第一篇:膜蒸馏技术
膜蒸馏技术简介
1.1膜蒸馏技术简介 1.1.1膜蒸馏概述
膜蒸馏(Membrane Distillation,MD)是在上个世纪八十年代初发展起来的一种新型分离技术,是膜分离技术与传统蒸发过程相结合的新型膜分离过程,它与常规蒸馏一样都以汽液平衡为基础,依靠蒸发潜热来实现相变。它以膜两侧的温差所引起的传递组分的蒸汽压力差为传质驱动力,以不被待处理的溶液润湿的疏水性微孔膜为传递介质。在传递过程中,膜的唯一作用是作为两相间的屏障,不直接参与分离作用,分离选择性完全由气—液平衡决定[1]。膜蒸馏过程是热量和质量同时传递的过程。膜的一侧与热的待处理的溶液直接接触(称为热侧),另一侧直接或间接地与冷的液体接触(称为冷侧)。由于膜的疏水性,水溶液不会从膜孔中通过,但膜两侧由于挥发组分蒸气压差的存在,而使挥发蒸气通过膜孔,从高蒸气压侧传递到低蒸气压侧,而其它组分则被疏水膜阻挡在热侧,从而产生了膜的透过通量,实现了混合物的分离或提纯。这与常规蒸馏中的蒸发、传质、冷凝过程十分相似,所以称其为膜蒸馏过程如图1-1所示:
1986年意大利、荷兰、日本、德国和澳大利亚的膜蒸馏专家在罗马召开了膜蒸馏研讨会,会上与会专家统一规范了膜蒸馏过程涉及的各种术语,定义膜蒸馏过程应具有以下几种含义:使用的膜是疏水性多孔膜;膜不应被所处理的液体所浸润;溶液中的挥发性组分以蒸汽的形式通过膜孔;膜孔中不发生毛细冷凝现象;组分通过膜的推动力是该组分在膜两侧的蒸汽压差;膜本身不改变处理液各组份的汽—液平衡;膜至少有一侧与所处理液体直接接触;对于任何组分该膜过程的推动力是该组分在气相中的分压差[2,3,4]。
膜蒸馏本身的特点决定了该技术与其它分离技术相比有着无法比拟的优点:(1)膜蒸馏过程较其他膜分离过程(反渗透)的操作压力低,几乎是在常压下进行,设备简单、操作方便,在技术力量较薄弱的地区也有实现的可能性。(2)在非挥发性溶质水溶液的膜蒸馏过程中,因为只有水蒸汽能透过膜孔,理论上可以100%截留离子、大分子、胶体、细胞和其它非挥发性物质,所以蒸馏液十分纯净,可望成为大规模、低成本制备超纯水的有效手段。(3)该过程可以处理极高浓度的水溶液,如果溶质是容易结晶的物质,可以把溶液浓缩到过饱和状态而出现膜蒸馏结晶现象,是目前唯一能从溶液中直接分离出结晶产物的膜过程。(4)膜蒸馏组件很容易设计成潜热回收形式,并具有以高效的小型膜组件构成大规模生产体系的灵活性。(5)在该过程中无需把溶液加热到沸点,只要膜两侧维持适当的温差,该过程就可以进行,操作温度比传统的蒸馏低,有可能利用太阳能、地热、温泉、工厂的余热和温热的工业废水等廉价能源[2]。
但是膜蒸馏作为一种新的分离技术也还有许多不完善之处,比如:
(1)膜蒸馏与制备纯水的其它膜过程相比,膜的产水通量较低,迄今还没有开发出较成熟的膜蒸馏用膜的生产技术,且疏水微孔膜,与亲水膜相比在膜材料和制备工艺的选择方面都十分有限;(2)运行过程中膜的污染不仅导致膜的通量下降,更为严重的是加速了膜的润湿,使盐渗漏进入淡水侧,从而使淡水品质下降;(3)缺乏有效的热量的回收手段,膜蒸馏是一个有相变的膜过程,汽化潜热降低了热能的利用率,所以在组件的设计上必需考虑到潜热的回收,以尽可能减少热能的损耗,与其他膜过程相比,膜蒸馏在有廉价能源可利用的情况下才更有实用意义。1.1.2膜蒸馏的分类与特点
