《反比例函数的意义》教学设计

时间:2019-05-12 22:53:56下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《反比例函数的意义》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《反比例函数的意义》教学设计》。

第一篇:《反比例函数的意义》教学设计

《反比例函数的意义》教学设计

一、内容和内容解析 1.内容

反比例函数的意义. 2.内容解析

本课是反比例函数这一章的第一课时,其主要功能是在学生学习过的一次函数的基础上,通过实际例子帮助学生认识并归纳出反比例函数的意义.反比例函数作为初中三个基本函数(还有一次函数和二次函数)中最特殊的一个,明确其意义是最为重要的内容.另外本节课的学习可以给学生研究其它函数做好引领工作,帮助他们养成良好的思维品质和学习习惯.

学生需要对从实际问题中得出的三个关系式进行观察、归纳,结合已学知识来得出反比例函数的概念,并且深入的理解其意义.在此过程中,教师需要给学生一些必要的指引,具体到课堂教学实际中就是通过问题的引领,帮助学生做好问题的探究.学生是这个环节的主体,教师是辅助者,在实际教学中要尊重学生所提出的问题和看法,不应该把教师的观点强加给学生.

基于以上分析,确定本节课的教学重点为:理解反比例函数的概念.

二、目标和目标解析 1.教学目标

(1)理解反比例函数的意义;

(2)能够根据已知条件确定反比例函数的解析式. 2.目标解析

达成目标(1)的标志是:通过对实际问题和数学问题的分析,抽象概括得出反比例函数的概念,知道自变量和对应函数成反比例的特征.

达成目标(2)的标志是:能根据问题中的变量关系,确定反比例函数的解析式.

三、教学问题诊断分析

学生已经学习过了一次函数、二次函数、分式等预备知识,对函数的图象、性质和特征具有了一定的认知能力.再加上小学已经学习过的反比例关系,学生对反比例函数的引入不会感到突然.在对实际问题和数学问题进行分析过程中,需加强对函数概念的理解:对于自变量每一个确定的值,有唯一确定的值与之对应.反比例函数与一次函数、二次函数的不同在于两个变量的乘积为定值.同时,学习过程中要回顾类比反比例关系,分式的概念及其运算.

但是反比例函数与学生已学过的一次函数、二次函数有着根本的不同.虽然从形式上和正比例函数很类似,但是其自变量取值范围不再是全体实数,所以相比于学生熟悉的函数类型,反比例函数的研究方式会有所不同,而本节课的学习就是所有这些改变的起点.

本课的教学难点是:抽象得到反比例函数概念的过程.

四、教学过程设计 1.创设情境,引入新知

问题1京广高铁全程为2 298km,某次列车的平均速度v(单位:km/h)与此次列车的全程运行时间t(单位:h)有什么样的关系?

问题2冷冻一个0℃的物体,使它的温度下降到零下273℃,每分钟变化的温度(单位:℃)与冷冻时间(单位:分)有什么样的关系?

师生活动:教师提出问题,学生思考、得出答案.教师板书学生给出的答案,同时提醒学生关注零下273℃的表示方法.

设计意图:用实际问题引出现实中的反比例关系,为后续的反比例函数的意义教学做好铺垫.创设问题情境,让学生感受量与量之间的函数关系,体会实际问题中蕴涵的函数关系,激发探究兴趣.

2.观察感知,理解概念

针对学生的答案,提出一系列问题: 问题3这些关系式有什么共同点? 问题4这两个量之间是否存在函数关系?

问题4.1这个变化过程中的常量和变量分别是什么? 问题4.2变量x、y在什么范围内变化? 问题4.3 y是x的函数吗?

师生活动:教师针对学生的答案进行提问,引导学生进行思考,并鼓励学生提出问题,以推动对问题的进一步思考.开始渗透研究函数的一般步骤,帮助学生探究函数关系.学生需要调动原有知识储备,经过思考和讨论来回答问题.

设计意图:通过对问题的讨论分析,让学生学会用函数的观点分析生活中变量之间的关系,并能够用反比例关系式表示出来,初步建立反比例函数的模型. 3.归纳概括, 建立模型 问题5这个函数应该如何表示? 问题6你能给这个函数起个名字吗? 归纳整理出反比例函数的意义: 一般地,形如

(为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.

