第一篇:人教版2013年八年级数学上册因式分解专题练习
因式分解专题练习
一、填空题:
2.(a-3)(3-2a)=_______(3-a)(3-2a);
12.若m2-3m+2=(m+a)(m+b),则a=______,b=______;
15.当m=______时,x2+2(m-3)x+25是完全平方式.
二、选择题:
1.下列各式的因式分解结果中,正确的是
A.a2b+7ab-b=b(a2+7a)B.3x2y-3xy-6y=3y(x-2)(x+1)C.8xyz-6x2y2=2xyz(4-3xy)D.-2a2+4ab-6ac=-2a(a+2b-3c)2.多项式m(n-2)-m2(2-n)分解因式等于 A.(n-2)(m+m2)B.(n-2)(m-m2)C.m(n-2)(m+1)D.m(n-2)(m-1)3.在下列等式中,属于因式分解的是
A.a(x-y)+b(m+n)=ax+bm-ay+bn B.a2-2ab+b2+1=(a-b)2+1 C.-4a2+9b2=(-2a+3b)(2a+3b)D.x2-7x-8=x(x-7)-8 4.下列各式中,能用平方差公式分解因式的是
A.a2+b B.-a2+b2 C.-a2-b2
D.-(-a2)+b2 5.若9x2+mxy+16y2是一个完全平方式,那么m的值是 A.-12
B.±24 C.12 D.±12 6.把多项式an+4-an+1分解得
A.an(a4-a)B.an-1(a3-1)C.an+1(a-1)(a2-a+1)D.an+1(a-1)(a2+a+1)7.若a2+a=-1,则a4+2a3-3a2-4a+3的值为 A.8 B.7 C.10
D.12 8.已知x2+y2+2x-6y+10=0,那么x,y的值分别为
A.x=1,y=3 B.x=1,y=-3 C.x=-1,y=3 D.x=1,y=-3 9.把(m2+3m)4-8(m2+3m)2+16分解因式得
A.(m+1)4(m+2)2 B.(m-1)2(m-2)2(m2+3m-2)C.(m+4)2(m-1)2
D.(m+1)2(m+2)2(m2+3m-2)2 10.把x2-7x-60分解因式,得 A.(x-10)(x+6);B.(x+5)(x-12); C.(x+3)(x-20)D.(x-5)(x+12)11.把3x2-2xy-8y2分解因式,得 A.(3x+4)(x-2)B.(3x-4)(x+2)C.(3x+4y)(x-2y)D.(3x-4y)(x+2y)12.把a2+8ab-33b2分解因式,得 A.(a+11)(a-3)B.(a-11b)(a-3b)C.(a+11b)(a-3b)D.(a-11b)(a+3b)13.把x4-3x2+2分解因式,得
A.(x2-2)(x2-1); B.(x2-2)(x+1)(x-1); C.(x2+2)(x2+1); D.(x2+2)(x+1)(x-1)14.多项式x2-ax-bx+ab可分解因式为 A.-(x+a)(x+b)B.(x-a)(x+b)C.(x-a)(x-b)D.(x+a)(x+b)15.一个关于x的二次三项式,其x2项的系数是1,常数项是-12,且能分解因式,这样的二次三项式是
A.x2-11x-12或x2+11x-12 B.x2-x-12或x2+x-12 C.x2-4x-12或x2+4x-12 D.以上都可以
16.下列各式x3-x2-x+1,x2+y-xy-x,x2-2x-y2+1,(x2+3x)2-(2x+1)2中,不含有(x-1)因式的有 A.1个
B.2个 C.3个 D.4个 17.把9-x2+12xy-36y2分解因式为
A.(x-6y+3)(x-6x-3)B.-(x-6y+3)(x-6y-3)C.-(x-6y+3)(x+6y-3)D.-(x-6y+3)(x-6y+3)18.下列因式分解错误的是
A.a2-bc+ac-ab=(a-b)(a+c)B.ab-5a+3b-15=(b-5)(a+3)C.x2+3xy-2x-6y=(x+3y)(x-2)D.x2-6xy-1+9y2=(x+3y+1)(x+3y-1)19.已知a2x2±2x+b2是完全平方式,且a,b都不为零,则a与b的关系为 A.互为倒数或互为负倒数 ; B.互为相反数C.相等的数; D.任意有理数 20.对x4+4进行因式分解,所得的正确结论是 A.不能分解因式 B.有因式x2+2x+2 C.(xy+2)(xy-8)D.(xy-2)(xy-8)21.把a4+2a2b2+b4-a2b2分解因式为