根据挥发性组分在膜冷侧冷凝方式的不同,膜蒸馏可分为四种不同结构和操作方式[5](如图1-2所示),即:直接接触式膜蒸馏(DCMD)、气隙式膜蒸馏(AGMD)、吹扫式膜蒸馏(SGMD)和真空膜蒸馏(VMD)。
在直接接触式膜蒸馏[6-15]中透过侧的冷却纯水和膜上游侧的溶液都与膜直接接触,在膜两侧温差引起的水蒸气压力差驱动下传质,透过的水蒸气直接进入冷却的纯水中冷凝。直接接触膜蒸馏的过程装置和运行都比较简单,但是上下游的流体仅有一层薄膜相隔,热量很快从上游传递到下游,最后达到热平衡。冷测需要持续制冷,热侧需要持续加热,因而热利用效率较低。但过程所需要的附属设备最少,操作比较简单,最适用于透过组分为水的应用场合,例如:脱盐、水溶液(果汁)浓缩等。气隙式膜蒸馏[27-35]的透过侧空气与膜接触,增加了热传导的阻力,大大降低了传导热量的损失,但是同时传质阻力也增加。气隙式膜蒸馏的传质机理主要是以分子扩散为主的,但由于透过侧空气的存在,会使膜孔中存在滞留空气,透过蒸汽在穿过膜孔时的阻力增加。与膜接触的气层厚度一般为膜厚度的10~100倍,空气可以视为静止膜,也会使传质阻力增大,导致透过的通量很小。在去除水溶液中的微量易挥发性组分方面占有优势。吹扫气膜蒸馏[37,38,39]同气隙式膜蒸馏一样适用于除去水溶液中的微量易挥发性组分。在吹扫气膜蒸馏中,透过侧为流动气体,克服了气隙式膜蒸馏中静止空气层产生传质阻力的缺点,同时保留了气隙式膜蒸馏中较高的热传导阻力的优点,但是在收集透过侧组分方面存在较大困难,操作过程中为了减少传质阻力,要减小传质边界层的厚度,相应需要较高的吹扫气体速度,操作压力随之升高,目前研究工作相对较少。在真空膜蒸馏[40-57]中,膜的一侧与进料液体直接接触,另一侧的压力保持在低于进料平衡的蒸气压之下,透过的水蒸气被抽出组件外冷凝,增大膜两侧的水蒸气压力差,可得到较大的透过通量,常常应用于去除稀释溶液中的易挥发性组分。由于在VMD过程中,透过侧为真空,水蒸气分子与孔壁的碰撞占主要优势,以努森扩散为主,热传导损失可以忽略不计。因此,真空膜蒸馏的传质压力差较大,传质驱动力大,透过气体的传质阻力较小,膜两侧的绝对压力差较大,与其它分离过程相比,膜通量也具有很大的优势,所以近年来,在脱盐、废水回收方面的研究日益增多。1.1.3膜蒸馏的发展历程
膜蒸馏技术发展到今天大致经历了三个阶段:概念提出阶段(19世纪60年代—19世纪70年代)、初步发展阶段(19世纪80年代—19世纪90年代)、高速发展阶段(19世纪90年代至今)。
膜蒸馏的概念是在1963年Bodell[58]的一篇专利中首先提出来的,他将膜蒸馏描述为“一种可将不可饮用水流体转化为可饮用水的装置和技术”,并指出可用抽真空的方式将渗透蒸汽从装置中移走,但是他并没有指出膜的结构与孔径,也没有给出结果和定量分析。1964年,Weyl[59]发现采用空气填充的多孔疏水膜可在蒸汽压系统内从含盐水中回收去离子水,这个致力于提高脱盐效率的新工艺在1967年被授予美国专利,专利宣称这个用于脱盐的改进方法和改进设备能在最小的外部能量要求和最小的资金和厂房花费下运作。Weyl建议将热的溶液和冷的渗透物都与膜直接接触,以消除气隙,他采用的是厚3.2mm,孔径9μm,孔隙率42%的PTFE膜,所获得的膜蒸馏通量达到了1kg/m2?h,这与当时反渗透5~75kg/m2·h的通量有很大的差距,因此在60年代末人们对膜蒸馏的兴趣逐渐减弱。