第一篇:四川教师面试说课稿:初中数学《平面直角坐标系》
四川教师面试说课稿:初中数学《平面直角坐标系》
尊敬的各位考官大家好,我是今天的X号考生,今天我说课的题目是《平面直角坐标系》。新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
首先谈谈我对教材的理解,《平面直角坐标系》是人教版初中数学七年级下册第七章7.1.2的内容,本节课的内容是平面直角坐标系及相关概念。有序数对在上一节已经进行了讲解,并且之前也学习了数轴的概念,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容为后面研究函数的图像提供了有力的基础。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:(一)知识与技能
掌握什么是平面直角坐标系,会通过点的坐标找到位置以及通过位置写出点的坐标。(二)过程与方法
在探索平面直角坐标系以及点的坐标与位置关系时,提升逻辑推理能力以及几何直观。(三)情感态度价值观
在自主探索中感受到成功的喜悦,激发学习数学的兴趣。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:平面直角坐标系及相关概念。这种方法学生首次见到,难以理解,所以本节课的教学难点是:理解建立平面直角坐标系的必要性,体会平面直角坐标系中点与坐标的一一对应关系。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。(一)新课导入
首先是导入环节,那么我先提问:上节课学习的内容是什么?能否举一个例子。根据学生回答追问:有序数对所表示的位置如何直观表示?从而引出本节课的课题《平面直角坐标系》
利用有序数对而不用数轴进行导入,是因为有序数对是上节课学习的内容,而数轴是上学期学习的内容,距离学生相对比较远。这样利用学生刚刚学过的知识进行导入,更好的从学生的角度出发,学生更容易接受。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。学生对于该问题能够根据之前的知识经验考虑使用数轴,我便和学生一起回顾数轴的三要素。接下来进一步引导:对于有序数对有两个数应该如何表示,进而转到用两个数轴。
继续追问:用两个什么样的数轴? 为了更好的解决这个问题,通过画一个不垂直的数轴让学生进行感受。学生通过直观的感受以及电影院座位的例子,得出结论:用相互垂直的两条数轴。还可以让学生利用数轴的三要素,类比找到y轴的三要素。
给出总结:由平面内两条互相垂直、原点重合的数轴组成平面直角坐标系,水平的数轴称为x轴或横轴,取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
利用数轴的三要素进行讲解,既考察了学生对之前知识的掌握情况,还能够利用相类似的知识提高学生的类比、迁移的能力。
接下来我会在平面直角坐标系中给出A、B、C、D四个点的位置,然后讲解如何用有序数对确定一点的坐标。例如A点,过点A分别向x轴、y轴做垂线,垂足所对的坐标分别为横坐标和纵坐标。记为A(2,1)。接下来让学生以同桌为单位找出B、C、D点的坐标。
通过对A、B、C、D观察,发现在平面直角坐标系的不同位置,从而给出象限的概念。利用导入中学生给出的有序数对,以及新给出的(2,0)和(3,0)让学生在平面直角坐标系中找到对应坐标的位置。
从而引出x轴、y轴上的坐标有什么特点。
最后是一个难点,提问学生数轴上的点与坐标是什么关系?想一想平面上的点与坐标又是什么关系? 学生能够用类比的方法得到平面上的点与坐标是一一对应的。至此本节课的主要教学内容已经完成,做到了突出重点,突破难点。
在选点的过程中我选择不同象限的点让学生标出坐标,这样为讲解不同的象限奠定基础。
(三)课堂练习
接下来是巩固提高环节。
给出几个点的坐标,让学生在平面直角坐标系中描出各点。
这样的问题的设置,让学生对知识进一步巩固,让学生逐渐熟练掌握。(四)小结作业
在课程的最后我会提问:今天有什么收获? 引导学生回顾:什么是平面直角坐标系,如何根据坐标找点,如何根据点找坐标;平面直角坐标系内点与坐标之间有什么关系? 本节课的课后作业我设计为:
思考平面直角坐标系中不同位置的点的坐标有何特点? 这样的设计能让学生理解本节课的核心,感受数形结合思想。
七、说板书设计
我的板书设计遵循简介明了突出重点部分,以下是我的板书设计:
第二篇:《平面直角坐标系》说课稿
《平面直角坐标系》说课稿
《平面直角坐标系》说课稿1
一、教材分析
“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。如果没有透彻理解这部分知识,就很难学好整个一章内容。
二、教学目标
1、理解平面直角坐标系,以及横轴、纵轴、原点、坐标等的概念。
2、认识并能画出平面直角坐标系。
3、能在给定直角坐标系中,由点的位置确定点的坐标,由点的坐标确定点的位置。
4、理解各个象限内的点的坐标的符号特点以及坐标轴上的点的坐标特点。
1637年,笛卡尔在他写的《更好地指导推理和寻求科学真理的方法论》一书中,用运动着的点的坐标概念,引进了变数。恩格斯在《自然辩证法》高度评价笛卡尔,称其将辩证法引入了数学。因此,在讲授平面直角坐标系这一部分内容时,应对学生进行运动观点、坐标思想和数形结合思想等唯物辩证观方面的适当教育。
三、重点难点
1、教学重点能在平面直角坐标系中,由点求坐标,由坐标描点。
2、教学难点:
⑴平面直角坐标系产生的过程及其必要性;
⑵教材中概念多,较为琐碎。如平面直角坐标系、坐标轴、坐标原点、坐标平面、象限、点在平面内的坐标等概念及其特征等等。
四、教法学法
本节课以“问题情境──建立模型──巩固训练──拓展延伸”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。教无定法,贵在得法。本节课中对于不同的内容应选择了不同的方法。对于坐标系的产生过程,由于是本节课的难点,可采用探索发现法;对于坐标系的相关概念,由于其难度不大,且较为琐碎,学生完全有能力完成阅读,因此可采用指导阅读法;对于由点求坐标、由坐标描点,由于是本节课的重点内容,应采用小组讨论和讲练相结合的方法。教给学生良好的学习方法比直接教给学生知识更重要。
数学教学是师生之间、学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在教学中要不断指导学生学会学习。本节课先从学生实际出发,创设有助于学生探索思考的问题情境,引导学生自己积极思考探索,让学生经历“观察、类比、发现、归纳”过程,以此发展学生思维能力的独立性与创造性,使学生真正成为学习的主体,从“被动学会”变成“主动会学”。教学时先让学生观察数轴上(一维)的点与实数之间的一一对应关系,在生活中确定平面内(二维)的点的位置的方法,再与数轴上的点加以类比,从而引出平面内的点的表示方法,同时在学习中体会数形结合的思想。为了提高课堂教学的效益,本节课将借助于多媒体课件与实物投影仪进行教学。
《平面直角坐标系》说课稿2
《平面直角坐标系》是人教版九年义务教育七年级数学下册第六章第一节第二次课的内容,它是在学习了数轴和有序数对后安排的一次概念性教学,也是初中生与坐标系的第一次亲密接触。平面直角坐标系的建立架起了数与形之间的桥梁,是数形结合的具体体现。这一节课主要是让学生认识平面直角坐标系,了解点与坐标的对应关系;在给定的平面直角坐标系中,能根据坐标描出点的位置,能由点的位置写出点的坐标。因此,本节课的学习,是今后进一步学习有关知识和借助平面直角坐标系学习一次函数、二次函数的一个基础,它在整个初中数学教材体系中有着举足轻重的作用。
说目标与重难点
1.知识与能力目标:
使学生认识平面直角坐标系,理解并掌握横轴、纵轴、原点及点的坐标,了解点与坐标的对应关系;能准确地在平面直角坐标系中描出点的位置和根据点的位置写出点的坐标,培养学生思维的准确性和深刻性。
2.过程与方法目标:
通过自主阅读,用游戏活动和动手实践的方式,让学生认识平面直角坐标系,掌握用“坐标”表示平面内点的位置的方法,培养学生自主获取知识的能力。
3.情感态度价值观目标:
利用游戏、观察、实践、归纳等方法,积淀学生的数学文化涵养,鼓励学生去发现、去思考,使学生认识到数学的科学价值和应用价值,培养热爱数学,勇于探索的精神。
其中认识平面直角坐标系,能正确地画出平面直角坐标系是本节课的教学重点;
会用“坐标”表示平面内点的位置和坐标轴上的点的特征是本节课的教学难点。
说学情
七年级的学生具有活泼好动,好奇的天性,他们正处于独立思维发展的重要阶段,对数学的求知欲较强,具有初步的自主、合作探究的学习能力,对数轴有一定的认识,因此,对于平面直角坐标系的构成和建立较为容易理解。
说教学策略
数学课程标准指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者”,学生的数学学习内容应当是现实的,有趣的和富有挑战性的”。教师的责任是为学生的发展创设一个和谐开放地思考、讨论、探究的氛围,创造“海阔凭鱼跃,天高任鸟飞”的课堂教学境界。为此,这节课我主要采用了情景激趣法、自主学习尝试法、合作探究交流法等教学方法,设计了“与文本对话——与生活对话——与同学对话——与教师对话”等一系列教学程序。
说教程
一、游戏激趣,导入新课(约2分钟)“破译密码”游戏
【设计意图:以游戏的形式导入,具有一定的新奇性、挑战性,能有效地激发学生的学习兴趣。】
二、与文本对话,理解概念(约17分钟)
1.接触概念(让学生阅读教材,自主学
2.认识概念为了帮助学生抓住概念中的关键词,理解概念,我设计了以下几个问题:(让学生带着问题自学教材,认识概念。)
⑴什么叫平面直角坐标系?