A.(a2+b2+ab)2 ;B.(a2+b2+ab)(a2+b2-ab); C.(a2-b2+ab)(a2-b2-ab); D.(a2+b2-ab)2 22.-(3x-1)(x+2y)是下列哪个多项式的分解结果 A.3x2+6xy-x-2y ; B.3x2-6xy+x-2y C.x+2y+3x2+6xy; D.x+2y-3x2-6xy 23.64a8-b2因式分解为
A.(64a4-b)(a4+b);B.(16a2-b)(4a2+b); C.(8a4-b)(8a4+b); D.(8a2-b)(8a4+b)24.9(x-y)2+12(x2-y2)+4(x+y)2因式分解为
A.(5x-y)2 B.(5x+y)2 C.(3x-2y)(3x+2y)D.(5x-2y)2 25.(2y-3x)2-2(3x-2y)+1因式分解为
A.(3x-2y-1)2 ; B.(3x+2y+1)2;C.(3x-2y+1)2; D.(2y-3x-1)2 26.把(a+b)2-4(a2-b2)+4(a-b)2分解因式为
A.(3a-b)2 B.(3b+a)2 C.(3b-a)2 D.(3a+b)2 27.把a2(b+c)2-2ab(a-c)(b+c)+b2(a-c)2分解因式为 A.c(a+b)2 B.c(a-b)2 C.c2(a+b)2 D.c2(a-b)28.若4xy-4x2-y2-k有一个因式为(1-2x+y),则k的值为 A.0
B.1 C.-1
D.4 29.分解因式3a2x-4b2y-3b2x+4a2y,正确的是
A.-(a2+b2)(3x+4y)
B.(a-b)(a+b)(3x+4y)C.(a2+b2)(3x-4y)
D.(a-b)(a+b)(3x-4y)30.分解因式2a2+4ab+2b2-8c2,正确的是 A.2(a+b-2c)
B.2(a+b+c)(a+b-c)C.(2a+b+4c)(2a+b-4c)
D.2(a+b+2c)(a+b-2c)
三、因式分解:
1.m2(p-q)-p+q; 2.a(ab+bc+ac)-abc; 3.x4-2y4-2x3y+xy3; 4.abc(a2+b2+c2)-a3bc+2ab2c2; 5.a2(b-c)+b2(c-a)+c2(a-b); 6.(x2-2x)2+2x(x-2)+1; 7.(x-y)2+12(y-x)z+36z2; 8.x2-4ax+8ab-4b2; 9.(ax+by)2+(ay-bx)2+2(ax+by)(ay-bx); 10.(1-a2)(1-b2)-(a2-1)2(b2-1)2;
11.(x+1)2-9(x-1)2; 12.4a2b2-(a2+b2-c2)2; 13.ab2-ac2+4ac-4a; 14.x3n+y3n;
15.(x+y)3+125; 16.(3m-2n)3+(3m+2n)3; 17.x6(x2-y2)+y6(y2-x2); 18.8(x+y)3+1; 19.(a+b+c)3-a3-b3-c3; 20.x2+4xy+3y2; 21.x2+18x-144; 22.x4+2x2-8; 23.-m4+18m2-17; 24.x5-2x3-8x;
25.x8+19x5-216x2; 26.(x2-7x)2+10(x2-7x)-24; 27.5+7(a+1)-6(a+1)2; 28.(x2+x)(x2+x-1)-2; 29.x2+y2-x2y2-4xy-1; 30.(x-1)(x-2)(x-3)(x-4)-48; 31.x2-y2-x-y; 32.ax2-bx2-bx+ax-3a+3b; 33.m4+m2+1; 34.a2-b2+2ac+c2; 35.a3-ab2+a-b; 36.625b4-(a-b)4;
37.x6-y6+3x2y4-3x4y2; 38.x2+4xy+4y2-2x-4y-35; 39.m2-a2+4ab-4b2; 40.5m-5n-m2+2mn-n2.
四、证明(求值):
1.已知a+b=0,求a3-2b3+a2b-2ab2的值.
2.求证:四个连续自然数的积再加上1,一定是一个完全平方数. 3.证明:(ac-bd)2+(bc+ad)2=(a2+b2)(c2+d2).
4.已知a=k+3,b=2k+2,c=3k-1,求a2+b2+c2+2ab-2bc-2ac的值. 5.若x2+mx+n=(x-3)(x+4),求(m+n)2的值.
6.当a为何值时,多项式x2+7xy+ay2-5x+43y-24可以分解为两个一次因式的乘积.
