第一篇:有理数混合运算(乘法分配律)专项训练
有理数混合运算(乘法分配律)专项训练
一、单选题(共20道,每道5分)
6.计算:1.计算:A.-8
B.-7
C.-6
D.-5
()
A.13
B.-19 C.-13
D.19
()
7.计算:
A.17
B.1
C.9
D.11
8.计算:
()2.计算:
A.-1
B.-31
C.19
D.-19
()3.计算:
A.4
B.2
()
()
A.7
B.11
C.-3
D.1
9.计算:
()
()
A.17
B.15
C.31
D.7
10.计算:C.-2
D.4.计算:
A.-10
B.10
C.-12
D.12
5.计算:()
()
A.27
B.-33
C.-47
D.-39
A.B.-8
C.-2
D.11.计算:16.计算:
()
A.-11
B.11
C.-1
D.-89
12.计算:
A.12
B.18
C.22
D.8
13.计算:
()
()
A.B.C.-1
D.1
17.计算:
()
A.84
B.21
C.24
D.16
18.已知a,b互为相反数,m,n互为倒数,数轴上x所对应的点在原点的左侧,且到原点的距离为3,则
()A.2
B.()C.D.14.计算:
A.-5
B.5
C.1
D.-1
19.已知
()
那么A.B.-22
()
A.8
B.-8
C.9
D.-9
20.下列判断正确的是()
()
A.24
B.-8
C.-46
D.-20
A.B.C.D.,且,C.-28
D.-4
15.计算:
第二篇:有理数混合运算教案
一、教学目标是:
1、知识与技能目标
掌握有理数混合运算法则,能熟练进行四步以内有理数的混合运算,并能合理使用运算律进行简便运算。
2、过程与方法目标
经历实验、操作、探索、等数学活动过程,发展合作交流的意识,提高有条理地、清晰地阐述自己观念的能力;
3、情感与态度目标
在解决问题的游戏活动中,体验数学学习的兴趣,在解决疑难问题的过程中,体会克服困难获得的欢欣。
二、教学重点:
掌握有理数混合运算法则,能熟练进行四步以内有理数的混合运算,并能合理使用运算律进行简便运算。教学难点:
熟练进行四步以内有理数的混合运算。教学方法: 启发引导发现法 教具: 小黑板,扑克牌
三、教学过程设计:
本节课设计了五个环节:第一环节:复习回顾,引入新课;第二环节:例题练习,掌握新知;第三环节:游戏活动,巩固提高;第四环节:课堂小节;第五环节:布置作业;
第一环节:复习回顾,引入新课
教师出示问题:
(1)请同学们回顾学过的加、减、乘、除四则运算的法则如何叙述?
(2)请同学们观察下列各题,各包含了哪几种运算?
(1)18-(-12)÷(-2)2×(-1/3);(2)-42 ×[-3/4+(-5/8)]。
学生思考,并举手发言,教师鼓励学生的说法,并导入新课:今天我们将学习有理数的加、减、乘、除以及乘方的混合运算(通过活动(1)复习回顾小学四则运算法则“先算乘法,再算加法,如果有括号,先算括号里面的.”为有理数四则运算的法则的学习铺设台阶;通过活动(2)引入本节课的学习课题:有理数的混和运算,并为下一环节的进行提出问题。)
第二环节:例题练习,掌握新知 教师提问:这种运算应该怎么进行? 学生活动:
(1)观察、类比、概括有理数混和运算的法则,先算乘方,再算乘除,最后算加减;如果有括号,先算括号里的。
例1 计算:
1252.52
562例2 计算:
(-3)2×[-2/3+(-5/9)]
(2)由学生独立完成第一环节活动(3)以及课本P48的随堂练习,请四名学生上台板演,教师巡视指导,关注待进生的点滴进步,及时鼓励他们,并及时讲评学生的板演,对格式、计算过程等进行评价。
(1)18-(-12)×(-2)2×(-1/3);
(2)-42 ×[-3/4+(-5/8)];
(3)8+(-3)2×(-2);
(4)100÷(-2)2-(-2)÷(-2/3).(活动(1)是为了培养学生的观察能力,类比能力,概括能力,语言表达能力;其中例1的教学是为了巩固有理数的运算法则,并让学生了解小数和带分数再乘除运算中一般化为分数或假分数进行乘除更容易约分;例2的教学是为了对比两种运算方法的不同之处,体会运算律可以简化运算。突出本节课的重点和难点;活动(2)一方面是为了熟练有理数混和运算的法则,并培养说明意识和表达能力;突出本节课的重点,突破本节课的难点;另一方面是为了让学生自己去验证自己概括的有理数混和运算的法则的正确性,并体验成功的欢欣。)
第三环节:游戏活动,巩固提高 教师介绍“24点”游戏规则:
从一副扑克牌(去掉大、小王)中任意抽取4张,根据牌面上的数字进行混合运算(每张牌只能用一次),使得运算结果为24或-24.其中红色扑克牌代表负数,黑色扑克牌代表正数,J、Q、K分别代表11、12、13。
同时教师举例:若抽到的四张扑克牌分别是方块
2、红桃
2、黑桃 A和黑桃3,我们该怎样运算使结果是24或-24呢?