⑵平面直角坐标系有哪些特征?(①两条数轴②互相垂直③原点重合④单位长度一致)
⑶平面直角坐标系内的点可以用什么来表示?(有序数对)
⑷有序数对是如何具体来表现点的坐标的?
自学教材后,可让学生回答以上问题,不正确的地方,教师不急于纠正,对于问题⑵和⑷,也可试着让学生归纳,但不要求全面,不完整的地方,教师暂不补充。
3.深化概念
让学生阅读下面两段材料,进一步找到问题的答案,补充不完整的地方,尝试性地完成活动1和活动2
活动1.你会画吗?在作业纸上试着画一个直角坐标系,比一比看谁画得最完整。
活动2.你会标吗?
设计意图:这一环节的设计主要是为了培养学生自主学习的能力,让学生在自学中初步认识概念。通过材料的阅读,活动的实践,让学生在自画、自纠中,加深对概念的理解,培养学生良好的画图习惯。
三、与生活对话,融化概念(约5分钟)
活动3.你会找吗?让学生在如图建立的直角坐标系中找到自己的位置,并说出自己的坐标
活动4.你会举例吗?让学生举出生活中应用平面直角坐标系的实例.
(如:象棋、围棋棋盘,雷达探测图,地球经纬度,计算机键盘,电影院座位等)
设计意图:设计这两个活动,是为了将知识与实际生活联系起来,让学生体验到生活中处处有数学。同时有效地训练了知识的应用,及时反馈了教学信息,培养了学生思维的深刻性。
四、与同学对话,运用概念(约13分钟)
活动5你会做吗?“描点”与“报坐标”比赛(让学生在活动1中建立的直角坐标系里完成这一活动)
这一活动教师先将4个组长定为评委,其余同学以两人为一组,全班分成若干组,同时进行,教师宣布比赛规则,最后,评出优胜组,予以奖励。
活动6你会猜吗?在如图的直角坐标系中读出下列各点,说说它们的位置,猜猜它们有什么特征。
这一活动将学生原有的4个大组重新分为8个小组,让学生各小组间行合作性地讨论、交流)
设计意图:这两个活动的设计是为了体现“学生是数学学习的主人,教师是组织者、引导者、合作者“。让学生在“做数学中学数学”;在观察、实践、讨论中,大胆地猜想,尊重了学生的个性,培养了自主探究、合作交流的精神。
五、与教师对话,归纳总结(约5分钟)
学生在自主学习,合作交流,共同完成活动6的基础上,各小组代表交流猜想,教师就学生的猜想,针对性的设计一些问题(如:①哪几个点在X轴上?②它们的坐标是怎样的?③有些什么特征?等),构建师生平等对话,最后,教师总结性地归纳:坐标轴上的点的坐标特征。
设计意图:设计这一环节是为了培养学生运用数学语言概括的能力,通过师生的平等对话,变教师讲规律为学生找规律,教师最后的总结使数学知识精确化。
六、拓展延伸,强化能力(约3分钟)
设计题目:各写出5个满足下列条件的点,并在坐标系中分别描出它们:
(1)横坐标与纵坐标相等
(2)横坐标与纵坐标相反
(3)横坐标相等,纵坐标不等
(4)纵坐标相等,横坐标不等
你能找出每组的规律吗?
设计意图:这一环节是让学生带着问题出课堂,激发他们思考。
动手实践、自主探究、合作交流是本节课学生获取知识的重要方法。学生在具体的操作活动和尝试性练习中进行独立思考,在与同伴的交流、讨论中形成对知识的理解,六个活动的设计由易到难,层层推进,有机地将学生的眼、口、手、脑调动了起来,充分发挥了学生的主观能动性,让学生在活动中学会探索,学会学习,从而有效地落实了“三维”目标。
《平面直角坐标系》说课稿3
尊敬的各位评委;
大家好!今天,我说课的课题是:《平面直角坐标系》。本节课是第七章《平面直角坐标系》中的第一节的第二课时,本节课主要是建立平面直角坐标系的概念,为以后学习函数及图像提供知识基础。下面,我将从目标、教法、学法、教学过程四个方面对本节课的教学设计进行说明:
一、说目标。
新课标强调“课程内容不仅包括数学的结果,也包括数学结果的形成过程和蕴含的数学思想方法”。新课标第三学段中对图形与坐标提出的教学目标是:“理解平面直角坐标系的有关概念,能画出直角坐标系:在给定的直角坐标系中,能根据坐标描出点的位置、由点的位置写出它的坐标”。因此,我确定本节课的教学目标为:
1、认识平面直角坐标系,理解并掌握横轴、纵轴、原点及点的坐标,了解点与坐标的对应关系。
2、能准确地在平面直角坐标系中描出点的位置,并根据点的位置写出点的坐标
根据教学目标、教材内容,确定本课的重点是:
教学重点:理解平面直角坐标系的有关概念,建立平面直角坐标系,由点的位置能写出坐标,会根据坐标描出相应的点。
根据教学目标、学生实际,确定本课的难点是:
理解坐标平面内的点与有序实数对之间的一一对应关系以及坐标轴上点的坐标特征。
二、说教法。
《新课程标准》提出教师是数学学习的组织者、引导者与合作者,又根据学生认知规律,着力体现循序渐进和启发性原则,我确定的教学方法有:自学指导法、合作探究法、演示法、练习法。
三、说学法。
自主探索与合作学习是数学学习的重要方式,学生的学习应当是一个生动活泼的、主动的和富有个性的过程。所以,我确定的学习方法有:自学发现法、探究交流法、动手操作法、练习法等。
四、说教学过程。
为了更好的突出重点,突破难点,依据教学目标,结合学生认知特点我设计了以下几个环节;
1、创设情境引入新课
通过已知数轴上点的坐标找点引入平面内用有序数对确定点的位置引入新课,从学生熟悉的生活经验入手,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,
2、自主探究,发现新知
在这一环节中,先出示自学指导,并让学生根据探究提纲自学教材,同时画图、思考、练习、举例、讨论,分析,初步理解平面直角坐标系的概念,教师巡视指导并参与学生讨论。
3、学生交流,展示归纳
这个环节共分三个层次。
①自主探究展示。让学生先展示平面直角坐标系的所有概念以及图形的画法。充分的暴露问题,再由其他学生纠错、补充、评价。
②合作探究展示。抽学生代表上讲台,在准备好的坐标系内根据点的位置认以及根据点的坐标描点,发动组内成员补充完善。
③归纳展示。结合前两组展示,引导学生共同准确地理解并归纳出各个象限点的坐标的不同特征。通过步步推进,层层深入的全方位展示交流,引导学生学会与人合作,并能与他人交流思维的过程和探究的结果,同时培养了学生的“自主、合作、探究”能力,
4、类比练习,巩固提升
在这一环节中,首先出示例题,让学生学习例题中的一个,然后抽学生完成填空,选择,画图等一系列题组,采用抽学生口答,作图等方式,其他学生自主解答,发动学生进行评价、纠错、完善,教师给予适当的引导、点拨、评价。
5、回顾反思,内化提升
在这一环节中,先让学生自主小结,再发动学生评价,最后教师补充完善。进一步培养学生总结归纳知识的能力,反思教学,发现问题及时弥补.师设悬念,激发学习的动力。
6、当堂检测、知识过关
共设计四到检测题,时间约为5分钟,学生独立完成,待大部分学生完成后,教师出示答案,学生自我评价,师生共同评价。通过测试题,再次加深学生对平面直角坐标系概念的理解,培养学生的作图能力,及时同时反思教学,查漏补缺.