7.若x,y为任意有理数,比较6xy与x2+9y2的大小. 8.两个连续偶数的平方差是4的倍数.
第二篇:鲁教版八年级数学上册 第一章 因式分解 单元测试
第一章因式分解单元测试
一.单选题(共10题;共30分)
1.4x2-12x+m2是一个完全平方式,则m的值应为()
A.3 B.-3 C.3或-3 D.9
2.下列多项式,能用完全平方公式分解因式的是()
A.x2+xy+y2 B.x2-2x-1 C.-x2-2x-1 D.x2+4y2
3.已知多项式分解因式为,则的值为()
A.B.C.D.4.下列分解因式正确的是()
A.B.C.D.5.若m>-1,则多项式m3-m2-m+1的值为()
A.正数 B.负数 C.非负数 D.非正数
6.下列从左到右的变形,是因式分解的是()
A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=x(x+1)﹣5
C.x2+4x+4=(x+2)2 D.x2﹣4=(x﹣2)2
7.如果多项式x2﹣mx+6分解因式的结果是(x﹣3)(x+n),那么m,n的值分别是()
A.m=﹣2,n=5 B.m=2,n=5 C.m=5,n=﹣2 D.m=﹣5,n=2
8.﹣(3x﹣1)(x+2y)是下列哪个多项式的分解结果()
A.3x2+6xy﹣x﹣2y B.3x2﹣6xy+x﹣2y C.x+2y+3x2+6xy D.x+2y﹣3x2﹣6xy
9.不论a,b为何有理数,a2+b2﹣2a﹣4b+c的值总是非负数,则c的最小值是()
A.4 B.5 C.6 D.无法确定
10.下列各式从左到右的变形为分解因式的是()
A.m2﹣m﹣6=(m+2)(m﹣3)B.(m+2)(m﹣3)=m2﹣m﹣6
C.x2+8x﹣9=(x+3)(x﹣3)+8x D.x2+1=x(x+)
二.填空题(共8题;共24分)
11.因式分解:a2﹣2a=________
.12.因式分解:x2﹣1= ________.13.分解因式:9a﹣a3=________ .
14.分解因式:4x3﹣2x=________
15.分解因式:4ax2﹣ay2=________.
16.分解因式:a3﹣a=________.
17.已知a+b=3,ab=2,则a2b+ab2=________.
18.分解因式:xy4﹣6xy3+9xy2=________.
三.解答题(共6题;共42分)
19.已知关于x的多项式2x3+5x2﹣x+b有一个因式为x+2,求b的值.
20.分解2x4﹣3x3+mx2+7x+n,其中含因式(x+2)和(x﹣1),求m,n.
21.已知:a﹣b=﹣2015,ab=﹣,求a2b﹣ab2的值.
22.我们对多项式x²+x﹣6进行因式分解时,可以用特定系数法求解.例如,我们可以先设x2+x﹣6=(x+a)(x+b),显然这是一个恒等式.根据多项式乘法将等式右边展开有:x2+x﹣6=(x+a)(x+b)=x²+(a+b)x+ab
所以,根据等式两边对应项的系数相等,可得:a+b=1,ab=﹣6,解得a=3,b=﹣2或者a=﹣2,b=3.所以x2+x﹣6=(x+3)(x﹣2).当然这也说明多项式x2+x﹣6含有因式:x+3和x﹣2.
像上面这种通过利用恒等式的性质来求未知数的方法叫特定系数法.利用上述材料及示例解决以下问题.
(1)已知关于x的多项式x2+mx﹣15有一个因式为x﹣1,求m的值;
(2)已知关于x的多项式2x3+5x2﹣x+b有一个因式为x+2,求b的值.
24.(1)计算:(﹣a2)3b2+2a4b
(2)因式分解:3x﹣12x3
.
答案解析
一.单选题
1.【答案】C
【考点】因式分解-运用公式法
【解析】【分析】根据完全平方式的构成即可得到结果。
【解答】∵4x2-12x+m2=(2x)2-2×2x×3+m2,∴m2=32=9,解得m=
故选C.【点评】解答本题的关键是熟练掌握完全平方公式。
2.【答案】C
【考点】因式分解-运用公式法
【解析】【解答】x2+2xy+y2=(x+y)2,x2-2x+1=(x-1)2;-x2-2x-1=-(x+1)2;x2+4xy+y2=(x+2y)2,故选C.
