第一篇:数学人教版八年级上册14.3.2因式分解--平方差公式课后作业.3.2因式分解--平方差公式课后作业
14.3.2因式分解-平方差公式课后作业
一、分解因式
(1)xxy2(2)a2192b
(3)(2x3y)2(3x2y)2
(5)3xy33xy
5204)5m2a45m2b4(
第二篇:运用平方差公式因式分解求值
运用平方差公式因式分解求值
【知识点】
①
利用平方差公式分解因式
②
整体代入求值
③
联立方程组,解方程组
【练习题】
1.已知,则
2.已知,则
3.已知,则
4.已知,则
5.已知,则
6.已知,则
7.已知,则,8.已知,则,9.已知,则,10.已知,则,11.已知,则,12.已知,则,13.已知,则
14.已知,则
15.已知,则
16.已知,则
17.已知,则
答案
1.2
2.3
3.4
4.2
5.4
6.3
7.2;
8.5;1
9.5;
10.4;
11.-1;2
12.2;1
13.21
14.7
15.2
16.4
17.4
第三篇:《用平方差公式因式分解》教学反思
《用平方差公式因式分解》教学反思
门坎初中 胡超
本节课的内容是用平方差公式因式分解。因式分解是本章的重点,也是难点。虽然知识点只有一个公式:a2—b2=(a+b)(a-b)。但题型的变化较多,易错点较多。学生容易发生两种常见错误:一个是没有意识到应先提公因式,再就是分解不彻底。所以本节课的主要目的就是多练题,让学生多见一些题型,多发现自己的错误,再纠正错误。
从本节课的效果来看,学生对一些常见题型掌握较好,而相对复杂如:(x+y)2_(x-y)2这类需要整体思想的题型掌握较差。对于这类题型还应加强练习。
我认为本节课有两个不足之处。第一是学生在黑板上应一次多安排几个,节约时间,这样就不会造成时间不够。第二是最后应用两三分钟总结因式分解应注意的两点:(1).因式分解应先考虑提公因式。(2).因式分解要彻底。
第四篇:用平方差公式因式分解教学反思
用平方差公式因式分解
--------教学反思
在新课引入的过程中,我首先让学生回忆了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。接着就让学生利用平方差公式做两个整式乘法的运算。然后,我巧妙的将刚才用平方差公式计算得出的两个多项式作为因式分解的题目请学生尝试一下。只见我的题目一出来,学生就争先恐后地回答出来了。待学生回答完之后,我马上追问“为什么”时,学生轻而易举地讲出是将原来的平方差公式反过来运用,马上使学生形成了一种逆向的思维方式。之后,我就顺利地和同学们一起分析了因式分解中的平方差公式——两数的平方差等于这两个数的和与这两个数的差的积,讨论了“怎样的多项式能用平方差公式因式分解?”可以说,对新问题的引入,我是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。接下来,通过例题的讲解、练习的巩固让学生逐步掌握了运用平方差公式进行因式分解。
第五篇:教案因式分解之平方差公式法
因式分解(2)
一、教学目标:
(一)知识与技能:
1.使学生了解运用公式法分解因式的意义; 2.会用平方差公式进行因式分解;
3.使学生了解提公因式法是分解因式首先考虑的方法,再考虑用平方差公式分解因式.
(二)数学能力:
1.发展学生的观察能力和逆向思维能力; 2.培养学生对平方差公式的运用能力。
(三)情感与态度:
在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识。
二、教学重点和难点:
1.教学重点:利用平方差公式分解因式. 2.教学难点:
领会因式分解的解题步骤和分解因式的彻底性.应用逆向思维的方向,演绎出平方差公式,对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.
三、教学过程: 复习引入:
1、什么是因式分解?
2、判断下列各式由左边到右边的变形是否为因式分解?
(1)a21(a1)(a1)(2)
(a1)(a1)a21(3)x1x(11x)(4)abacda(bc)d
3、将下列各式因式分解:
(1)8m2n2mn(2)
9x2y212xyz 4.根据乘法公式进行计算:(1)(x+4)(x-4)= _____
(2)(2y+3)(2y-3)= ____ 5.试一试:你能将下面的多项式分解因式吗?
(1)x216=(2)
4y29=(3)a2b2=
二、自主学习,探究新知(一)想一想: 观察下面的公式: a2b2=(a+b)(a—b)
这个公式左边的多项式有什么特征:_________公式右边是___________你能用语言来描述这个公式吗?___________ 公式中a、b代表什么?
(三)探究新知
★做一做:你能将x225因式分解吗?你是怎样思考的?
★议一议:下列多项式可以用平方差公式分解吗?
(1)x2y2(2)x2y2(3)x2y2(4)x2y2(5)64a2(6)4x29y2
总结可以用平方差公式分解因式的多项式的特点。
(四)例题精讲 例1.填空
(1)x2-16 =()2-()2=()()(2)9-y2=()2-()2=()()(3)1-a2 =()2-()2=()()例2.把下列多项式分解因式:
(1)36-25x2 ;(2)16a2-9b2;
(3)16a281b2(4)14m2
思考:运用平方差公式分解因式的步骤是:(1)(2)课堂练习1:把下列各式分解因式:
(1)36x2;(2)a219b2 ;(3)x216y2;(4)x2y2z2
22ab(ab)(ab),你能抓住它的特征吗?公式中的例3.观察公式字母a、b不仅可以表示数,而且都可以表示代数式.尝试把下列各式分解因式
(1)(xp)2(xq)2(2)9(ab)24(ab)2
课堂练习2:把下列各式分解因式:
(1)(x2)29(2)(xa)2(yb)2
(3)81(ab)216(ab)2
例4.把下列各式分解因式:
(1)x4-1(2)a5-a3(3)4a2-16(4)
动脑思考:
(1)如何处理指数为4次的二项式?
(2)将x4y4分解为(x2y2)(x2y2)就可以了吗?
(3)将a3bab分解因式能直接运用平方差公式吗?
课堂练习3:把下列各式分解因式:
(1)32a3-50ab2(2)8a22
四、自学检测
1、下列各式中,能用平方差分解因式的是()(A)x24y2(B)x22
(C)x24y2(D)x24y2
2.把下列各式因式分解:
(1)4a29b(2)81a41
(3)x2y9y
(4)2m32mn2
3.利用因式分解计算:(1)3.145623.14442
五、学习小结: 分解因式的过程