7、布置作业
为了体现课标中“人人都能获得必须的数学”,面向全体学生布置两道必做题,依据新课标“不同的人在数学上得到不同的发展”,又特意布置了两道选做题,使学有余力的同学有发展的空间。
总之,本节课在例题的设计上、在当堂训练和检测题的设计上的编排上,在教学重难点的突破上,坚持以学生为中心,让学生在自主探索与合作交流中理解掌握基本知识、技能和方法,使学生在获得知识的同时提高兴趣、增强信心、提高能力。
我的说课到此完毕,有不足之处请各位老师批评指正。谢谢!
《平面直角坐标系》说课稿4
大家好!今天我说课的内容是《平面直角坐标系(一)》,主要分说教材、说教法、说学法、说教学流程、说板书设计四部分,要上好一节课首先要对教材有所了解。
一、教材分析
说教材的地位和作用
“平面直角坐标系”是“数轴”的发展,它的建立,使代数的基本元素(数对)与几何的基本元素(点)之间产生一一对应,数发展成式、方程与函数,点运动而成直线、曲线等几何图形,于是实现了认识上从一维空间到二维空间的发展,构成更广阔的范围内的数形结合、互相转化的理论基础。因此,平面直角坐标系是沟通代数和几何的桥梁,是非常重要的数学工具。
直角坐标系的基本知识是学习全章及至以后数学学习的基础,在后面学习如何画函数图象以及研究一些具体函数图象的性质时,都要应用这些知识;注意到这种知识前后的关系,适当把握好本小节的教学要求,是教好、学好本小节的关键。如果没有透彻理解这部分知识,就很难学好整个一章内容。本节分两课时进行。
说教学目标和重点难点
教学目标:
1、认识平面直角坐标系,了解其相关概念;
2、能准确的画出直角坐标系;能在坐标系中由点的位置写出点的坐标,由点的坐标找到点的位置;能根据实际需要画出直角坐标系,确定点的位置,体会数形结合的必要性;
3、体会直角坐标系在实际生活中的应用,增强用数学的意识;
4、让学生体会数学来源于实践,反过来又指导实践进一步发展的辩证唯物主义思想。
教材的重难点
(1)教学重点:能在平面直角坐标系中,由点求坐标,由坐标描点。
(2)教学难点:根据点的位置写出点的坐标。
(三)、学生情况分析
学生在学习了数轴的概念后,已经有了一定的数形结合的意识,积累了一定的由数轴坐标描出数轴上点及由数轴上的点写出数轴上坐标的经验。已经具备了初步的逻辑推理能力和空间想象能力。经过近一阶段的高效课堂的实施,学生们自主探索、小组合作交流已经成为他们学习数学的重要方式。
二、教法分析
“学生的学习是自学、对学、群学”的过程,在本节课以“课本助读──合作探究——尝试练习──知识梳理——学习测评”的模式展开,引导学生从已有的知识和生活经验出发,提出问题与学生共同探索、讨论解决问题的方法,让学生经历知识的形成与应用的过程,从而更好地理解数学知识的意义。
本节课中对于不同的内容应选择了不同的方法。对于坐标系的产生过程,由于是本节课的难点,可采用探索发现法;对于坐标系的相关概念,由于其难度不大,且较为琐碎,学生完全有能力完成阅读,因此可采用指导阅读法;对于由点求坐标、由坐标描点,由于是本节课的重点内容,应采用小组讨论和教师点拨相结合的方法。
三、学法分析
教给学生良好的学习方法比直接教给学生知识更重要。数学教学是师生之间、学生之间交往互动与共同发展的过程,学生的学是中心,会学是目的,因此在教学中要不断指导学生学会学习。本节课先从学生实际出发,创设有助于学生探索思考的问题情境,引导学生自己积极思考探索,让学生经历“观察、类比、发现、归纳”过程,以此发展学生思维能力的独立性与创造性,使学生真正成为学习的主体,从“被动学会”变成“主动会学”。
四、说教学流程
●课本助读(带着问题学习课本吧!)
1、数轴的三要素:、、。
2、画一条数轴;已知数-1,5,请用数轴上的点A和点D表示这两个数。
3、用有顺序的两个数a与b组成的数对,叫做,记作。
4、我们学过用来表示位置。
5、问题:(分小组讨论,每个小组选派代表发言)
书本第46页思考题。
类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内的点的位置呢(例如图一中A、B、C、D各点)?(在图上动手做一做。)
文档内含有图片、公式、文本框、特殊符号网页页面无法正确显示,请点击免费下载完整WORD文档。
老师总结:
知识回忆:在生活中表示一个点的位置的方法有多种,你还记得我们在数学中学过的那种图形也可以确定一个点的位置吗?
(回忆数轴,但它只能确定直线上的点的位置)……采取课前完成,教师批阅小组长的。课前进行组内交流。
●合作探究(围绕问题互学、群学,讨论、探究吧!)
探究一(如图二)
1、我们可以在平面内画两条相互垂直、原点重合的数轴,组成;
2、水平的数轴称为或,习惯上取为正方向;
3、竖直的数轴称为或,习惯上取为正方向;
4、两坐标轴的交点为平面直角坐边标系的;
5、有了平面直角坐标系,平面内的点就可以用一个来表示;
6、由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是,垂足N在y轴上的坐标是,我们说点A的横坐标是,纵坐标是,有序数对(,)就叫做点A的,记作A(,)。
7、如图二,请写出点B、C、D的坐标。
(概念性知识可以培养学生的自学能力,把学生的自学成果在班内和组内交流)
小练习:你能画一个平面直角坐标系吗?(一个或两个同学板演,其他同学在导学案上画,画完之后互相检查,找出学生常见错误,集体纠正)
目的:光有感性认识是不够的,必须让学生经历画图的过程,从中既能得到体验,又可以及时暴漏问题发现乃至纠正。
探究二(课本第47页思考题)
原点O的坐标是什么?X轴和y轴上的点的坐标有什么特点?
本人的答案:
其他人的答案:
老师总结归纳:
●尝试练习(相信自己,我能行!)
如图三,请写出其中标有字母的各点的坐标。
●知识梳理(能掌握这些知识要点吗?)
1、你理解平面直角坐标系,以及横轴、纵轴、原点、坐标等概念了吗?
2、你能建立平面直角坐标系,并能由点的位置确定点的坐标了吗?
3、X轴、y轴上的点,原点的坐标的特点是什么?
●学习测评(我巩固,我提高!)
(课本第49页练习题第1题)写出图四点A、B、C、D、E、F的坐标。
目的:这一步是教学中的难点,一方面强调点的坐标的书写规范,另一方面也要安排一定的练习时间,根据情况可采取学生随机指出一些点并找其他学生回答。
五、说板书设计
本次说课的最后一个环节就是说板书设计。我在这节课的板书是:中间是平面直角坐标系,体现了本节课以平面直角坐标系为主,左边是相关概念、重点显示;右边是知识的应用及练习。
以上是我的说课内容,希望大家多提宝贵意见,谢谢大家!