Findley[60]是第一个公开发表膜蒸馏结果的人,60年代后期他以纸、胶木、玻璃纤维、玻璃纸、尼龙、硅藻土等作为膜材料进行直接接触膜蒸馏实验,其中大部分材料用硅树脂、特氟龙或防水剂处理过,以增强膜的疏水性。实验定性地描述了膜孔中存的在空气、膜的厚度、导热热损失和空隙率对膜蒸馏的影响,并且首次说明了膜蒸馏所用膜材料的一些重要特性:热阻高、厚度小、液体进入压力大、高空隙率及弯曲因子较小。Findley预言,如果能够找到低价位、耐高温、长寿命并且特性理想的膜,膜蒸馏不仅可以用于海水淡化,还会是一种经济可行、用途广泛的蒸发方法。
早期的膜蒸馏过程设计中,Rodger[61,62,63]的工作最为出色,他在1968-1975年间有多项专利被批准。有几项专利研究改善热量回收系统,如一项设计中使用带波纹的换热片,以提高对流传热效果。1971年的专利设计了多效膜蒸馏,以分离挥发性不同的组份,如重水的分离。1972年的专利设计了膜蒸馏的脱盐工艺,是包含了料液脱气、膜表面处理等工序在内的完整系统。使用的膜囊括PTFE、PP、PVDF以及疏水处理后的亲水膜。1975年的专利改变了研究方向,设计了家用饮水机。
19世纪80年代起以企业为主的研发带动了膜蒸馏技术前所未有的发展。80年代早期,由于新的制膜技术的出现,人们又开始对膜蒸馏产生兴趣,因为这时可以制得高达80%孔隙率和50μm厚的膜,比Weyl和Findley在60年代所用的膜,渗透通量提高了100倍。膜组件设计的改进及进一步认识温度和浓度极化对MD性能的影响,也促使人们恢复对膜蒸馏的关注,同时也使膜蒸馏更具竟争力。
Gore和Associacs公司[64](美国)、Swedish Development Co.[65,66]和EnkaAG.[67-69](德国)从商业应用的角度开发他们的测试膜蒸馏系统。如Gore开发出了一种卷式膜组件用于“Gore-Tex膜蒸馏”,最终由于其热传递差的技术原因及成本过高,Gore在其即将商品化之前放弃了这一计划。值得注意的是,有人使用Gore-Tex膜完成了中试,认为膜蒸馏用于脱盐尚需两个条件:膜成本大幅度下降,提高热量回收热交换器的传热效果[70]。几乎同时瑞典National Development Co.公布了他们研制的膜蒸馏系统,包括样机运行情况[71],采用了板框结构的膜蒸馏,但同样未进入市场。EnkaAG开发了中空纤维膜组件的“传递膜蒸馏”,Kjellander提交了气隙膜蒸馏用于脱盐的专利[72]。80年代末,Enka公司宣称制造了一种可用于商业生产的MD系统。这个阶段MD在许多领域只能是一个有竞争的系统,还不能够可顶替别的技术。学术界对MD兴趣的增强,是因为该过程的多样性及MD研究能产生“有利于环境”的结果。
80年代大量发表的膜蒸馏文献主要集中于过程机理研究,这些研究将常规的传递理论应用于膜蒸馏,分析流体温度、流量、压力等操作参数的影响,建立了传热传质模型。特别对膜传质过程做了很多理论研究,从理论上明确了膜结构参数对渗透通量的影响。这一时期膜蒸馏技术的应用研究也取得了相当重要的成果,研究者开发了诸如脱盐、溶液浓缩、废水处理、非常规分离等诸多领域的膜蒸馏应用。值得一提的是Shneider[73]和Schofield[74]等人用直接接触式膜蒸馏进行脱盐分别得到了足以同反渗透竞争的高达75kg/m2·h的跨膜通量;Lawson[75]等人通过优化膜组件的设计和采用性能优良的膜,将跨膜通量提高到了反渗透技术的2~3倍。但就通量大小来说,膜蒸馏过程同反渗透相比已经具有了很大的优势,同时膜蒸馏技术还具有能耗低、操作条件温和、可利用废热等诸多优势。人们在这一领域取得的成果足以让该技术在工业脱盐竞争中占有一席之地。