师生活动:教师提出问题,学生思考、议论后交流.教师应引导学生用规范的数学语言表达反比例函数的概念,并引导学生发现自变量x的取值范围是不等于0的一切实数.

设计意图:使学生从上述不同的数学关系式中抽象出反比例函数的一般形式,让学生感受反比例函数的基本特征,发展学生用数学语言描述反比例函数的能力,体会从实际问题中抽象出反比例函数的方法.

4.分析例题, 培养能力

例1 已知y是x的反比函数,并且当x=2时,y=6.(1)写出y关于x的函数解析式.(2)当x=4时,求y的值.师生活动:教师提出问题,学生思考、交流,解答问题.教师引导学生理解“y是x的反比函数”这句话的意义,总结得出求反比例函数解析式的方法,正确用反比例函数解析式解决问题.

设计意图:使学生会根据已知条件求反比例函数的解析式,进一步熟悉函数值的求法.例2已知(1)写出(2)求当与成反比例,并且当

时,和的函数解析式;

时的值.

师生活动:教师提出问题,学生独立思考,解答问题.教师巡视学生完成情况,并请学生展示解答过程,给予适当评价.

设计意图:已知条件中y与

成反比例.设为

(k≠0),看作整体,进一步

加深对反比例函数概念理解,明确反比例与反比例函数的区别和联系,并会解决实际问题.5.归纳小结,反思提高

教师与学生一起回顾本课所学主要内容,并请学生回答以下问题:

(1)我们今天学习了反比例函数的哪些知识?如何获得反比例函数的概念?(2)反比例函数中的两个变量的关系是什么?(3)反比例函数对自变量取值有何要求?(4)如何根据已知条件求反比例函数的解析式?

设计意图:让学生能够梳理知识体系,进一步加深对知识的理解. 6.布置作业

教科书习题26.1 复习巩固第1,2题.五、目标检测设计

设计意图:进一步明晰概念,用反比例函数的概念判定函数是否为反比例函数:从形式上看是写成一般式,实质上是两个变量的乘积为定值.

2.已知y与x?成反比例,并且当=2时,y=-6.(1)写出y关于的函数解析式;(2)当=4时,求y的值;(3)当y=4时,求x的值.设计意图:进一步加深概念理解,明确反比例与反比例函数的区别和联系,并会解决实际问题.

第二篇:反比例函数教学设计

课题 17.4 反比例函数教学设计

教材分析

在学反比例函数前已经学过正比例函数和一次函数,九下学习二次函数,教材的编写意图是由简单到复杂,先直线再曲线。因此学好反比例函数对以后学习二次函数有很大的帮助。另一方面一次函数与反比例函数、二次函数有着非常紧密的联系,所以在复习反比例函数时把一次函数与它进行对比更有利于学好函数的有关知识。

学情分析

学生对于数学的学习兴趣比较浓厚,课堂上能积极发言,思考,交流互动,形成了互助合作的好习惯.在本节课学习之前,学生已较好地掌握了正比例函数和一次函相关内容,因此本节的学习中,师适当地引导之后.可放心地让生合作交流,自主探索.在练习的设置中可由浅入深,适当地提高,让生动脑思考,交流探讨充分地参与到学习中来.教学目标

1、通过具体的情境、让学生经历由实例领会函数和反比例函数概念的过程,从而进一步体会反比例函数的意义。

2、观察、比较、加深对反比例函数的图象和性质的理解,建立函数知识体系。

3、在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。

教学重点

反比例函数的图像和性质在实际问题中的运用

教学难点

难点是反比例函数性质的应用。

教学方法

鉴于教材特点及学生的年龄特点、心理特征和认知水平,采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。

通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与“探究——自主——交流——总结”的学习活动过程,同时在教学中,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。