文档内含有图片、公式、文本框、特殊符号网页页面无法正确显示,请点击免费下载完整WORD文档。
《平面直角坐标系》说课稿5
一、说教材
1.教材的地位和作用
“平面直角坐标系”作为“数轴”的进一步发展,实现了认识上从一维空间到二维空间的跨越,构成更广范围内的数形结合、数形互相转化的理论基础。是今后学习函数、函数与方程、函数与不等式关系的必要知识。所以平面直角坐标系是沟通代数和几何的桥梁,是今后学习的一个重要的数学工具。
2.学情分析
学生在学习了数轴的概念后,已经有了一定的数形结合的意识,积累了一定的由数轴坐标描出数轴上点及由数轴上的点写出数轴上坐标的经验,同时经过上一节《怎样确定平面内点的位置》的学习,对平面上的点由一个有序数对表示,有了一定的认识。
如何从一维数轴点与实数之间的对应关系过渡到二维坐标平面中的点与有序数对之间关系,限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,不能很好地理解一一对应,不能正确认识横、纵坐标的意义,有的只限于机械地记忆,这样会影响对数形结合思想的形成。同时本节内容中概念较多,比较琐碎,如何熟练运用对学生来说也有一定困难。
3.教学重难点及突破
基于对本节课的认识和学生的学情分析,我将本节课的重点确定为:理解平面直角坐标系及相关概念,能由点写出它的坐标及相关特征,难点确定为:平面直角坐标系中点与有序数对之间的一一对应与数形结合意识的培养。要达到本节课的目标我认为除了要加强学生多练多探索来认识有关的知识外,还必须在“激发学生的学习兴趣”上下功夫,尽量调动学生的学习积极性。
4.教学目标
根据新课标要求和学生现有知识水平,从三个方面提出本节课的教学目标:
知识与技能:
1.理解平面直角坐标系的有关概念,并能正确画出平面直角坐标系;
2.能在给定的直角坐标系中根据点的坐标描出点的位置,由点的位置写出点的坐标。
过程与方法:
经历画坐标系、描点、看图等过程,让学生感受“数形结合”的数学思想,体会数学源于生活,初步体验将实际问题数学化的过程和方法。
情感态度与价值观:
揭示人类认识世界是由特殊到一般,由具体到抽象的认知规律,激发学生勇于探索的精神。
二.说教法与学法
教法:1.自主探索法。用创设情景引导学生从生活实践自主探索新知识;
2.讲练讨论法。教师讲练引导学生从坐标系概念获得由点求坐标。
3.游戏激趣法。组织学生进行游戏活动,巩固提高获得的知识,调动学习积极性。
教学媒体的使用上,用多媒体课件与传统教学方式相结合,对本节课的教学是非常必要的,充分应用多媒体教学直观、形象的优势,在展示坐标平面的建立、坐标的确定上加快了课堂节奏,增大了课堂容量。同时为克服多媒体教学的局限性,利用黑板进行必要的板书,进行适当的演示引导学生正确使用作图工具进行严谨作图,并帮助解决课堂中的突发问题。
学法:按新课标理念,倡导学生自主主动探索、学习知识,尽可能把“钥匙”交给学生自启知识之门,大胆把课堂交给学生;用讨论探索知识,培养创新意识;培养学生自学能力。
三.说教学过程
(一)创设情景,引入新课
课件展示某城市旅游景点示意图,导入:假如你是导游,你是如何确定各个景点的位置的?.......这就是本节课要研究的问题。
设计意图:通过提供现实背景吸引学生注意,激发学生的学习兴趣。
(二)学生自学,提出疑问
指导学生自学课本第49页和50页,并回答问题。
1、由条而且有的数轴,组成平面直角坐标系。
2、水平的数轴称为轴或轴,习惯上取向为正方向;竖直的数轴称为轴或轴,取向为正方向;
3、两条数轴的交点为平面直角坐标系的点。
4、直角坐标系分为几个象限?如何区分?
回到刚开始的图形,学生自主思考:
1.如果以“中心广场”为原点建立平面直角坐标系,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?
2.你能分别用有序数对表示它们的位置吗?
设计意图:锻炼学生的自主学习能力,带着问题阅读课本,经历自主探索的过程,可以让学生加深记忆。以旅游景点为背景,让学生思考身边熟悉景点位置及其表示方法,自然亲切,学生容易接受。
(三)小组讨论,探索新知
如何确定平面直角坐标系中点的位置以及点的坐标的表示方法。
让学生依据对平面直角坐标系的理解,画出平面直角坐标系,并结合图形确定点的位置。
(1)已知平面内一点Q,如何确定它的坐标呢?
(2)若已知点p的坐标为(a,b),如何确定点p的位置呢?
(为了学生更好地叙述坐标的产生,教师可把这种叙述方式固定下来“过点A作横轴的垂线,垂足对应的数字是3,3叫作点A的横坐标,过点A作纵轴的`垂线,垂足对应的数字是2,2叫作点A的纵坐标,因此点A的坐标是A(3,2),记忆用一句话表示:先横后纵,逗号隔开,加上括号。)
设计意图:通过学生自主探究,培养其自学能力和科学探究能力。
(四)操作演练,培养技能
完成例1,例2,教师讲解。
(五)拓展提升
参照图形,回答:各象限内的点的坐标有何特征?
坐标轴上的点的坐标有何特征?
学生分组交流、合作,以小组为单位总结发言。
设计意图:培养学生分析问题、解决问题的能力和口语表达的能力。
(六)反思总结,布置作业
1.通过本节课的学习,你收获到了什么?
2.你觉得画平面直角坐标系要注意哪些事项?
作业:必做题:课本第52页习题11.2A组2.3
选做题:课本第52页习题11.2B组2
【后记】王老师的说课稿基本符合要求,作为参加工作一年多的年轻教师,应该说付出了不少的心血。放在这里,供老师们思考。王老师对于教材的分析、学情分析、重难点的突破应该说还是思考了许多的。
《平面直角坐标系》说课稿6
今天我将要为大家讲的课题是:华东师大版八年级(下)第十八章《函数及其图象》第二节第一课时“平面直角坐标系”。
一、教材分析
1、教材所处的地位和作用:
本章是“函数及其图象”,主要内容是函数的基础知识,以及一次函数与反比例函数这两个基本函数的性质和简单应用。“平面直角坐标系”是在学习了“变量与函数”的基础上提出来的。平面直角坐标系概念的引入,标志着数学由常量数学向变量数学的迈进,这是学习数学知识的一个飞跃,有了平面直角坐标系,就可以把两个相依变化的量之间的变化规律,用图形非常形象地表示出来,,因此平面直角坐标系成了研究两个变量的有利工具和重要方法,也是数形结合思想的典型体现。所以说“平面直角坐系”是本章从函数过渡到图象的一个重要内容。
二、教学目标
根据上述教材结构与内容分析,依据新课标要求,考虑到学生已有的认知结构、心理特征 ,制定如下教学目标:
1、知识与技能目标:
理解平面直角坐标系及横、纵坐标、原点、坐标等概念;能画出平面直角坐标系;弄清象限内及坐标轴上点的坐标的符号特点;能在指定的坐标系中,由点的位置写出坐标,根据坐标描出相应的点;初步理解坐标平面内的点与“有序实数对”之间的一一对应关系。
2、过程与方法目标:
经历从实际问题抽象出平面直角坐标系的过程,在数学建模中培养学生的发散思维能力和创新思维能力,渗透数形结合、转化的数学思想,发展学生的符号感。
3、情感态度与价值观目标:
通过介绍笛卡儿直角坐标创立的背景,激励学生树立敢于探索的精神,体会数学的建模思想,激发学生学习的兴趣和热情。
三、教学重点、难点、关键
本着新课程标准,在充分理解教材基础上,我认为本节课是学习本章的基础,理解平面直角坐标系的有关概念,会建立平面直角坐标系,由点的位置能写出坐标,会根据坐标描出相应的点是教学的重点。在平面内点的坐标中隐含了一一对应的函数思想,学生理解有一定难度。因此,我认为理解坐标平面内的点与有序实数对之间的一一对应关系以及坐标轴上点的坐标特征是本节课的教学难点。关键是:平面直角坐标系的构思原理。
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:探讨式教学法:
四、教学方法
我以建构主义理论为指导,辅以多媒体手段,创设情景,围绕学生这个主体开展教学活动,引导学生从已有的知和经验出发,让学生参与知识形成的全过程,提出问题与学生共同探索研究的启发式教学方法。在课堂结构上,我根据学生的认知水平,我设计了 ①问题提出②数学建模③概念讲解④知识拓展⑤知识小结五个教学环节,环环相扣,层层深入,以便突出重点突破难点,顺利而有效地完成教学目标。
学情分析
学生在学习了数轴的概念后,已经有了一定的数形结合的意识,积累了一定的由数轴坐标描出数轴上点及由数轴上的点写出数轴上坐标的经验,同时通过对实例的分析,对平面上的点由一个有序数对表示,有了一定的认识。八年级的学生经过一年的初中学习已经具备了初步的逻辑推理能力和空间想象能力,自主探索、合作交流已经成为他们学习数学的重要方式,所以学生学习本节课时已经具备了必要的相关知识与技能。
而如何从一维数轴点与实数之间的对应关系过渡到二维坐标平面中的点与有序数对之间关系,限于初中的学习范围与学生的接受能力,学生理解起来有一定的困难,如:不理解有序实数对,不能很好地理解一一对应,不能正确认识横、纵坐标的意义,有的只限于机械地记忆,这样会影响对数形结合思想的形成。同时本节内容中概念较多,比较琐碎,如何熟练运用对学生来说也有一定困难。因此,教学过程中创设生动活泼、直观形象、且贴近他们生活的问题情境,会引起学生的极大关注,会有利于学生对内容的较深层次的理解;另一方面,学生已经具备了一定的学习能力,可多为学生创造自主学习、合作交流的机会,促使他们主动参与、积极探究。
接下来我来具体谈一谈这一堂课的教学过程:
一、复习回顾(以提问的方式,复习数轴的概念及在数轴上表示点,学会表示数轴上的点的坐标)
1、数轴的三要素是______,______,______。
2、数轴上的点与______是一一对应。
3、写出数轴上各点的坐标
4、在数轴上描出下列各点:A点的坐标是—2,B点的坐标是0,C点的坐标是4
设计意图:通过提问,巩固以前学习的基础知识,进一步弥补学生对重要知识的遗忘,为引入新课做好铺垫。
二、问题提出
长期以来,我们的学生为什么对数学不感兴趣,甚至害怕数学,其中的一个重要因素就是数学离学生的生活实际太远了。事实上,数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。这节课我从电影院的引例和学生最熟悉的环境(教室)入手,从最近出现的一个问题(学生家长会,家长找座位)开始,抽象出一个数学问题————如何描述平面上点的位置?