自90年代以后,学术界对膜蒸馏的兴趣由于其广泛的应用范围和对多重工程概念的涵盖而被迅速催化,研究文章每年迅速递增。随着研究的深入,膜蒸馏的优势也逐渐被揭示出来,各国对于膜蒸馏技术的研究与开发的关注逐年升温,特别是西方发达国家和一些大公司都在相当程度上加大了对膜蒸馏研发的投入,都希望能够拥有其知识产权,以期收获它带来的丰厚利润和和战略利益。
这一阶段膜蒸馏机理的研究并无重大突破,许多研究只是以前工作的进一步核实。机理研究大都集中在极化现象的影响及通过各种方式削弱极化现象,这是许多膜分离技术遇到过的工程问题,反映出膜蒸馏技术逐步进入实用化阶段的趋势。该阶段代表性的研究工作比如Lawson[76]从统计力学观点分析了蒸汽分子通过微孔疏水膜的过程,用尘气模型(dusty gas model)统一了膜蒸馏各种情况下的透膜传质过程。
1.2膜与膜组件
1.2.1膜蒸馏用膜(略)
1.2.2膜组件(略)
1.3膜蒸馏过程的机理
膜蒸馏过程是质量传递伴随热量传递的过程,且传递过程中由于边界层的存在,产生了温度极化和浓度极化。膜污染问题依然是膜蒸馏过程需要面对的主要问题之一。因此,以下将从跨膜传质、跨膜传热、浓度极化、温度极化和膜污染等方面来描述。(略)
1.3.4膜污染
和其它膜过程一样,膜蒸馏装置长期运行后会出现通量衰减的现象这主要是由膜污染造成的。膜污染通常表现在以下两个方面:一个是污染物将膜孔封堵,另一个是膜孔被润湿。造成膜污染的原因是多方面的,如膜表面细菌的生长,或由于料液浓度过高(特别是料液接近于饱和时)在膜表面形成垢层,从而导致膜孔被堵或被润湿,或料液中存在的颗粒或胶体物质由于界面张力的作用而更多地出现在汽、液界面处以及料液中含有表面活性剂等能够改变膜表面张力的化学成分等。所有这些原因对料液侧的传递过程形成新的阻力,造成通量衰减,或者导致膜的渗漏现象。膜孔润湿被认为是膜蒸馏过程中最严重的膜污染,因为膜蒸馏只能在膜孔道不被润湿的情况下才能进行。材料疏水性取决于膜表面单位面积的自由能,但平均的表面能并不能满意地描述一个真实的表面,若在分子尺度上一部分一部分地检验固体的表面,局部的表面能可以变化很大。不能排除疏水膜的表面有疏水性差别,甚至亲水的局部点,这些点有可能成为膜疏水性遭到破坏的内因。料液组份的沉积会降低膜的疏水性,并逐渐使料液充入膜孔。因此,对于膜污染部分是可逆污染,经过膜清洗就能将污染除去,而还有一部分污染是不可逆的,污染一旦形成就难以祛除如有有机污染导致的膜孔润湿等。因此,对膜污染进行防治,不能单单依靠污染后的清洗,还要从膜材料着手,制造出高抗污染性的膜或者进行膜表面的改性等。
1.4膜蒸馏的应用
1.海水、苦咸水脱盐和超纯水制备