师生共同交流,解决问题,可以列式为[(-2)-1]×(-2)3=24 学生竞赛活动:
让学生六人一组从准备好的扑克牌中任意抽出四张牌,并用适当的运算符号连接,使得运算结果为24或者-24,在规定时间内,完成的小组把本组的计算过程一起写在黑板上,教师引导学生检查计算过程是否正确,并当场奖励正确完成的小组。没有完成的小组 在课后以后继续完成。
(竞赛活动是为了培养学生的探究能力,合作能力,交流能力,以及对运算法则、运算律的应用能力,再次突出重点,突破难点;同时也是为了培养学生的逆向思维能力。因为游戏中“已知结果写算式”的过程正好与过去“已知算式求结果”的过程相反;同时展开竞赛可进一步激发学生的活动兴趣,培养集体荣誉感,对没有完成的小组进行鼓励,让学生带着问题走出课堂。同时对学生进行环保教育和养成教育。)
第四环节:课堂小结
由学生自己总结本节课的内容,培养学生的语言表达能力,活跃课堂气氛,表现学生独立、自主、自信的个性.展示学生的聪明智慧。
第五环节:布置作业
习题知识技能1,问题解决1。复习巩固有理数混和运算的知识,训练运算技能和提高解决问题的能力。
四、教学反思
第三篇:初一数学上册有理数的混合运算专项训练习题
有理数的混合运算
1、【基础题】计算:
(1)÷;
(2);
(3)+÷;
(4)×[
].2、【基础题】计算:
(1);
(2)÷-÷;
(3)÷;
(4)÷-.3、【基础题】计算:
(1)×;
(2)12.7÷;
(3);
(4)×;
(5)÷;
(6)÷;
(7)÷;
(8)×[
];
(9)[
]÷;
(10)÷.4、【基础题】计算:
(1)11+(-22)-3×(-11);
(2);
(3);
(4)÷[
];
(5)÷;
(6);
(7)-+2×+(-6)÷;
(8).5、【基础题】计算:
(1)÷;
(2)-;
(3);
(4);
(5);
(6)-10+8÷-4×3;
(7)--;
(8)-(1-0.5)×;
6、【基础题】计算:
(1)(-8)×5-40;
(2)(-1.2)÷(-)-(-2);
(3)-20÷5×+5×(-3)÷15;
(4)-3[-5+(1-0.2÷)÷(-2)];
(5)-23÷1×(-1)2÷(1)2;
(6)-+()×(-2.4)
补充(无答案)
1.计算
2.计算
3.计算
4.计算
5.计算(1+3+5+7+…+99+101)-(2+4+6+8+…+98+100)
6.计算
参考答案
1、【答案】
(1)17;
(2);
(3)31;
(4)-112、【答案】
(1)-10;
(2)22;
(3)-16;
(4)-
3、【答案】
(1)1;
(2)0;
(3)42;
(4);
(5)18;
(6)0;
(7)-4.64;
(8);
(9)8;
(10)-.4、【答案】
(1)22;
(2)0;
(3)-17;
(4)-;
(5);
(6)-95;
(7)-85;
(8)6
.5、【答案】
(1)3;
(2)1;
(3)-54;
(4)0;
(5);
(6)-20;
(7)-2;
(8)-.6、【答案】(1)-80;
(2)5.6;
(3)-2;
(4)16;
(5)-;
(6)-2.9
第四篇:最新有理数混合运算经典专项训练习题及答案
有理数的混合运算习题
一.选择题
1.计算()
A.1000
B.-1000
C.30
D.-30
2.计算()
A.0
B.-54
C.-72
D.-18
3.计算
A.1
B.25
C.-5
D.35
4.下列式子中正确的是()