设计意图:运用数学与现实结合的思想来激发学生的思维兴奋点,努力使“冰冷而美丽”的数学知识转化为学生“火热的思考”。这样提出问显得自然而有现实意义,达到了教学内容的“心理化”目的。提高了学生学习的信心和兴趣。
三、数学建模,引入新课
引导学生回忆军训中的“队列”训练,进一步体会:“用数轴直观形象地描述同一行或同一列上点的位置关系”这种数学建模思想。在课件中模拟一张教室平面图,让学生说出图中刘明和张军所在的位置。从学生的回答中可知:用几个量就能准确地描述出平面上点的位置?提问:能否也象前面一样用“数轴”来解决这个问题呢?学生自然会类比、联想“数轴”的建模思想。而且知道:既能体现“行”又能体现“列”建一条数轴是不行的。这时组学生分组进行讨论、交流,阐述自已的想法。之后插入“笛卡儿”创立“平面直角坐标系”的思想背景,从而引入课题。
设计意图:这样让学生体会和著名数家比美的成功喜悦感,来调动学生学习的积极性。
四、概念学习(平面直角坐标系的提出以及各部分名称的介绍,学会读出平面直角坐标系中点的坐标,并加以练习巩固)
1、在数学中,我们可以用一对______来确定平面上的点的位置。在平面上画两条原点______、互相______且具有___________的数轴,这就建立了平面直角坐标系(通常称作笛卡儿直角坐标系)。通常把其中水平的一条数轴叫做______,取为___正方向;铅直的数轴叫做______,取为___正方向;两数轴的交点O叫做______。在直角坐标系中,两条坐标轴把平面分成的四个区域,分别称为第一,第二,第三,第四象限。坐标轴上的点不属于任何一个象限。
设计意图:通过多媒体,以图片闪烁的形式让学生形象地接受新知识
2、在平面直角坐标系中,任取一点P,过点P分别作X轴和Y轴的垂线,垂足分别为M和N,这时,点M在X轴上对应的数为m,称为点P的______,点N在Y轴上对应的数为n,称为点P的______,依次写出点P的横坐标和纵坐标,得到一对有序实数,这个有序实数对叫做点P的坐标。记作P(m,n)
设计意图:在理解概念的基础上,通过练习,让学生掌握已知点求坐标和已知坐标描点的技能,领悟平面上点与有序数对一一对应加深巩固,并为后续坐标的特征探究奠定基础
四、探究1试写出平面直角坐标系中A,B,C,D,E,O各点的坐标,描出点F(0,3)G(4, )、H(3, 2),I(2,0)J(—1,0)K(0,—4)。
思考:1、在平面直角坐标系,各象限内的点的坐标的符号有何特征?
2、在平面直角坐标系,坐标轴上点有何特征?
3、在平面直角坐标系中,一对有序实数可以确定一个点的位置;反之,任意一点的位置都可以用一对有序实数来表示。即平面内的点与有序实数对一一对应。这样的有序实数对叫做点的坐标。
五、探究2、在平面直角坐标系中描出点A(2,—3):
(1)描出点A关于X轴的对称点;
(2)描出点A关于Y轴的对称点;
(3)描出点A关于原点的对称点,写出各点的坐标、
设计意图:通过数学活动让学生再次感知点与数的对应关系,并引导学生在课堂活动中感悟知识的生成、发展与变化,体现了素质教育的要求。即巩固新知根据坐标描点,同时引出坐标轴中各点之间的位置关系
六、知识检测
1、根据点所在位置,用“+”“—”或“0”填表:
点的位置横坐标符号纵坐标符号
在第一象限 + +
在第二象限
在第三象限
在第四象限
在x轴的正半轴上
在x轴的负半轴上
在y轴的正半轴上
在y轴的负半轴上
原 点
2、判断:
(1)对于坐标平面内的任一点,都有唯一的一对有序实数与它对应、( )
(2)在直角坐标系内,原点的坐标是0、( )
(3)点A(4 ,0 )在第二象限、( )
3、在平面直角坐标系中,点P的坐标为(—4,6),则点P在( )
A、第一象限 B、第二象限 C、第三象限 D、第四象限
4、已知P点坐标为(2a+1,b—3)
①点P在x轴上,则b= ;
②点P在y轴上,则a= ;
③点P既在x轴上也在y轴上,则a= b= 、
5、若点P(x,y)在第四象限,|x|=5,|y|=4,则P点的坐标为 、
设计意图:为反馈教学效果,此题让学生独立完成,并分别叫上、中、下等学生进行口答,其他同学点评的方式。发现问题,及时纠正。先知识练习,理解概念,在层层递进,加深对概念的理解
七、知识小结
学生总结,对有困难的学生老师适当作引导,帮助学生将所学知识“结构化”,重点小结平面直角坐标系的建模思想,平面上的点与有序实数之间的一一对应关系
八、作业布置:
九、设计说明
这节课“平面直角坐标系”是华东师大版八年级(下)数学第十八章第二节第一课时的内容。是在学习了“变量与函数”的基础上提出来的,是学习函数图象的重要基础,下面就这节课的教学设计作如下说明:
1、课题引入自然:从学生最熟悉的环境(教室)入手,抽象出用“一对有序实数”来表示平面上点的位置的数学问题,显得非常自然。这时老师也不要急于给出直角坐标系的概念,而是给学生一段时间去思考、去交流。把学生的思想和法国著名数学家———笛卡尔当时的思法进行自然结合,让学生体会成功的喜悦感,调动学生学习的积极性,提高学习的信心和兴趣。
2、方法运用灵活:既有教师的讲解,又有独立分析、分组讨论交流、游戏活动等。教学的全过程都是围绕学生这个主体开展活动的,和学生一起探究概念的形成,知识的拓展,让学生参与知识形成的全过程,拓展学生学习空间,充分发挥学生的主体作用。
3、能力培养到位:设计上注重了数学思想方法在课堂中的渗透,领悟数学知识发生与发展过程中的思想方法;注重知识“结构化”的形成,帮助学生形成了知识体系,完善了认知结构。有效培养学生的发散思维能力和对知识的分析、归纳能力。
4、信息反馈全面:本课采用了“学习单”的形式, 不仅体现了学生学习的全过程,还能比较全面地、及时地反映每个学生的学习情况,以便老师及时发现问,及时调整教学,对学有余力的学生及时给予激励和指导,对学习有困难的学生及时给予帮助和鼓励。
十、板书设计
18、2、1平面直角坐标系
一、平面直角坐标系 2、由点写坐标:
横(X)轴、纵(Y)轴、坐标原点 各象限内点的坐标特征:
象限:一、二、三、四 坐标轴上点的坐标特征:
3、直角坐标系中的点和有序实数对之间的关系。
二、点的坐标:P(X,Y)平面上的点与有序实数对一一对应
1、由坐标描点:
点的坐标是:一对有序实数对
点的对称关系:
《平面直角坐标系》说课稿7
《平面直角坐标系》是人教实验版七年级下学期第六章第一节第二课时。本节课的教学设计立足于问题情境的创设,把原来枯燥的平面直角系赋予一定的现实意义,让学生在实际问题中学习知识,力求避免空洞的教学。
情景(1):新课程强调:要让学生接触到来自身边的数学,体会数学所具有的巨大应用价值,我设计了活动“你知道我在哪里吗?”。
让学生站成等距离的一排,互相确定自己的位置。从学生的答案中,归纳出满足数轴的三要素:一个对象(基准)、一个方向、一个距离。从而进入第一个知识点教学——用数轴来刻画直线上位置关系。
这样设计的目的是通过学生自己位置的确定,唤起学生已有的生活经验,能够较好的体现数学的现实性,充分吸引学生的注意力,激发学生学习兴趣。
情景(2):问题是思想方法、知识积累和发展的逻辑力量,是生长新思想、新方法、新知识的种子。而初中生的自制力仍比较差,易受外界干扰,因而学习往往带有盲目性,此时,如果给他们一个正确的学习方向,那么,他们很快就会投入到学习中去。所以在情景(1)后,我提出了探究平面直角坐标系的三个问题:
①如果小兵同学在小兰同学的右侧第二个位置,你能说出董雪同学在数轴上对应的点的坐标吗?
