数量关系的一种数学模型。 教学重点、难点: 重点:能利用反比例函数的相关的知识分析和解决一些简单的实际问题 难点:根据实际问题中的条件确定反比例函数的解析式 教学过程: 为了预防“非典”,某学校对教室采用药熏消毒法进行消毒, 已知药物燃烧时,室内每立方米空气中的含药量(g)与时间x(in)成正比例.药物燃烧后,与x成反比例(如图所示),现测得药物8in燃毕,此时室内空气中每立方米的含药量为6g,请根据题中所提供的信息,解答下列问题: (1)药物燃烧时,关于x 的函数关系式为: ________, 自变量x 的取值范围是:_______,药物燃烧后关于x的函数关系式为_______.(2)研究表明,当空气中每立方米的含药量低于1.6g时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室; (3)研究表明,当空气中每立方米的含药量不低于3g且持续时间不低于10in时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么? 例1、小明将一篇24000字的社会调查报告录入电脑,打印成文。 (1)如果小明以每分种120字的速度录入,他需要多少时间才能完成录入任务? (2)录入文字的速度v(字/in)与完成录入的时间t(in)有怎样的函数关系? (3)小明希望能在3h内完成录入任务,那么他每分钟至少应录入多少个字? 例2某自来水公司计划新建一个容积为 的长方形蓄水池。 (1)蓄水池的底部S 与其深度 有怎样的函数关系? (2)如果蓄水池的深度设计为5,那么蓄水池的底面积应为多少平方米? (3)由于绿化以及辅助用地的需要,经过实地测量,蓄水池的长与宽最多只能设计为100和60,那么蓄水池的深度至少达到多少才能满足要求?(保留两位小数) 1、一定质量的氧气,它的密度(g/3)是它的体积V(3)的反比例函数, 当V=103时,=1.43g/3.(1)求与V的函数关系式;(2)求当V=23时求氧气的密度.2、某地上电价为0.8元&nt;/&nt;度,年用电量为1亿度.本计划将电价调至0.55元至0.75元之间.经测算,若电价调至x元,则本新增用电量(亿度)与(x-0.4)(元)成反比例,当x=0.65时,=-0.8.(1)求与x之间的函数关系式; (2)若每度电的成本价为0.3元,则电价调至多少元时,本电力部门的收益将比上增加20%? [收益=(实际电价-成本价)×(用电量)] 3、如图,矩形ABCD中,AB=6,AD=8,点P在BC边上移动(不与点B、C重合),设PA=x,点D到PA的距离DE=.求与x之间的函数关系式及自变量x的取值范围. 30.3——1、2、3 一、教学目标 1.使学生理解并掌握反比例函数的概念 2.能判断一个给定的函数是否为反比例函数,并会用待定系数法求函数解析式 3.能根据实际问题中的条件确定反比例函数的解析式,体会函数的模型思想 二、重、难点 1.重点:理解反比例函数的概念,能根据已知条件写出函数解析式 2.难点:理解反比例函数的概念 3.难点的突破方法: (1)在引入反比例函数的概念时,可适当复习一下第11章的正比例函数、一次函数等相关知识,这样以旧带新,相互对比,能加深对反比例函数概念的理解 (2)注意引导学生对反比例函数概念的理解,看形式,等号左边是函数y,等号右边是一个分式,自变量x在分母上,且x的指数是1,分子是不为0的`常数k;看自变量x的取值范围,由于x在分母上,故取x0的一切实数;看函数y的取值范围,因为k0,且x0,所以函数值y也不可能为0。讲解时可对照正比例函数y=kx(k0),比较二者解析式的相同点和不同点。 (3)(k0)还可以写成(k0)或xy=k(k0)的形式 三、例题的意图分析 教材第46页的思考题是为引入反比例函数的概念而设置的,目的是让学生从实际问题出发,探索其中的数量关系和变化规律,通过观察、讨论、归纳,最后得出反比例函数的概念,体会函数的模型思想。 教材第47页的例1是一道用待定系数法求反比例函数解析式的题,此题的目的一是要加深学生对反比例函数概念的理解,掌握求函数解析式的方法;二是让学生进一步体会函数所蕴含的变化与对应的思想,特别是函数与自变量之间的单值对应关系。 补充例1、例2都是常见的题型,能帮助学生更好地理解反比例函数的概念。补充例3是一道综合题,此题是用待定系数法确定由两个函数组合而成的新的函数关系式,有一定难度,但能提高学生分析、解决问题的能力。 教学目标: 经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的 概念。 教学程序: 1、从现实情况和已有知识经验出发,讨论两个变量之间的相依关系,加强对函数概念的理解,导入反比例函数。 