【分析】由于x2+2xy+y2=(x+y)2,x2-2x+1=(x-1)2,-x2-2x-1=-(x+1)2,x2+4xy+y2=(x+2y)2,则说明只有-x2-2x-1能用完全平方公式分解因式.本题考查了运用完全平方公式分解因式:a2±2ab+b2=(a±b)2
.
3.【答案】C
【考点】因式分解的应用
【解析】【分析】去括号可得。
故
故选择C。
【点评】本题难度较低,主要考查学生对分解因式整式运算知识点的掌握,去括号整理化简即可。
4.【答案】D
【考点】因式分解的意义
【解析】【分析】根据提公因式法和公式法分别分解因式,从而可判断求解.
选项A、,故错误;
选项B、,故错误;
选项C、,故错误;
选项D、,故正确.故选D.
5.【答案】C
【考点】多项式,因式分解的应用,因式分解-分组分解法
【解析】【解答】多项式m3-m2-m+1
=(m3-m2)-(m-1),=m2(m-1)-(m-1),=(m-1)(m2-1)
=(m-1)2(m+1),∵m>-1,∴(m-1)2≥0,m+1>0,∴m3-m2-m+1=(m-1)2(m+1)≥0.
选:C.
【分析】解此题时可把多项式m3-m2-m+1分解因式,根据分解的结果即可判断
6.【答案】C
【考点】因式分解的意义
【解析】【解答】解:A、(a+3)(a﹣3)=a2﹣9是多项式乘法运算,故此选项错误;
B、x2+x﹣5=x(x+1)﹣5,不是因式分解,故此选项错误;
C、x2+4x+4=(x+2)2,是因式分解,故此选项正确;
D、x2﹣4=(x﹣2)(x+2),故此选项错误.
故选:C.
【分析】根据把多项式写出几个整式积的形式叫做因式分解对各选项分析判断后利用排除法求解.
7.【答案】C
【考点】因式分解的应用
【解析】【解答】解:x2﹣mx+6=(x﹣3)(x+n)=x2+(n﹣3)x﹣3n,可得﹣m=n﹣3,﹣3n=6,解得:m=5,n=﹣2.
故选C
【分析】因式分解的结果利用多项式乘以多项式法则计算,利用多项式相等的条件求出m与n的值即可.
8.【答案】D
【考点】因式分解-分组分解法
【解析】【解答】解:3x2+6xy﹣x﹣2y=(3x﹣1)(x+2y),A错误;
3x2﹣6xy+x﹣2y=(3x﹣1)(x﹣2y),B错误;
x+2y+3x2+6xy=(3x+1)(x+2y),C错误;
x+2y﹣3x2﹣6xy=﹣(3x﹣1)(x+2y),D正确.
故选:D.
【分析】根据分组分解法把各个选项中的多项式进行因式分解,选择正确的答案.
9.【答案】B
【考点】因式分解的应用
【解析】【解答】解:∵a2+b2﹣2a﹣4b+c=(a﹣1)2﹣1+(b﹣2)2﹣4+c=(a﹣1)2+(b﹣2)2+c﹣5≥0,∴c的最小值是5;
故选B.
【分析】先把给出的式子通过完全平方公式化成(a﹣1)2﹣1+(b﹣2)2﹣4+c≥,再根据非负数的性质,即可求出c的最小值.
10.【答案】A
【考点】因式分解的意义,因式分解-十字相乘法
【解析】【解答】解:A、符合因式分解的定义,是因式分解,故正确;
B、是多项式乘法,故不符合;
C、右边不是积的形式,故不表示因式分解;
D、左边的多项式不能进行因式分解,故不符合;
故选A.二.填空题
11.【答案】a(a﹣2)
【考点】因式分解-提公因式法
【解析】【解答】a2﹣2a=a(a﹣2).
故答案为:a(a﹣2).
【分析】先确定公因式是a,然后提取公因式即可.
12.【答案】(x+1)(x﹣1)
【考点】因式分解-运用公式法
【解析】【解答】解:原式=(x+1)(x﹣1).
故答案为:(x+1)(x﹣1)
【分析】代数式利用平方差公式分解即可.
13.【答案】a(3+a)(3﹣a)
【考点】提公因式法与公式法的综合运用
【解析】【解答】
9a﹣a3,=“a”
(9﹣a2),=a(3+a)(3﹣a).
【分析】
本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次分解因式.
先提取公因式a,再对余下的多项式利用平方差公式继续分解.
14.【答案】2x(2x2﹣1)
【考点】公因式
【解析】【解答】解:4x3﹣2x=2x(2x2﹣1).
故答案为:2x(2x2﹣1).