膜蒸馏过程的开发最初完全是以海水淡化为目的,虽然反渗透作为海水和苦咸水淡化的膜分离方法,从20世纪60年代就进入了实用阶段,其设备和工艺条件也在实用中不断得到改进和完善,但是反渗透过程需要较高的操作压力,设备比较复杂,并且难以处理盐分过高的水溶液。而膜蒸馏却具有反渗透过程所不具备的优点,所以人们对膜蒸馏用于海水、苦咸水脱盐方面进行了和正在进行大量研究工作。近20多年的研究表明,直接接触膜蒸馏的透过通量能够达到反渗透的水平甚至有所超过[40];减压式膜蒸馏用于海水脱盐也具有较好的发展前途[102]。但膜蒸馏是个能耗较高的膜过程,只在有廉价能源可利用的情况下进行海水、苦咸水淡化才具有实用意义。膜蒸馏技术制备淡水首先应考虑能源问题,解决的办法是,在系统设计上考虑热能的回收。在早期文献中Schofield等人[95]详细计算了热能回收对造水成本的影响,并设计了能量回收的工艺流程;阎建民等人[103]也提出了带有汽化潜热回收的膜组件设计。二是考虑可利用的廉价能源,比如Hogan等人[104]采用太阳能加热海水进行了膜蒸馏脱盐;Banat等人[105]利用太阳能进行了模拟海水脱盐实验;Godizno等人[106]也介绍了与太阳能相结合的膜蒸馏苦咸水脱盐的可能性。利用地热资源[107]也是膜蒸馏脱盐的重要方向。膜蒸馏脱盐的产水质量是其它膜过程不能比拟的,Karakulski等人[108]将不同的造水膜过程进行了对比:UF能脱除悬浮物和胶体,NF可完全除掉水中的有机碳,硬度可降低60%~87%,RO可将总固溶物(TDS)截留99.7%,质量最好的水是由MD制备,产水的电导可达到0.8μS/cm,TDS质量分数可达到0.6×10-6。由于渗透压对膜蒸馏影响较小,所以采用RO与MD集成膜过程脱盐是合理的[109,110]。2.化学物质的浓缩和回收
由于膜蒸馏可以处理极高浓度的水溶液,在化学物质水溶液的浓缩方面具有很大潜力。例如对蔗糖糖浆的浓缩,可采用直接接触式膜蒸馏[111,112],也可采用渗透蒸馏[113,114],渗透蒸馏中常用的盐溶液为NaCl、CaCl2、K2HPO4。Tomaszewska等[115]人进行了硫酸、柠檬酸、盐酸、硝酸的浓缩,非挥发性酸截留率达100%,挥发性酸在浓度高时有透过。Rinzcon等人[116]用直接接触式膜蒸馏浓缩甘醇类水溶液,截留系数接近100%。孙宏伟等人[117]用膜蒸馏方法浓缩透明质酸,Tomaszewska[118]用膜蒸馏和渗透膜蒸馏浓缩氟硅酸,都取得很好的结果。由于膜蒸馏可以在较低的温度下运行,对生物活性物质和温度敏感物质的浓缩和回收具有一定实用意义。冯文来等人[119]用膜蒸馏方法浓缩腹蛇抗栓酶,Zarate等人[120]用膜蒸馏方法浓缩牛血清蛋白,都得到了较好的结果。余立新等人[121]论述了采用各种方法浓缩温度敏感的天冬氨酸甲酯的可能性,认为膜蒸馏是最合适的方法。膜蒸馏是目前唯一能够从溶液中直接分离出结晶产品的膜过程。膜蒸馏-结晶是在溶液被浓缩到过饱和状态后产生的,但并不是在所有条件下都能把溶液浓缩到过饱和状态。实验表明,产生膜蒸馏-结晶现象的必要条件除了溶质须是易结晶的物质外,膜两侧必须存在足够大的温差,使膜蒸馏与诸多干扰因素相比一直处于主导地位。Cryta[122]报道了采用膜蒸馏-结晶过程生产NaCl的研究,NaCl的产量能达到100kg/m2·d。3.水溶液中挥发性溶质的脱除和回收