学法指导

本堂课立足于学生的“学”,要求学生多动手,多观察,从而可以帮助学生形成分析、对比、归纳的思想方法。在对比和讨论中让学生在“做中学”,提高学生利用已学知识去主动获取新知识的能力。因此在课堂上采用积极引导学生主动参与,合作交流的方法组织教学,使学生真正成为教学的主体,体会参与的乐趣,成功的喜悦,感知数学的奇妙。

教学过程

一.知识回顾 :

让学生小组交流总结反比例函数的相关知识,形成知识网络,做到心中有数,学以致用。二.自主完成:

十个问题的设计考查反比例函数的定义及解析式的不同形式,反比例函数图象的位置、增减性,重点是巩固基础知识和一般的解题方法。利用所学知识,解决问题,学生先自主完成,然后通过学生代表精讲加深理解,。

第2,5,9, 10小题易错处必要时教师精讲。第5题强调 “必须限定在每一个象限内”,设计的主要目的是平时在作业中错误率也较高,再次讲解以加深理解和记忆。

三.议一议(合作交流)

九个小组组内交流这三个问题的学习成果,达成共识后举手示意老师本组交流完毕。

组间交流学习成果,此时边分析边讲解,讲解时学生不仅要说出结论,更要说出思维过程(说做法、说思路、说规律、说关键点),教师要观察和帮助学困生或组。

教师指定三个组学生讲解,及时鼓励学生总结补充。四.能力提升

第1题是对待定系数法求函数关系式的考查

充分利用“图象”这个载体,随时随地渗透数形结合的数学思想.一学生板演解题过程。注重规范书写.第2题是对反比例函数,一次函数与方程,面积的综合考查。学生代表分析引导,激发学生的求知欲,关注“学困生”;请两名学生上台分析.关注学生的思维。五.当堂检测:

反馈学生掌握情况。六.课堂小结

通过这节课的学习,你有什么收获?

本节复习课主要复习反比例函数的概念、图像、性质、应用等内容,夯实基础提高应用。

七、作业

能力提升第2题过程,课本64页习题17.5第5题

板书设计

17.4 反比例函数

1.定义

2.确定表达式 3.图象 4.性质

评价设计

本节课采用的评价方法主要有:观察、抽问,和练习抽查等。教学中注意随时观察学生对学习的态度表现,如注意力集中的程度、情感的参与和行为参与的情况;通过提问和练习,评价学生对学习内容的认知程度,如对学习内容的思维反应是否积极、跟进;课堂练习、答问的正确程度;练习的正确率等。根据学生的情况及时调整教学内容和过程,以较好地实现教学目标

第三篇:反比例函数教学设计

17.1.2 反比例函数的图象和性质(2)教学设计 学习课题:17.1.2 反比例函数的图象和性质(2)

学习内容:教材P44-45 学习目标:

1、能用待定系数法求反比例函数的解析式.

2、能用反比例函数的定义和性质解决实际问题.

学习重点:反比例函数图象性质的应用.

学习难点:反比例函数图象图象特征的分析及应用。学习准备:

1、如何画反比例函数图象。

2、反比例函数有哪些性质。

学习过程:

一、探究研讨: 【活动1】老师在黑板上写了这样一道题:“已知点(2,5)在反比例函数y=

?的图象上,x•试判断点(-5,-2)是否也在此图象上.”题中的“?•”是被一个同学不小心擦掉的一个数字,请你分析一下“?”代表什么数,并解答此题目.

【活动2】已知反比例函数的图象经过点A(2,6)

(1)这个函数的图象分布在哪些象限?y随x的增大而如何变化?

(2)点B(3,4)、C(-

214,-4)和D(2,5)是否在这个函数的图象上? 2

5【活动3】如图是反比例函数y=(m-5)/x的图象的一支。根据图象回答下列问题:(1)图象的另分布在哪些象限?常数m的取值范围是什么?

(2)在函数的图象的某一支上任取点A(a,b)和点B(,b′)。如果a﹥a′,那么

b和b′有怎样的大小关系?