【分析】首直接提取公因式2x,进而分解因式得出答案.
15.【答案】a(2x+y)(2x﹣y)
【考点】提公因式法与公式法的综合运用
【解析】【解答】解:原式=a(4x2﹣y2)
=a(2x+y)(2x﹣y),故答案为:a(2x+y)(2x﹣y).
【分析】首先提取公因式a,再利用平方差进行分解即可.
16.【答案】a(a+1)(a﹣1)
【考点】提公因式法与公式法的综合运用
【解析】【解答】解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).
故答案为:a(a+1)(a﹣1).
【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.
17.【答案】6
【考点】因式分解-提公因式法
【解析】【解答】解:∵a+b=3,ab=2,∴a2b+ab2=ab(a+b)=6.
故答案为:6.
【分析】首先将原式提取公因式ab,进而分解因式求出即可.
18.【答案】xy2(y﹣3)2
【考点】提公因式法与公式法的综合运用
【解析】【解答】解:原式=xy2(y2﹣6y+9)=xy2(y﹣3)2,故答案为:xy2(y﹣3)2
【分析】原式提取公因式,再利用完全平方公式分解即可.
三.解答题
19.【答案】解:∵x的多项式2x3+5x2﹣x+b分解因式后有一个因式是x+2,当x=﹣2时多项式的值为0,即16+20﹣2+b=0,解得:b=﹣34.
即b的值是﹣34.
【考点】因式分解的意义
【解析】【分析】由于x的多项式2x3+5x2﹣x+b分解因式后有一个因式是x+2,所以当x=﹣2时多项式的值为0,由此得到关于b的方程,解方程即可求出b的值.
20.【答案】解:∵分解2x4﹣3x3+mx2+7x+n,其中含因式(x+2)和(x﹣1),∴x=1、x=﹣2肯定是关于x的方程2x4﹣3x2+mx2+7x+n=0的两个根,∴2-3+m+7+n=032-24+4m-14+n=0,解得:m=-103n=-83
【考点】因式分解的意义
【解析】【分析】由“多项式2x4﹣3x3+mx2+7x+n含有因式(x﹣1)和(x+2)”得到“x=1、x=﹣2肯定是关于x的方程2x4﹣3x3+mx2+7x+n=0的两个根”,所以将其分别代入该方程列出关于m、n的方程组,通过解方程组来求m、n的值.
21.【答案】解:∵a2b﹣ab2=ab(a﹣b),∴ab(a﹣b)=(﹣2015)×(﹣)=2016.
【考点】代数式求值,因式分解-提公因式法
【解析】【分析】首先把代数式因式分解,再进一步代入求得数值即可.
22.【答案】解:(1)由题设知:x2+mx﹣15=(x﹣1)(x+n)=x2+(n﹣1)x﹣n,故m=n﹣1,﹣n=﹣15,解得n=15,m=14.
故m的值是14;
(2)由题设知:2x3+5x2﹣x+b=(x+2)(2x+t)(x+k)=2x3+(2k+t+4)x2+(4k+2t+kt)x+2kt,∴2k+t+4=5,4k+2t+kt=﹣1,2kt=b.
解得:k1=32,k2=﹣1.
∴t1=﹣2,t2=3.
∴b1=b2=2kt=﹣6.
【考点】因式分解-运用公式法,因式分解的应用
【解析】【分析】(1)根据多项式乘法将等式右边展开有:x2+mx﹣15=(x﹣1)(x+n)=x2+(n﹣1)x﹣n,所以,根据等式两边对应项的系数相等可以求得m的值;
(2)解答思路同(1).
23.【答案】解:(1)证明:
z=3x(3y﹣x)﹣(4x﹣3y)(x+3y)
=9xy﹣3x2﹣(4x2+9xy﹣9y2)
=9xy﹣3x2﹣4x2﹣9xy+9y2
=﹣7x2+9y2
∵x是3的倍数时,∴z能被9整除.
(2)当y=x+1时,则z=﹣7x2+9(x+1)2
=2x2+18x+9
=2(x+92)2﹣632
∵2(x+98)2≥0
∴z的最小值是﹣632
.
【考点】因式分解-运用公式法,因式分解的应用
【解析】【分析】(1)首先利用整式的乘法计算方法计算,进一步合并求证得出答案即可;
(2)把y=x+1代入(1)中,整理利用二次函数的性质解决问题.
24.【答案】解:(1)原式=﹣a6b2+2a4b;
(2)原式=﹣3x(x2﹣1)=﹣3x(x+1)(x﹣1).