②如果小兵在一个长方形的操场上,你用什么方法可以确定小兵的位置?
③如果小兵在一个广阔无垠的草地上,你用什么方法可以确定小兵的位置?
《标准》强调:知识的衔接要体现螺旋上升的原则。所以这三个问题的安排有一定的层次性,即由线到面,由有限到无限,由易到难,即尊重学生的人格,关注个体差异,满足不同学生的学习需要,激发学生的学习积极性,使每个学生都能得到充分发展,又适当利用类比的方法,使学生对点与坐标的对应关系顺利地实现由一维到二维的过渡,引出平面直角坐标系。
经过这样一串问题的设计,在教学过程中加深了学生对建立平面直角坐标系的必要性的理解,突破了本章的教学难点,使得学生认识平面直角坐标系水到渠成。
《平面直角坐标系》说课稿8
各位评委好!
今天我说课的题目是《平面直角坐标系》,我准备从以下几个方面对本节课的教学设计进行说明。
一、教材分析
1、教材的地位和作用
本节教材是初中数学七年级下册第六章《平面直角坐标系》第1节第2课时的内容,是初中数学的重要内容之一。平面直角坐标系的引入,标志着数学由常量数学向变量数学的迈进,这是学习数学知识的一个飞跃。
2、教学目标
根据新课标的教学理念,培养学生的数学素养和终身学习的能力,我确立了如下的三维目标:
(1)知识与技能:认识并能画出平面直角坐标系,在给定的坐标系中,会根据点的位置找到坐标,由坐标描出点的位置;
(2)过程与方法:经历画坐标系、由点找坐标等过程,发展学生的数形结合意识,合作交流能力,培养学生创新精神;
(3)情感态度与价值观:培养学生细致认真的学习习惯。通过讲述笛卡儿创立坐标系的故事,激励学生敢于探索,勇攀科学高峰。
3、教学重难点
根据以上对教材的地位和作用,以及学情分析,结合新课标对本节课的要求,我将本节课的重点确定为:(1)在给定的坐标系中,会根据点的位置找到坐标,由坐标描出点的位置;(2)坐标系中点的坐标特征是全章的重点,在学习函数的图象时都要用到,因而要对这部分知识反复的练习和应用并渗透数形结合的思想。
难点确定为:平面直角坐标系的有关概念及点的坐标特征。
二、教学方法分析
本节课我主要采用“学案导学,展示激学”的教学模式,并辅助采用问题式、互动式结合的教学方法,倡导学生主动参与教学实践活动,以独立思考和相互交流的形式,给学生足够的思考交流时间和空间,发挥学生的主体地位作用。另外,在教学过程中,采用多媒体辅助教学,激发学生的学习兴趣,增大教学容量,提高教学效率。
三、教学过程分析
为有序、有效地进行教学,本节课我主要安排以下教学环节:
(1)激发兴趣 引出课题
我首先出示教室座位图,约定“列数在前,排数在后”,提出问题:“同学们会用有序数对表示自己的座位吗?”
然后我念几组有序数对,请对应座位上同学站起来并喊“到”。
借助多媒体演示,同学们很快发现这些同学连成“心形线”,并产生浓厚兴趣!这时我作补充:早在十七世纪法国数学家笛卡儿就借助坐标系,用方程表示了“心形线”,并讲述笛卡儿与他观察蜘蛛织网发现平面直角坐标系的故事。学生对此感到好奇并产生持续的兴趣。
(2)研读课本 自学探究
接着让学生认真研读课本6.1.2平面直角坐标系,并完成学案“复习引入”和新课学习。我下去检查督促,大家完成后我用多媒体精讲释疑。
(3)小组合作 展示交流
解答后,我将班级学生分成七个小组,完成活动一、活动二、活动三。每个活动由两个组完成,一个组展示,一个组补充说明。最后一个组总结,全班补充。讨论交流期间我下去督促指导。讨论出结论后,我鼓励每个小组展示自己的讨论成果,其他小组可以补充,纠正。我作适当的引导!
(4)当堂检测 对比反馈
学案活动完成后,运用多媒体展示学案上的当堂检测,增强竞争机制。并及时批改、点评、表扬。下课时收上学案,及时批改。
(5)布置作业 巩固提高
以作业的巩固性和发展性为出发点,我设计了必做题和选做题。
必做题:练习册6.1.2
选做题:习题6.1第4,5题
上网浏览《世界著名数学家传记》,阅读笛卡儿的传记,并搜索心形线的感人故事。
以上是我对本节课的见解,谢谢!
《平面直角坐标系》说课稿9
一.设计说明
这节课“平面直角坐标系”是华东师大版八年级(下)数学第十八章第二节第一课时的内容。是在学习了“变量与函数”的基础上提出来的,是学习函数图象的重要基础,下面就这节课的教学设计作如下说明:
1、课题引入自然:从学生最熟悉的环境(教室)入手,抽象出用“一对有序实数”来表示平面上点的位置的数学问题,显得非常自然。这时老师也不要急于给出直角坐标系的概念,而是给学生一段时间去思考、去交流。把学生的思想和法国著名数学家---笛卡尔当时的思法进行自然结合,让学生体会成功的喜悦感,调动学生学习的积极性,提高学习的信心和兴趣。
2、方法运用灵活:既有教师的讲解,又有独立分析、分组讨论交流、游戏活动等。教学的全过程都是围绕学生这个主体开展活动的,和学生一起探究概念的形成,知识的拓展,让学生参与知识形成的全过程,拓展学生学习空间,充分发挥学生的主体作用。
3、能力培养到位:设计上注重了数学思想方法在课堂中的渗透,领悟数学知识发生与发展过程中的思想方法;注重知识“结构化”的形成,帮助学生形成了知识体系,完善了认知结构。有效培养学生的发散思维能力和对知识的分析、归纳能力。
4、信息反馈全面:本课采用了“学习单”的形式, 不仅体现了学生学习的全过程,还能比较全面地、及时地反映每个学生的学习情况,以便老师及时发现问,及时调整教学,对学有余力的学生及时给予激励和指导,对学习有困难的学生及时给予帮助和鼓励。
二、板书设计
18.2.1平面直角坐标系
1、平面直角坐标系 2.由点写坐标:
(1)横(X)轴、纵轴、坐标原点 各象限内点的坐标特征:
(2)象限:
(3)一、二、三、四 坐标轴上点的坐标特征:
2、点的坐标:P(X,)平面上的点与有序实数对一一对应
(1)由坐标描点:
(2)点的坐标是:
(3)一对有序实数对点的对称关系:
《平面直角坐标系》说课稿10
一、说教材
首先谈谈我对教材的理解,《平面直角坐标系》是人教版初中数学七年级下册第七章7.1.2的内容,本节课的内容是平面直角坐标系及相关概念。有序数对在上一节已经进行了讲解,并且之前也学习了数轴的概念,对于本节课的知识点有了很好的铺垫作用。同时本节课的内容为后面研究函数的图像提供了有力的基础。
二、说学情
接下来谈谈学生的实际情况。新课标指出学生是教学的主体,所以要成为符合新课标要求的教师,深入了解所面对的学生可以说是必修课。本阶段的学生已经具备了一定的分析能力,也能做出简单的逻辑推理,而且在生活中也为本节课积累了很多经验。所以,学生对本节课的学习是相对比较容易的。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握什么是平面直角坐标系,会通过点的坐标找到位置以及通过位置写出点的坐标。
(二)过程与方法
在探索平面直角坐标系以及点的坐标与位置关系时,提升逻辑推理能力以及几何直观。
(三)情感态度价值观
在自主探索中感受到成功的喜悦,激发学习数学的兴趣。
四、说教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:平面直角坐标系及相关概念。这种方法学生首次见到,难以理解,所以本节课的教学难点是:理解建立平面直角坐标系的必要性,体会平面直角坐标系中点与坐标的一一对应关系。
五、说教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、说教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,那么我先提问:上节课学习的内容是什么?能否举一个例子。
根据学生回答追问:有序数对所表示的位置如何直观表示?从而引出本节课的课题《平面直角坐标系》
利用有序数对而不用数轴进行导入,是因为有序数对是上节课学习的内容,而数轴是上学期学习的内容,距离学生相对比较远。这样利用学生刚刚学过的知识进行导入,更好的从学生的角度出发,学生更容易接受。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
学生对于该问题能够根据之前的知识经验考虑使用数轴,我便和学生一起回顾数轴的三要素。接下来进一步引导:对于有序数对有两个数应该如何表示,进而转到用两个数轴。
第三篇:初中数学《平面直角坐标系》教案
初中数学《平面直角坐标系》教案
一、教学目标
【知识与技能】
掌握什么是平面直角坐标系,会通过点的坐标找到位置以及通过位置写出点的坐标。【过程与方法】
在探索平面直角坐标系以及点的坐标与位置关系时,提升逻辑推理能力以及几何直观。【情感态度价值观】
在自主探索中感受到成功的喜悦,激发学习数学的兴趣。
二、教学重难点
【教学重点】
掌握什么是平面直角坐标系。【教学难点】
理解两个轴为何垂直,会通过点的坐标找到位置以及通过位置写出点的坐标。
三、教学过程
(一)引入新课
复习提问:什么是有序数对?能否举一个例子。
根据学生回答追问:有序数对所表示的位置如何直观表示?