二、巩固练习:

1、P45-

1、2

2、判断下列说法是否正确

(1)反比例函数图象的每个分支只能无限接近x轴和y轴,•但永远也不可能到达x 轴或y轴.()3中,由于3>0,所以y一定随x的增大而减小.()x

2(3)已知点A(-3,a)、B(-2,b)、C(4,c)均在y=-的图象上,则a

x

(2)在y=

(4)反比例函数图象若过点(a,b),则它一定过点(-a,-b).()

3、设反比例函数y=

3m的图象上有两点A(x1,y1)和B(x2,y2),且当x1<0

,在图象的每一支上,y随x•xk的图象有一个交点的纵坐标是2,求(1)x时,有y1

4、点(1,3)在反比例函数y=的增大而

5、正比例函数y=x的图象与反比例函数y=x=-3时反比例函数y的值;(2)当-3

三、提升能力:

1、三个反比例函数(1)y=

kk1k

(2)y=

2(3)y=3 在x轴上方的图象如图所示,由此xxx推出k1,k2,k3的大小关系

2、直线y=kx与反比例函数y=-求S△ABC.

3、已知函数y=-kx(k≠0)和y=-足为C,则S△BOC=_________.

6的图象相交于点A、B,过点A作AC垂直于y轴于点C,x4的图象交于A、B两点,过点A作AC垂直于y轴,垂x4、已知正比例函数y=kx和反比例函数y=析式及另一交点的坐标.

3的图象都过点A(m,1),求此正比例函数解x5、如图所示,已知直线y1=x+m与x轴、y•轴分别交于点A、B,与双曲线y2=分别交于点C、D,且C点坐标为(-1,2).

(1)分别求直线AB与双曲线的解析式;

(2)求出点D的坐标;

(3)利用图象直接写出当x在什么范围内取何值时,y1>y2.

四、反思归纳

k(k<0)x1、本节课学习的内容:

反比例函数的性质及运用

(1)k的符号决定图象_________.

(2)在每一象限内,y随x的变化情况,在不同象限,_________运用此性质.

(3)从反比例函数y=

k的图象上任一点向一坐标轴作垂线,这一点和垂足及坐标原点x所构成的三角形面积S△=_________.

(4)性质与图象在涉及点的坐标,确定解析式方面的运用

2、数学思想方法归纳:

第四篇:反比例函数的意义教学反思

反比例函数的意义教学反思

一、掌握方面

通过本节课的教学,使学生理解反比例函数的意义。并会识别反比例函数,在掌握反比例函数的同时,并会建立反比例函数基本模型,学生由正比例函数向反比例函数认识转变,两个变量对应关系(比为定值或积为定值)的区别。通过回顾已有知识,在行程问题中路程一定时,时间与速度成反比,引导学生用函数关系式表示时间与速度的关系式,为后面进一步建立反比例函数关系式基本模型做铺垫。在通过对基本问题的讨论,激发起学生的强烈的求知欲和探索愿望,使学生用函数观点从新认识日常生活中变量之间的关系,并能用反比例函数关系式表示出来,初步建立反比例函数表达式基本模型。最后让学生从上述不同关系式中抽象出反比例函数的一般情形,让学生感受从特殊到一般数学思考问题方法,发展学生抽象思维和概括能力,从而得反比例函数的概念。学生在理解.掌握要注意反比例函数与正比例函数的区别。本节教学需由浅入深,循序渐进,逐步深入,学生探究的问题愈来愈有挑战性,教师适当点拨和学生充分讨论从而共性,形成共识,教师利用对反比例函数的认识,设置由浅入深一些练习题,加深对概念的理解与把握。通过例题学习,习题的训练,归纳出求反比例函数的一般步骤。

二、不足方面

在教学中,有部分学生对反比例函数理解不透,不明确x与y之间关系,对 y=KX与y=KX 易混淆不清,正比例与反比例的区别。另外,遇到实际问题时,不能准确的审题,不能准确的确定两个变量之间的关系,因此不能正确的列出函数关系式解决问题,还有不明确两个变量的意义,也就是题目中给定数据不知道哪一个变量对应的数值,还需培养学生的审题能力,从而进一步提高解题速度。

三、需注意的几个问题:

(1)注意师生互动,提高学生的思维效率。(2)针对学生的盲区,出相应的练习巩固。

最后,本节课还学习一种重要方法即待定系数法,教师多在这种类型题目上加强练习。在今后的教学中,及时找出课堂上出现的共性问题,利用辅导课上及时纠正,然后做针对性练习来巩固盲区,强化课堂薄弱环节,使课堂走向优质高效化。

第五篇:《反比例函数》的教学设计[范文模版]

《反比例函数》的教学设计

一、教学目标(一)知识与技能

1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似 关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.3.探索现实生活中数量间的反比例关系,能判断一个给定的函数是否为反比例函数.(二)过程与方法

1结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.2经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(三)情感与价值观要求

1.从现实情境和已有知识经验出发研究两个变量之间的相互关系,进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观 点。体验数学来源于生活实际,激发学生学习数学的热情和兴趣。2.结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.二、教学重点

经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.三、教学难点

领会反比例函数的意义,理解反比例函数的概念.四、教学方法:

利用多媒体教学平台,采用教师引导,学生自主探索和小组合作相结合的教学方式。教具准备 投影片两张 第一张:(记作A)第二张:(记作B)

五、教学过程

(一)知识链接:

函数、一次函数和正比例函数定义、性质等。(二).创设问题情境,引入新课

1、我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1600km,某人开车要从A地到B地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1600,则t和v之间的关系是什么呢?肯定不是正比例函数和一次函数的关系,那么它们之间 的关系究竟是什么关系呢?这就是本节课我们要揭开的奥秘.2、新课讲解

(1)反比例函数定义。投影片:(A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么? ①你能用含有t的代数式表示v吗? ②当 t分别为 20,40,60,80,100时,v分别为多大? 当t越来越大时,v怎样变化?当t越来越小呢? ③变量t是v的函数吗?为什么? 师生讨论后给出: 一般地,如果两个变量x、y之间的关系可以表示成(k为常数,k≠0)的形式,那么称y是x的反比例函数.从 中可知x作为分母,所以x不能为零.(2).做一做 投影片(B)①.一个矩形的面积为200平方厘米,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么? ②.某村有耕地380公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么? 解析:1)由面积等于长乘以宽可得xy=200.则有y=200/x.变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.2)根据人均占有耕地面积等于总耕地面积除以总人数得m=380/n.给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m=380/n符合反比例函数的形式,所以是反比例函数 3.课堂练习随堂练习(P131)4.活动与探究

已知y-1与 成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数? 分析:由y与x成反比例可知y= ,得y-1与 成反比例的关系式为y-1= =k(x+2),由x=

1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1, k=1.即表达式为y-1=x+2, y=x+3.由上可知y是x的一次函数.六.课时小结

本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.七.课后作业习题5.1 八.板书设计 板书设计: 反比例函数

1、定义:一般地,如果两个变量x,y之间的关系可以表示成:y=k/x(k为常数,K≠0)的形式,那么称y是x的反比例函数。

2、注意: ①常数K≠0;

②自变量x不能为零(因为分母为0时,该分式没意义); ③当 y=k/x 可写为乘积的形式 时注意x的指数为—1。④确定了k,这个函数就确定了。教学反思: 在这节课中,我认为最成功之处是比较充分地调动了学生的积极性、主动性。从生活中买房的例子出发,从一开始就吸引了学生的注意力,充分引发了学生学习的兴趣,从而使得这节课能得以发挥。由于学生的兴趣得以激发,所以在教授新课的过程中,师生得以互动。在正反比例解析式及其性质的比较中,学生能自主分析,解决问题。在图象概念比赛中,许多学生能积极指出其他同学的优缺点,并且不断发现不足之处。这样让学生自己发现问题,自己解决问题,既提高了他们语言表达的本领,更为后面学习图象性质做了铺垫。当对图象性质进行小组讨论时,许多学生能积极思考,互相反驳,互相提问解决问题,并且运用类比方法进行分析。应当说这节课让学生得到了一个良好的自主学习的环境,整节课学生积极举手发言,场面比较热烈,使我也能充分发挥。在课程设计中,我将反比例函数比较数学化的问题实际化,从实际出发又回到实际也是比较合理的。由于现在学生知识面的扩大,数学教学应该为实际服务越来越被大家接受,因此我认为联系实际是很重要的。