【考点】整式的混合运算,提公因式法与公式法的综合运用
【解析】【分析】(1)原式利用幂的乘方与积的乘方运算法则计算即可得到结果;
(2)原式提取公因式,再利用平方差公式分解即可.
第三篇:八年级数学《因式分解》说课稿
八年级数学《因式分解》说课稿
八年级数学《因式分解》说课稿
各位评委老师:
上午好!我是最后一号,非常不好意思,因为我让大家痛苦而充实的等到现在。我今天说课的课题是因式分解(板书课题§4.1因式分解)。我将主要从教材分析,教法分析,学法指导,教学过程及补充说明等五个方面来具体阐述这节课。下面开始我的说课。
一、教材分析
(一)教材的地位与作用
本节课是初中数学人教北师大版八年级下册第四章第一节的内容。在此之前,学生已经学习了整式乘法的相关知识,这为过渡到本节的学习起了铺垫作用。同时本节课也为后续知识一元二次方程求解方法的学习奠定一定的作用,因此在教材中本节课起着承上启下的过渡作用,而且本节课镶嵌着深刻的数形结合思想、类比思想,有利于学生思维的深化。
(二)教学目标
根据以上对教材的认识分析和学生的实际情况,结合数学新课标,我制定如下教学目标:
1、知识与技能
(1)了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系。
(3)培养和提高学生分析、解决问题的能力
2、过程与方法
通过因式分解的学习,让学生经历因式分解概念的探索过程,感知、了解数学概念形成的方法,培养学生发现问题,分析问题,解决问题的能力。
3、情感态度与价值观
鼓励学生积极主动的参与教学的整个过程,激发其求知的欲望;让学生体会数形结合的数学思想;领会数学的应用价值,培养学生善于观察、勇于质疑的优良品质。
(三)教学重点、难点
根据新课程标准,在吃透教材的基础上,我将本节课的重难点确立为因式分解的概念,通过多层次展示,多角度分析,多方面练习,以达到突出重点,突破难点的目的。
二、教法分析
数学是思维的体操,是一门以培养人的思维,发展人的思维为目的的重要学科,因此,在教学中,教师不仅要使学生“知其然”,更要使学生“知其所以然”。
我们在师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点和学生的实际情况,主要采用启发诱导、自主学习、合作探疑相结合等教学方法。
三、学法指导
现代的文盲不再是不识字的人,而是不会学习的人。数学课重在让学生逐渐学会自主学习,养成良好的学习习惯和规范的数学思维方式、方法。基于此,在学生的学习过程中,教师要对学生顺势启发、恰当点拨,以达到优化学生学习结构的目的。
结合教材、教法和学情,本节课借助多媒体课件、活页学案等辅助手段进行,以达到增加课堂直观效果,打造高效课堂的目的。
四、教学过程
结合《数学新课标》和学生已有的知识及生活经验,根据新课改的理念,本节课我主要设计以下几个教学环节:①温故知新(3分钟)②探究新知(25分钟)③基础过关(7分钟)④课堂小结(3分钟)⑤课堂自测(5分钟)⑥课堂质疑(2分钟)
接着,我再细说一下这几个环节
(一)温故知新
给出以下两个抢答题
这一环节的目的既达到温习乘法分配律,又起到预热学生思维的目的,以保证学生尽快进入课堂学习的角色。
(二)探究新知
1、因式分解的概念
(1)想一想
能被 整除吗?还能被哪些数整除?你是怎么得出来的?