(二)探索新知
总结学生回答:利用学过用数轴表示数,对于有序数对有两个数进而转到用两个数轴。进一步追问:用两个什么样的数轴? 让学生根据上节课举的电影院的例子对比座位行列是互相垂直的,自主探索得出结论:用相互垂直的两条数轴。
教师总结:由平面内两条互相垂直、原点重合的数轴组成平面直角坐标系,水平的数轴称为x轴或横轴,取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
在黑板画出一个平面直角坐标系,并在其中点出A,B两个点,提问:点A如何用有序数对表示? 学生回答,教师总结:一个点的横坐标就是点向x轴做垂线垂足的坐标,纵坐标就是向y轴做垂线垂足的坐标。
学生活动:写出B点的坐标。
(三)课堂练习
初中数学《平面直角坐标系》教案 1 / 2 找出课前同学举例的有序数对(-2,-1),(-1,1)在平面直角坐标系的什么位置
(四)小结作业
教师提问:今天有何收获? 引导学生总结:什么是平面直角坐标系,如何根据坐标找点,如何根据点找坐标 课后作业:思考平面直角坐标系中不同位置的点的坐标有何特点?
四、板书设计
五、课后反思
初中数学《平面直角坐标系》教案 2 / 2
第四篇:平面直角坐标系第一课时数学说课稿
平面直角第一课时说课稿
各位老师:
你们好!我是来自_______________。今天我说课的内容是平面直角坐标系第一课时,下面我将从五个大方面向大家汇报一下我是如何钻研教材、备课和设计教学过程的。
第一,说教材
1、教材的地位和作用
平面直角坐标系是在学生对数轴与认识的基础上,由一维直线上升到二维平面,它是学习函数的基本工具.在数学中引入平面直角坐标系,这是对代数中最基本元素‘数’和平面中最基本元素‘点’之间一一对应,使数形统一起来,从而开创数学史上的新纪元。
2、教学目标的确定
全日制义务教育数学课程标准指出:基础教育在为学生获得终身发展打好基础,因此,提出以下教学目标: 1)知识目标:会正确画出平面直角坐标系,在平面直角坐标系中根据坐标找出点和通过点求出坐标。
2)能力目标:在共同探讨平面直角坐标系的过程中,使学生真实的体验和掌握数学的思想及方法。获得探究、实践和创新的能力。
3)情感目标:在共同学习习近平面直角坐标系的过程中,让学生经历观察、操作、交流、归纳、想象等探索过程。并在这个过程中,渗透数形结合的思想,培养学生创新精神。
3、教学重难点的确定
学生由于受到数轴的一维空间思维定势的影响,对二维空间的建立很难适应,而且运用实数对表示平面上点的坐标也很难理解。所以重点是平面直角坐标系的有关概念,坐标系的画法以及如何找点的坐标;难点是平面直角坐标系概念的建立。
第二,说教法
本节课我采用“探究发现式”教学模式,在教学过程中要重视知识产生及发展过程的教学设计,引导学生积极做数学的过程。在这个过程中,教师与学生平等的交流并给予恰到好处的点播,体现学生是学习的主人,教师是数学学习的组织者、引导者和合作者,并在教学过程中注重课堂文化和贯穿人文精神。
第三,说学法
动手实践,自主探索与合作交流是本节课学生学习的主要特点,为学生提供充分的从事数学活动的时间与空间,让学生在亲身体验和探索中掌握平面坐标系,使每个学生都得到充分的发展。
第四,说教学程序
本节课主要解决三个问题,一是正确画出平面直角坐标系,二是根据坐标找出点,三是由点求出坐标。对于第一个知识点我是从以下几个环节进行的:
1、创设问题情境,激发学生学习兴趣;
师生共同参与完成一个在班级内找同学的游戏,游戏规则是:根据班级课桌椅的排列情况把学生分成几排几列,让学生说出自己的准确位置以及别的同学的位置。可提出以下几个问题:1)某某同学在第几排第几列?2)第三排第四列和第四排第三列表示的是哪两位同学的座位?他们一样吗?3)已知某某同学在第四排,你能找到他的位置吗?此外还可引导学生举一些实际生活中的例子。比如,在影院里如何找座位,在书架上如何找一本书的位置,再比如如何精确的给出我国首都的具体位置?通过我们在地理课上学到知识知道我国首都就是位于东经116°北纬40°。通过以上问题的探讨让学生体会到一对有序的数可以确定一个具体位置,而一个具体位置也可以对应着一个有序的数对。
本环节的设计主要是想让数学背景包含在学生熟悉的事物和具体的情境之中,在数学的世界里有供他们思考,开拓和发展的用武之地,而且通过这几个问题为学生提供与启发的讨论模式,营造一个极力探索和理解的气氛。
2、探索研究,发现规律
首先,简单的复习一下数轴的有关概念。并完成数学课本XX页的练习1和练习2。因为数学活动必须是建立在学生的认知水平和知识经验基础之上的。所以要先复习一下数轴的有关概念,为迁移、构建二维平面直角坐标系打下基础。接下来还可以引导学生阅读课本XX页的有关平面直角坐标系的概念和内容,并根据其理解程度,把本班学生的座位平面图利用平面直角坐标系的形式画出来,并把某位同学的座位在坐标系中表示出来。可以先让学生独立思考,然后小组之间讨论交流,拿出他们认为最理想的草图。当然不同的学生有不同的画法,只要他们能解释出其中的理由,同样给予肯定与表扬。教师在适当的时候也可展示一个草图与学生共享。
通过引导学生阅读课本,让学生学会分析数学概念,从而把握住概念的本质属性应用于实践操作过程中。而让学生动手画班级的平面座位图,主要是想让学生从亲身经历实际问题抽象出数学模型的过程,从中感受数学发现的乐趣,形成应用意识和创新意识。而且通过小组交流讨论,既训练了他们的独立思考能力又培养了他们学习协作的精神。
3、讨论评议,揭示规律
在学生动手画直角坐标系的过程中,要帮助学生揭示出画直角坐标系的注意事项:1)横纵坐标轴要互相垂直2)横纵轴的原点要重合3)横纵坐标轴的单位长度要一致4)横轴取向右为正方向,纵轴取向上为正方向,为了称呼方便我们习惯把横轴称为X轴,纵轴称为Y轴。5)直角坐标系的原点不是非要固定在某一位置上的,它可以根据自己的需要形成各自的坐标系。
本环节的设计,我主要是想让已经存在于学生头脑中那些非正规的数学知识和数学体验上升发展为科学的结论。在建立直角坐标系的过程中,还可以穿插讲讲法国数学家笛卡尔如何产生灵感建立直角坐标系,以及后人为了纪念他把直角坐标系也称为笛卡尔直角坐标系的故事。讲述数学家的故事主要是挖掘教材中人文教育的因素,用人文知识唤醒学生生命内的人性因素,丰富学生的心理世界,完善学生的人格。
随着学习的进一步深入,要让学生自己发现在实际生活中,为了更快更准确的找到某个位置,需对平面进行分化,从而引出象限的分类、轴的分类以及原点的位置。比如平面上的这些点,经过平面分化后就非常容易的感受到它们具体都在哪个位置。本环节我主要是想让学生体验到数学是人们生活劳动和学习必不可少的工具,它来源于实际生活,又服务于生活,进行辩证唯物主义教育。
第一个知识点我就是从以上这三个环节进行阐述的,在解决这个知识点的基础上,我解决第二个知识点,及根据坐标找出点。
由课本中的例二为例:在直角坐标系中描出下列各点A(4,3),B(-2,3),C(-4,-1),D(2,2),E(3,4)。由学生自己动手探索完成,当然不同的学生有不同的解法,综合起来无外乎三种。我们以A点为例:第一种,以原点开始经由X轴的正方向移动4个单位长度,再由与X轴垂直的方向向上移动3个单位长度找到该点;第二种,以原点开始经由Y轴的正方向移动3个单位长度,再由与Y轴垂直的方向向右移动4个单位长度找到该点;第三种,根据条件分别做X轴与Y轴的垂线,两直线的交点就是该点。在这里还要防止学生产生误区,认为横坐标和纵坐标分别是两坐标轴上的点。