膜蒸馏过程是以膜两侧蒸汽压力差为传质驱动力,这使从水溶液中脱除挥发性溶质成为可能。唐建军等人[123]对减压膜蒸馏用于挥发性有机物分离作了总结;近斯文献中也报道了很多有关研究工作,如从水溶液中脱除甲醇[124]、乙醇[47,124,125,126]、异丙醇[127]、丙酮[128]、氯仿[129]、同时脱除乙醇和丙酮[130]、同时脱除丙酮、丁醇和乙醇[131]、甲基异丁基酮[132]、卤代挥发性有机化合物[133]等。当只重视脱除的效果时常采用直接接触式膜蒸馏,如果同时考虑回收这些挥发组分时,则采用气隙式、减压式、气流吹扫式膜蒸馏。张凤君等[134]人采用气态膜回收苯酚,并得到苯酚钠结晶产物。膜蒸馏脱除溶液中挥发溶质的原理成功地被用于气体分析,Ferreira等人[135]将膜蒸馏装置与质谱仪联机,用质谱仪测定脱除气体的量,对水溶液中溶解的氧、丙烷、乙醇的测定结果表明,质谱信号与水溶液中溶质浓度呈线性关系。这为挥发性溶质的在线测试奠定了技术基础。
共沸物的分离通过共沸蒸馏和萃取蒸馏来实现,是一个比较复杂的化工单元操作,采用膜蒸馏处理,可打破固有的气—液平衡关系,得到较好的分离,如甲酸/水恒沸混合物的分离[136,137]、丙酸/水恒沸混合物的分离[138]。从水溶液中脱除酸性挥发性溶质近年主要集中于盐酸的回收,如采用直接接触式膜蒸馏从金属酸浸液中回收HCl[139,140]、减压膜蒸馏从金属氯化物的水溶液中回收HCl[141]。
4.果汁、液体食品的浓缩
膜蒸馏过程可在相对比较低的温度下运行,并具有极高的脱水能力,特别是渗透蒸馏可以在室温下运行,对果汁、食品的浓缩是其它任何膜过程都无法比拟的。Petrotos等[142]人介绍了膜蒸馏和渗透蒸馏技术浓缩液体食品的优点:节能、保持食品原有的风味(包括色、香、味等),其中果汁浓缩的研究工作较多,如超滤与渗透蒸馏浓缩葡萄汁、减压膜蒸馏浓缩葡萄汁、渗透蒸馏浓缩葡萄汁和桔汁、直接接触式膜蒸馏浓缩苹果汁、集成膜过程浓缩柠檬汁和胡萝卜汁。这些工作有的仍处在实验室研究阶段,有的已经具有示范生产的规模,Vaillant等人报道了工业示范规模采用渗透蒸馏浓缩果汁的装置,在30℃可以将果汁TSS(总可溶固体)浓缩至0.60g/g,通量仍保持0.5kg/(m2·h),连续28h通量没有衰减,浓缩后果汁外观和维生素C含量基本保持原来水平。5.废水处理
和其它膜分离过程一样,膜蒸馏是环境友好的分离技术,在工业废水处理方面具有很好的应用前景。从工业废酸液中回收HCl[141]是在处理含挥发性酸性物质废水方面的典型应用。Zakrzewska等人[144,145]在处理低放射性废水方面比较了各种处理方法认为,膜分离方法具有显著的优越性,其中膜蒸馏能够把放射性废水浓缩到很小的体积,并具有极高的截留率,很容易达到排放标准,显示膜蒸馏方
法在处理放射性废水方面的突出优点。Cryta等人[146]采用超滤/膜蒸馏集成处理含油废水,沈志松等人[147]采用减压膜蒸馏处理丙烯腈工业废水,杜军等人[148]采用减压膜蒸馏处理含Cr(VI)的模拟废水和含苯酚的模拟废水,沈志松等人[55]采用气态膜过程处理起爆药废水,Banat等人[52]采用减压膜蒸馏从废水中除掉微量的苯,Rodriguez等人[149]采用气态膜从废水中除掉正戊酸,沈志松等人[147]报道了用气态膜过程处理氰化物废水,已经达到商业化的规模,表明膜蒸馏在废水处理应用领域中巨大潜力。
第二篇:膜蒸馏技术简介(摘抄
膜蒸馏技术简介(摘抄