(2)议一议
你能尝试把a3-a化成几个整式的乘积的形式吗?与同伴交流.(3)拼一拼
分别写出箭头两边的面积
_____________________________=___________________
第四篇:八年级数学上册《因式分解》教学设计反思
一、教学设计及课堂实施情况的分析: 本课的教学目的是:
1、正确理解因式分解的概念,它与整式乘法的区别和联系.2、了解公因式概念和提公因式的方法。
3通过学生的自主探索,发现因式分解的基本方法,会用提公因式法把多项式进行因式分解.4、在探索提公因式法分解因式的过程中学会逆向思维,渗透化归的思想方法。教学重点是:因式分解的概念,用提公因式分解因式.教学难点是:找出多项式中的公因式和公因式提出后另一个因式的确定.这是一节数学常规课,没有游戏和丰富的活动,在进行新课改的今天,这节课如何体现新课改的精神,就成了我思考的重点,这节课我是这样上的:
在引入“因式分解”这一概念时是通过复习小学知识“因数分解”,因为因数分解学生已经掌握,由此提出因式分解的概念,一方面突出了多项式因式分解本质特征是一种式的恒等变形,另一方面也说明了它可以与因数分解进行类比,从而对因式分解的概念和方法有一个一整体的认识,也渗透着数学中的类比思想,此处的设计意图是类比方法的渗透。接着让学生进行练习,进一步巩固因式分解的概念。使学生进一步认识到因式分解与整式乘法的区别则通过把等号两边的式子互相转换位置而直观得出。从上面几个式子中的练习中,让学生观察属于因式分解的那几个式子的共同特点,得出公因式的概念。然后让学生通过小组讨论得到公因式的结构组成,进而总结出找公因式的方法,并且引导学生得出提取公因式法这一因式分解的方法其实就是将被分解的多项式除以公因式得到余下的因式的计算过程。此处的意图是充分让学生自主探索,合作学习。而实际上,学生的学习情绪还是调动起来了的。通过小组讨论学习,尽管语言的组织方面不够完善,但是均可以得出结论。接着通过例题讲解,使学生进一步认识到多项式可以有不同形式的表示,例题讲解的重点一是公因式的概念,如何去找公因式,二是公因式提出后,另一个因式是如何确定的。最后让学生自主完成练习题,通过练习,以达到深化理解所学内容,形成因式分解解题技能的目的,同时充分让学生暴露问题,以便查缺补漏,在学生练习之后的交流中,要注意学生出现的问题,最后作出汇总,强调运用提公因式法分解因式时,需注意的地方。然后进行课堂小结,布置作业,目的是使学生养成反思的习惯,为掌握知识、提高能力服务。
二、教学反思
课后,我认为教学目的已达到,尽管我对易错点进行了强调,但是做作业是还是出现了不少错误,说实话,以前,我会把这些学生叫过来,把这些出错的地方在给她们讲解一下,不考虑为什么会出现这样的结果。通过学习让我认识到:只有深入反思,才能提高我们的教学水平。只有深入反思,才能提高我们的课堂效率。最终得到我们的高效课堂。我觉得要想提高自己的教学水平,就要及时反思自己教学中存在的不足,在每一节课前充分预想到课堂的每一个细节,想好对应的措施,不断提高自己的教学水平。反思改变了我的看法,我们常会听到老师们抱怨“现在的学生怎么了,我讲了几遍还不会!到底该怎么办”,其实,在此之前我也经常抱怨,通过学习,我的看法发生了改变,为什么换位思考一下“我的教学中存在什么问题,为什么我讲了几遍学生还听不懂?到底是我的问题还是学生的问题”大家试想一下:时代在发展,社会在进步,人类思想在变化的,学生更不是静止不变的,每个时期的学生都有不同的思想和个性、生活方式和行为习惯、处事态度和准则。我反省:在改变学生和改变我自己的问题上我选择改变自己,因为我无权也无法改变别人,但可以改变自己。在学生反思和自己反思的问题上我选择反思自己。因为我不能反思学生的反思,但我可以反思我自己的反思。反思对教师成长也非常重要,教学反思本身就是发生在我们身边的,我们经历过的一些事情做较深入的分析。这种分析对每位老师来说,从认识到理解一些概念,从形成一些观念,到形成和改变一些行为习惯,也都是非常重要的,它有利于我们积累和丰富经验,有利于我们成长,有利于我们成为优秀教师,从而影响着一届又一届的学生。经验不是理论,更不能代替理论。要想把经验转化成理论,是要经过反思、验证、实践、理论化的过程的。而反思是这一过程的开始。所以说反思是一件对我们每位老师成长来说都是非常重要的一件事情。
课后我对本课进行了反思,我认为教学设计引入的过程可以简化。对于因式分解的概念,学生可通过自己的一系列练习实践去体会到此概念的特点,故不需在开头引入的地方多加铺垫,浪费了一定的时间。在设计的时候脚手架的搭建层次也不够分明。对于有关概念的建立和提公因式方法的研究,要尽可能地让学生进行讨论和辨析。让他们在发现过程中感受到学习数学的乐趣,体验成功的喜悦。