2、U=IR,当U=220V时,(1)你能用含 R的代数式 表示I吗? (2)利用写出的关系式完成下表: R(Ω)20 40 60 80 100 I(A) 当R越来越大时,I怎样 变化? 当R越来越小呢? (3)变量I是R的函数吗?为什么? 答:① I = UR ② 当R越来越大时,I越来越小,当R越来越小时,I越来越大。 ③变量I是R的函数。当给定一 个R的值时,相应地就确定了一个I值,因此I是R的函数。 1、反比例函数的概念 一般地,如果两个变量x, y之间的关系可以表示成 y=kx(k为常数,k≠0)的形式,那么称y是x的反比例函 数。 反比例函数的自变量x 不能为零。 2、做一做 一个矩形的 面积为20cm2,相邻两条边长分别为xcm和 ycm,那么变量y是变量x的 函数吗?是反比例函数吗? 解:y=20x,是反比例函数。 P133,12 P133,习题5.1 1、2题 教学目标: 使学生对反比例函数和反比 例函数的图象意义加深理解。 教学重点: 反比例函数 的应用 教学程序: 1、实例1:(1)用含S的代数式 表示P,P是 S的反比例函数吗?为什么? 答:P=600s(s0),P 是S的反比例函数。 (2)、当木板面积为0.2 m2时,压强是多少? 答:P=3000Pa (3)、如果要求压强不超过6000Pa,木板的面积至少 要多少? 答:至少0.lm2。 (4)、在直角坐标系中,作出相应的函数 图象。 (5)、请利用图象(2)和(3)作出直观 解释,并与同伴进行交流。 1、(1)蓄电池的电 压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图5-8 所示。 (2)蓄电池的电压是多少?你以写出这一函数的表达式吗? 电压U=36V,I=60k2、完成下表,并 回答问题,如果以蓄电池为电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范围内? R()3 4 5 6 7 8 9 10 I(A) 3、如图5-9,正比例函数y=k1x的图象与反比例函数y=60k 的图象相交于A、B两点,其中点A的坐标为(3,23) (1)分别写出这两个函 数的表达式; (2)你能求出点B的坐标吗?你是怎样求的?与同伴进行交流; 随堂练习: P145~146 1、2、3、4、5 作业:P146习题5.4 1、2 反比例函数的图象与性质教学设计 教学目标 1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。2.会三种表示方法的相互转换,对函数进行认识上的整合。3.逐步提高从函数图象获取信息的能力,探索并掌握反比例函数的主要性质。 教学重点:反比例函数图像的作法及性质总结。教学难点:反比例函数图像的作法。教学方法:自主探索、合作交流、尝试练习。教学内容及过程 一、小测验 出示测验题,学生独立完成后交流。 二、回顾函数图像的做法。 演示一次函数y=2x+1的图象的作图过程 三、新授 1、演示反比例函数 y66 和y的作图过程 xx2、议一议 (1)你认为作反比例函数图象时应注意哪些问题?与同伴进行交流。 (2)如果在列表时所选取的数值不同,那么图象的形状是否相同? (3)连接时能否连成折线?为什么必须用光滑的曲线连接各点?(4)曲线的发展趋势如何? 学生先分四人小组进行讨论,而后小组汇报 3、做一做 44yy作反比例函数与图象。(学生动手画图,两学生上 xx板做。) 师生共同检查交流,教师出示错图例子师生交流出错原因,学生检查改正。 4、想一想 观察y和y4x4的图象,它们有什么相同点和不同点? x(生)观察、思考,弄清上述两个图象的异同点,并尝试总结。(师)视情况从形状、位置等方面提示 总结得出反比例函数的图象性质: 反比例函数的图象是双曲线 当k0时,双曲线的两支在一、三象限; 当k0时,双曲线的两支在二、四象限 四、课堂巩固练习 出示练习题,留一定时间学生完成后交流 五、课堂小结 同学们:在本节课的学习中你收获了哪些知识,掌握了哪些方法?以学习小组为单位,回顾、整理、交流。一学生总结其余学生补充。最后教师对学生在本节课的表现进行评价。教学反思 在作反比例函数图像环节中:能充分调动学生全员参与作图像的过程,能够对学生作图中出现的错误类型进行展示,并留出充分的时间让学生修改。在总结性质时:能够让学生经历观察、对比、分析、交流的课堂活动,充分发挥学生学习的自主性,让学生尝试总结,教师完善。在课堂练习巩固环节中:能够设置与本节课相应的典型习题,让学生在解决问题的过程中理解知识并形成一定的技能。在课堂小结中:能够让学生谈本节课的收获,教师用积极鼓励的语言对学生进行评价。教学效果良好。第三篇:《反比例函数》的教学设计[范文模版]
第四篇:反比例函数教学设计(通用)
第五篇:反比例函数及图形教学设计(本站推荐)