A.B.C.D.5.的结果是()
A.4
B.-4
C.2
D.-2
6.如果,那么的值是()
A.-2
B.-3
C.-4
D.4
二.填空题
1.有理数的运算顺序是先算,再算,最算
;如果有括号,那么先算。
2.一个数的101次幂是负数,则这个数是。
3.。
4.。
5.。
6.。
7.。
8.。
三.计算题、;
四、1、已知求的值。
2、若a,b互为相反数,c,d互为倒数,m的绝对值是1,求的值。
有理数加、减、乘、除、乘方测试
一、选择
1、已知两个有理数的和为负数,则这两个有理数()
A、均为负数
B、均不为零
C、至少有一正数
D、至少有一负数
2、计算的结果是()
A、—21 B、35 C、—35 D、—293、下列各数对中,数值相等的是()
A、+32与+23
B、—23与(—2)3
C、—32与(—3)2
D、3×22与(3×2)24、某地今年1月1日至4日每天的最高气温与最低气温如下表:
日
期
1月1日
1月2日
1月3日
1月4日
最高气温
5℃
4℃
0℃
4℃
最低气温
0℃
℃
℃
℃
其中温差最大的是()
A、1月1日
B、1月2日
C、1月3日
D、1月4日
5、已知有理数a、b在数轴上的位置如图所示,下列结论正确的是()
A、a>b
B、ab<0
C、b—a>0
D、a+b>06、下列等式成立的是()
A、100÷×(—7)=100÷
B、100÷×(—7)=100×7×(—7)
C、100÷×(—7)=100××7
D、100÷×(—7)=100×7×77、表示的意义是()
A、6个—5相乘的积
B、-5乘以6的积
C、5个—6相乘的积
D、6个—5相加的和
8、现规定一种新运算“*”:a*b=,如3*2==9,则()*3=()
A、B、8
C、D、二、填空
9、吐鲁番盆地低于海平面155米,记作—155m,南岳衡山高于海平面1900米,则衡山比吐鲁番盆地高
m10、比—1大1的数为
11、—9、6、—3三个数的和比它们绝对值的和小
12、两个有理数之积是1,已知一个数是—,则另一个数是
13、计算(-2.5)×0.37×1.25×(—4)×(—8)的值为
14、一家电脑公司仓库原有电脑100台,一个星期调入、调出的电脑记录是:调入38台,调出42台,调入27台,调出33台,调出40台,则这个仓库现有电脑
台
15、小刚学学习了有理数运算法则后,编了一个计算程序,当他输入任意一个有理数时,显示屏上出现的结果总等于所输入的有理数的平方与1的和,当他第一次输入2,然后又将所得的结果再次输入后,显示屏上出现的结果应是
16、若│a—4│+│b+5│=0,则a—b=
;
若,则=_____
____。
三、解答
17、计算:
8+(―)―5―(―0.25)
7×1÷(-9+19)
25×+(―25)×+25×(-)
(-79)÷2+×(-29)
(-1)3-(1-)÷3×[3―(―3)2]
18、(1)已知|a|=7,|b|=3,求a+b的值。
(2)已知a、b互为相反数,m、n互为倒数,x
绝对值为2,求的值
四、综合题
19、小虫从某点O出发在一直线上来回爬行,假定向右爬行的路程记为正,向左爬行的路程记为负,爬过的路程依次为(单位:厘米):
+5,-3,+10,-8,-6,+12,-10
问:(1)小虫是否回到原点O?
(2)小虫离开出发点O最远是多少厘米?
(3)、在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫共可得到多少粒芝麻?