数学教学是数学活动的过程,所以要让学生在具体的活动中展开积极的思维过程,体验数学知识。像这样由学生自己动手探索出来的解题方法,要鼓励他们说出解题思路供大家参考学习分享,具体要让学生掌握哪一种方法,可根据他们自己的喜好,由他们自己选择。通过此例题让学生进一步体会到:第一,坐标是有顺序性的,比如(3,4)(4,3)一个是横坐标为3纵坐标为4,一个是横坐标为4纵坐标为3,他们是两对不同的有序实数对,表示平面上两个不同的点;第二,坐标的表示法是有讲究的,是把横坐标在前,纵坐标在后写在括号内的,用逗号隔开。
在这整个教学过程中,要关注个体的差异,实现教师与学生、学生与学生合作互动。这不仅是检验、纠正和完善个人知识的需要,也是培养学生口头表达自己思想观点和倾听别人意见的能力和态度的需要。
接下来是用课本的练习四来巩固所学的知识,练习四与例二相似,但增加了几点表示在坐标轴上的点,针对教学内容让学生进行一定且必要的笔头训练,在练习过程中暴露出的问题,在练习中还可强调解决。
第二个知识点我就是从以上这两个环节进行阐述的,解决第二个问题的基础上,解决第三个问题,即由点求出坐标。以课本中的例一为例,写出图中A,B,C,D各点的坐标,此例题与例二相似。也是由学生自己动手完成,由例二的解题思路做铺垫,学生不难寻求到解决例一的解题方法,让学生选择一种最符合他们解题习惯的方法,把这种方法作为自己的知识储存于脑海中。对于例一的探索可视课堂的具体情况,让学生独立完成或合作协商,若有困难教师可及时的指导帮助。这样有利学生的创新意识和协作精神,而且也是故意让学生尝试错误,在师生一起纠正中能加深学生对概念的理解。
接下来环节是开发条件结论,考察探索创新。教师要给每位同学一张印有直角坐标系的类似图,让学生做游戏。可在小组之中完成此游戏。如这些由点形成的,学生非常熟悉的图形中,第一个同学指着图形上的一点,让另一位同学说出它的坐标;也可交换一下,由一个同学说出点的坐标,让另一位同学指出它的位置,也可选一组同学上讲台运用电脑的鼠标进行操作,本环节充分发挥现代化教学工具的作用。
让学生在轻松愉快的游戏中,进一步理解平面内的点与有序实数对之间一一对应的关系,充分体现数形结合的思想。
4、集体小结
可由小组推荐他们的一位组员做总结性发言,谈谈他们在学习中遇到的问题,以及本节课所要掌握的知识。通过小结可帮助学生构建新知识,由学生自由发言可锻炼他们的口头表达能力。
第五,作业
分为必做题和选做题,针对学生学习水平的差异,对不同的学生要做不同的要求,让每个学生都尝到成功的喜悦。本节课的探索性活动
1、正确画平面直角坐标系
2、根据坐标找点
3、由点求出坐标
4、探索性活动
5、板书设计
先让学生思考两个问题:
1、横坐标(或纵坐标)为正数的点都会集中在什么地方?负数呢?零呢?能说出它们的规律吗?
2、各象限及各坐标轴上的点坐标又有什么规律呢?通过思考题让学生学会从探索性的势力中总结出一般规律,培养学生处理信息的能力
板书设计
本节课的板书设计采用块状形式板书,因为它比较直观,清晰而且重难点突出
本节课最后一个环节 教学评价
本节课采用探究发现式的教学模式,为学生创造了生动活泼的探究知识的情节,从而充分调动学生学习数学知识的积极性,使学生自主的发现知识,创造性的解决实问题的时间和空间。利用课前设计的问题系列,不断的把学生引入新的知识情境中。
我从以上五个方面对阐述了平面直角坐标系这节内容的有关教学设计,不足地方还请各位老师批评指正。
第五篇:平面直角坐标系教案
平面直角坐标系
学习目标:
(1)理解平面直角坐标系的相关概念.(2)在给定的平面直角坐标系中,会由点的位置写出点的坐标,由点的坐标确定点的位置. 学习重难点:
平面直角坐标系及相关概念.
一、复习引入
问题1
回顾已学内容,回答下列问题:
(1)什么是数轴?请画出一条数轴.
(2)如图,A,B,C三点所表示的数分别是什么?在数轴上描出“-3”表示的点.
问题2
在数轴上已知点能说出它的坐标,由坐标能在数轴上找到对应点的位置.那么数轴上的点与坐标有怎样的关系?
二、设疑自探一:
类似于利用数轴确定直线上点的位置,结合上节课学习的有序数对,回答问题:如图,你能找到一种办法来确定平面内点B的位置吗?
(1)在图中,点B记为(1,2),类比点B,你能分别写出点A、C、D分别记为什么吗?(2)了解法国数学家笛卡儿 解疑合探一:
学生展示,其他同学补充,教师总结。
三、设疑自探二:
学生自学课本本节课内容后,回答下列问题:
⑴平面直角坐标系 在平面内画两条互相__、原点重合的数轴,组成____________.水平的数轴称为_____或_____,习惯上取______为正方向;竖直的数轴称为______或_____,取______为正方向;两坐标轴的交点为平面直角坐标系的_____.(2)如图写出点的坐标:A____;B____;C____;D____ 1
(3)坐标平面被两条坐标轴分成了哪几个部分,分别对应什么象限?(在上图中标注出象限)
注意:坐标轴上的点不属于_____.(4)如图甲,在平面直角坐标系中,点B,C,D的坐标分别是什么?
甲 乙
(5)如图乙,在平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?x轴和y轴上的点的坐标有什么特点?原点的坐标是什么?
解疑合探二:
1、学生展示,其他同学补充,教师总结。
2、教师出示例题,学生展示:
例:画平面直角坐标系并描出下列各点: A(4,5),B(-2,3),C(-4,-1),D(3,0),K(0,-4).
四、质疑再探:
数轴上点与其坐标是什么关系?想一想平面上的点与坐标又是什么关系?
五、运用拓展:
一、选择题:
1.如图1所示,点A的坐标是()A.(3,2);B.(3,3);C.(3,-3);D.(-3,-3)2.如图1所示,横坐标和纵坐标都是负数的点是()A.A点 B.B点 C.C点 D.D点 3.如图1所示,坐标是(-2,2)的点是()A.点A B.点B C.点C D.点D 4.若点M的坐标是(a,b),且a>0,b<0,则点M在()A.第一象限;B.第二象限;C.第三象限;D.第四象限
二、填空题: 1.点A(-3,2)在第_______象限,点D(-3,-2)在第_______象限,点C(3, 2)在第______象限,点D(-3,-2)在第_______象限,点E(0,2)在______轴上, 点F(2, 0)在______轴上.2.已知点M(a,b),当a>0,b>0时,M在第_______象限;当a____,b______时,M 在第二象限;当a_____,b_______时,M在第四象限;当a<0,b<0时,M在第______象限.三、提高训练:: 1.如果点A的坐标为(a+1,-1-b),那么点A在第几象限?为什么? 2.已知点P(a,b)在第四象限,则点Q(b-1,-a)在第 象限。