在这节课中,多媒体教学也起了举足轻重的地位。在电脑课件的帮助下,这节课变得比较充实丰富。而电脑动杂问题变得简单化。当然这节课存在很多不足之处。例如后半节课有些紧凑这节课在设计过程中多多少少忽略了学生的想法,在备课过程中,没有备好学生,站在学生的角度去设计课堂,这方面做的很不够,有些问题的处理方式不是恰到好处,思考问题的时间不是很充分;还有的学生课堂表现不活跃,这也说明老师没有调动起所有学生的学习积极性;另外课堂中指教者的示范作用体现的不是很好,肢体语言也不够丰富,鼓励的话显得很单一,而且投影片上在新课导入的时候还出现了差错,总之,我会在以后的教学中注意以上存在的问题。

综观整堂课,严谨亲切有余,但活泼激情不足,显得平铺直叙的感觉,缺少高潮和亮点;在今后的教学中要严格要求自己,方方面面进行改善!

一、教学设计应符合学生的认知规律,以学生的实践活动作为学生思维的切入点,创建了活泼而富有活力的课堂氛围。.重视对学生能力的培养。除培养学生积极思考、主动发言的能力外,还培养了学生的审美能力、空间观念,发展了创造力,丰富了想象力以及动手操作能力.学生在教师的引导下自主体验、建构知识,实现了知识的再创造。学生通过小组活动,在合作学习中增强与他人的合作意识。

二、本节课的学习方式主要采用探究性学习与接受性学习相结合方式,重点放在反比例函数图象的特征与性质的探究与掌握上,力求通过这一过程使学生感受从“特殊”到“一般”的认知过程,感悟数形结合、分类、归纳、运动与变化的数学思想。

三、本节课知识点的传授主要采用了与正比例函数相对照的方式进行的,这是根据现代建构主义的理论,从思维的最近发展区,通过有关知识的联想激活学生原有的函数知识,巧妙的引导学生发现正,反比例函数之间的区别与联系,掌握新知。由于本章内容是学生第一次接触函数思想,是学生认知上的一个难点,所以本节课引入时引导学生观察变量之间的对应关系,为下节函数内容做好铺垫。

下载《反比例函数的意义》教学设计word格式文档
下载《反比例函数的意义》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    反比例函数教学设计(通用)五篇

    反比例函数教学设计(通用6篇)作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和......

    反比例函数及图形教学设计(本站推荐)

    反比例函数的图象与性质教学设计 教学目标 1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。 2.会三种表示方法的相互转换,对函数进行认识上的整合。 3.逐步提高从函数......

    反比例的意义教学设计

    《反比例的意义》教学设计 一、教学内容: 《反比例的意义》是六年制小学数学(人教版)下册的内容。是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量......

    《反比例的意义》教学设计大全

    《反比例的意义》教学设计 【教材理解】 《反比例的意义》是新课标人教版小学数学六年级下册第47-48页的内容。本节课的内容是在教学了成正比例的量的基础上进行教学的,是前......

    17.1.1反比例函数的意义教案

    1 7.1 反比例函数 1 7.1.1 反比例函数的意义 教学目标 (1)经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念. (2)理解反比例函数的意义,根据题目条件会求对......

    实际问题与反比例函数教学设计(模版)

    实际问题与反比例函数 目标认知 学习目标 1.经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题的过程. 2.体会数学与现实生活的紧密联系,增强应用意识,提高运用......

    18.3 反比例函数 教学设计 教案

    教学准备 1. 教学目标 经历画反比例函数图像的过程,进一步巩固画函数图像的基本方法;结合图像归纳反比例函数图像的性质,并能进行简单的应用。利用几何画板软件演示反比例函......

    《反比例函数的应用》教学设计

    《反比例函数的应用》教学设计 宁夏海原县三河中学(黒城中学) 邓永明 755200 一、教学目标 (一)教学知识点 1、经历分析实际问题中变量之间的关系、建立反比例函数模型,进而解......