答案
一、选择
1、D2、D3、B4、D5、A6、B7、A8、C
二、填空9、205510、011、2412、13、—3714、5015、2616、9
三、解答17、18、19、—13
拓广探究题
20、∵a、b互为相反数,∴a+b=0;∵m、n互为倒数,∴mn=1;∵x的绝对值为2,∴x=±2,当x=2时,原式=—2+0—2=—4;当x=—2时,原式=—2+0+2=021、(1)、(10—4)-3×(-6)=24
(2)、4—(—6)÷3×10=24
(3)、3×
综合题
22、(1)、∵5-3+10-8-6+12-10=0
∴
小虫最后回到原点O,(2)、12㎝
(3)、++++++=54,∴小虫可得到54粒芝麻
第五篇:2.8《有理数的加减混合运算》同步训练
2.8《有理数的加减混合运算》同步训练
1.填空
(28)(-3)-(-5)= ;(-5(2)(-
511)-(+5)= 3311)-()=-2,()-(-7.15)=8 34(3)(-13)-(-8)=,(-4)-(-4)=(4)(-16)-(+4)=,0-(-15)=(5)185比-13大,(6)比0小4的数是,6(7)-9比 数小18,(8)-│-7│比│-7│小。(9)-12的绝对数的相反数与3相反数的差是。33(10)0-1+2-3+4=(11)若两数和是-20,其中一个加数是10,则另一个加数是。(12)一个加数是1.2的相反数,和为-2.5,另一个加数是.(13)若被减数是6,差是-5,则减数是。(14)比0.7小7的数是。
(15)-9与5的差的绝对值等于。
(16)若│a│=5,│b│=2,且a、b异号,则│a-b│=。(17)│3.14-π│-π=。(18)若a>1,则│1-a│=。(19)改写成省略加号的代数和形式:(-2.选择题(1)计算(-1)-
111313)+(-)-(-)-(+))-(-)=。84824111所得结果是()A.B.-C.-2.5 D.2.5 222(2)两数和为负数,那么这两数必定是()A.同为正数 B.同为负数 C.一个为零一个为负数 D.至少一个为负数,且负数绝对值大(3)下列方程的解为负数的是()A.x-5=3 B.x+5=3 C.x+5=5 D.x+2=7(4)算式“-3+5-7+2-9”的读法是()A.3、5、7、2、9的和 B.减3正5负7加2减9 C.负
3、正
5、减
7、正
2、减9的和 D.负8、2、负9的和(5)把10-(+4)+(-6)-(-5)写成省略括号的和是()A.10-4-6-5 B.10-4-6+5 C.10+(-4)+(-6)+5 D.10+4-6-5(6)下列说法正确的个数为()。
①两个有理数的和为正数时,这两个数都是正数。②两个有理数的和为负数时,这两个数都是负数。③两个有理数的和可能等于其中一个加数。④两个有理数之和可能等于零。A.1个 B.2个 C.3个 D.4个(7)一个数是10,另一个数比10的相反数小2,则这两个数的和为()。A.18 B.-2 C.-18 D.2(8)如果两个有理数的和比其中任何一个加数都大,那么这两个数()。
A.都是正数 B.都是负数 C.一个是正数,一个是负数 D.以上答案都不对(9)下列说法正确的是()。
A.减去一个数,等于加上这个数 B.零减去一个数仍得这个数 C.两个相反数相减得零
D.在有理数加法或减法中,和不一定比加数大,被减数不一定比减数或差大(10)下列说法正确的是()。
A.两数的差一定小于被减数 B.若两数的差为0,则这两数必相等
C.比-2的相反数小2的数是-4 D.如果两个有理数的差是正数,那么这两个数都是正数(11)设两个有理数的和为a,这两个数的差为b,则a、b的大小关系是()。A.a=b B.a<b C.a>b D.不能确定(12)-(3535353535)的相反数是()。A.- B.- C. D. 4646464646(13)若x<0,则│x-(-x)│等于()。A.-x B.0 C.2x D.-2x 3.计算
2151)+(-)+(-0.6)(2)(+)-(-)586613(3)(-11)-(-7)(4)|5.3-(-7.8)|
3531(5)|5.3|-|-7.8|(6)(5-8)-(7-9)
441111(7)(-1.5)-(-1.4)-(-3.6)+(-4.3)-(+5.2)(8)(-1)-{(-)+[-(-)]}
2346(1)(+1.125)+(-3(9)|0.2|-|(-3)-(+8)|-|-8-2+10|(10)-1998+(-1999)+(-2000)+(-2001)+(-2002)