第五篇:八年级数学上册《因式分解》教学设计反思
一、教学设计及课堂实施情况の分析: 本课の教学目の是:
1、正确理解因式分解の概念,它与整式乘法の区别和联系.2、了解公因式概念和提公因式の方法。
3通过学生の自主探索,发现因式分解の基本方法,会用提公因式法把多项式进行因式分解.4、在探索提公因式法分解因式の过程中学会逆向思维,渗透化归の思想方法。教学重点是:因式分解の概念,用提公因式分解因式.教学难点是:找出多项式中の公因式和公因式提出后另一个因式の确定.这是一节数学常规课,没有游戏和丰富の活动,在进行新课改の今天,这节课如何体现新课改の精神,就成了我思考の重点,这节课我是这样上の:
在引入“因式分解”这一概念时是通过复习小学知识“因数分解”,因为因数分解学生已经掌握,由此提出因式分解の概念,一方面突出了多项式因式分解本质特征是一种式の恒等变形,另一方面也说明了它可以与因数分解进行类比,从而对因式分解の概念和方法有一个一整体の认识,也渗透着数学中の类比思想,此处の设计意图是类比方法の渗透。接着让学生进行练习,进一步巩固因式分解の概念。使学生进一步认识到因式分解与整式乘法の区别则通过把等号两边の式子互相转换位置而直观得出。从上面几个式子中の练习中,让学生观察属于因式分解の那几个式子の共同特点,得出公因式の概念。然后让学生通过小组讨论得到公因式の结构组成,进而总结出找公因式の方法,并且引导学生得出提取公因式法这一因式分解の方法其实就是将被分解の多项式除以公因式得到余下の因式の计算过程。此处の意图是充分让学生自主探索,合作学习。而实际上,学生の学习情绪还是调动起来了の。通过小组讨论学习,尽管语言の组织方面不够完善,但是均可以得出结论。接着通过例题讲解,使学生进一步认识到多项式可以有不同形式の表示,例题讲解の重点一是公因式の概念,如何去找公因式,二是公因式提出后,另一个因式是如何确定の。最后让学生自主完成练习题,通过练习,以达到深化理解所学内容,形成因式分解解题技能の目の,同时充分让学生暴露问题,以便查缺补漏,在学生练习之后の交流中,要注意学生出现の问题,最后作出汇总,强调运用提公因式法分解因式时,需注意の地方。然后进行课堂小结,布置作业,目の是使学生养成反思の习惯,为掌握知识、提高能力服务。
二、教学反思
课后,我认为教学目の已达到,尽管我对易错点进行了强调,但是做作业是还是出现了不少错误,说实话,以前,我会把这些学生叫过来,把这些出错の地方在给她们讲解一下,不考虑为什么会出现这样の结果。通过学习让我认识到:只有深入反思,才能提高我们の教学水平。只有深入反思,才能提高我们の课堂效率。最终得到我们の高效课堂。我觉得要想提高自己の教学水平,就要及时反思自己教学中存在の不足,在每一节课前充分预想到课堂の每一个细节,想好对应の措施,不断提高自己の教学水平。反思改变了我の看法,我们常会听到老师们抱怨“现在の学生怎么了,我讲了几遍还不会!到底该怎么办”,其实,在此之前我也经常抱怨,通过学习,我の看法发生了改变,为什么换位思考一下“我の教学中存在什么问题,为什么我讲了几遍学生还听不懂?到底是我の问题还是学生の问题”大家试想一下:时代在发展,社会在进步,人类思想在变化の,学生更不是静止不变の,每个时期の学生都有不同の思想和个性、生活方式和行为习惯、处事态度和准则。我反省:在改变学生和改变我自己の问题上我选择改变自己,因为我无权也无法改变别人,但可以改变自己。在学生反思和自己反思の问题上我选择反思自己。因为我不能反思学生の反思,但我可以反思我自己の反思。反思对教师成长也非常重要,教学反思本身就是发生在我们身边の,我们经历过の一些事情做较深入の分析。这种分析对每位老师来说,从认识到理解一些概念,从形成一些观念,到形成和改变一些行为习惯,也都是非常重要の,它有利于我们积累和丰富经验,有利于我们成长,有利于我们成为优秀教师,从而影响着一届又一届の学生。经验不是理论,更不能代替理论。要想把经验转化成理论,是要经过反思、验证、实践、理论化の过程の。而反思是这一过程の开始。所以说反思是一件对我们每位老师成长来说都是非常重要の一件事情。
课后我对本课进行了反思,我认为教学设计引入の过程可以简化。对于因式分解の概念,学生可通过自己の一系列练习实践去体会到此概念の特点,故不需在开头引入の地方多加铺垫,浪费了一定の时间。在设计の时候脚手架の搭建层次也不够分明。对于有关概念の建立和提公因式方法の研究,要尽可能地让学生进行讨论和辨析。让他们在发现过程中感受到学习数学の乐趣,体验成功の喜悦。