膜蒸馏技术简介(摘抄)摘自 真空膜蒸馏海水淡化实验研究.王宏涛.天津大学硕士学位论文.1.1膜蒸馏技术简介 1.1.1膜蒸馏概述
膜蒸馏(Membrane Distillation,MD)是在上个世纪八十年代初发展起来的一种新型分离技术,是膜分离技术与传统蒸发过程相结合的新型膜分离过程,它与常规蒸馏一样都以汽液平衡为基础,依靠蒸发潜热来实现相变。它以膜两侧的温差所引起的传递组分的蒸汽压力差为传质驱动力,以不被待处理的溶液润湿的疏水性微孔膜为传递介质。在传递过程中,膜的唯一作用是作为两相间的屏障,不直接参与分离作用,分离选择性完全由气—液平衡决定[1]。膜蒸馏过程是热量和质量同时传递的过程。膜的一侧与热的待处理的溶液直接接触(称为热侧),另一侧直接或间接地与冷的液体接触(称为冷侧)。由于膜的疏水性,水溶液不会从膜孔中通过,但膜两侧由于挥发组分蒸气压差的存在,而使挥发蒸气通过膜孔,从高蒸气压侧传递到低蒸气压侧,而其它组分则被疏水膜阻挡在热侧,从而产生了膜的透过通量,实现了混合物的分离或提纯。这与常规蒸馏中的蒸发、传质、冷凝过程十分相似,所以称其为膜蒸馏过程如图1-1所示:
1986年意大利、荷兰、日本、德国和澳大利亚的膜蒸馏专家在罗马召开了膜蒸馏研讨会,会上与会专家统一规范了膜蒸馏过程涉及的各种术语,定义膜蒸馏过程应具有以下几种含义:使用的膜是疏水性多孔膜;膜不应被所处理的液体所浸润;溶液中的挥发性组分以蒸汽的形式通过膜孔;膜孔中不发生毛细冷凝现象;组分通过膜的推动力是该组分在膜两侧的蒸汽压差;膜本身不改变处理液各组份的汽—液平衡;膜至少有一侧与所处理液体直接接触;对于任何组分该膜过程的推动力是该组分在气相中的分压差[2,3,4]。膜蒸馏本身的特点决定了该技术与其它分离技术相比有着无法比拟的优点:(1)膜蒸馏过程较其他膜分离过程(反渗透)的操作压力低,几乎是在常压下进行,设备简单、操作方便,在技术力量较薄弱的地区也有实现的可能性。(2)在非挥发性溶质水溶液的膜蒸馏过程中,因为只有水蒸汽能透过膜孔,理论上可以100%截留离子、大分子、胶体、细胞和其它非挥发性物质,所以蒸馏液十分纯净,可望成为大规模、低成本制备超纯水的有效手段。(3)该过程可以处理极高浓度的水溶液,如果溶质是容易结晶的物质,可以把溶液浓缩到过饱和状态而出现膜蒸馏结晶现象,是目前唯一能从溶液中直接分离出结晶产物的膜过程。(4)膜蒸馏组件很容易设计成潜热回收形式,并具有以高效的小型膜组件构成大规模生产体系的灵活性。(5)在该过程中无需把溶液加热到沸点,只要膜两侧维持适当的温差,该过程就可以进行,操作温度比传统的蒸馏低,有可能利用太阳能、地热、温泉、工厂的余热和温热的工业废水等廉价能源[2]。
但是膜蒸馏作为一种新的分离技术也还有许多不完善之处,比如:
(1)膜蒸馏与制备纯水的其它膜过程相比,膜的产水通量较低,迄今还没有开发出较成熟的膜蒸馏用膜的生产技术,且疏水微孔膜,与亲水膜相比在膜材料和制备工艺的选择方面都十分有限;(2)运行过程中膜的污染不仅导致膜的通量下降,更为严重的是加速了膜的润湿,使盐渗漏进入淡水侧,从而使淡水品质下降;(3)缺乏有效的热量的回收手段,膜蒸馏是一个有相变的膜过程,汽化潜热降低了热能的利用率,所以在组件的设计上必需考虑到潜热的回收,以尽可能减少热能的损耗,与其他膜过程相比,膜蒸馏在有廉价能源可利用的情况下才更有实用意义。1.1.2膜蒸馏的分类与特点
根据挥发性组分在膜冷侧冷凝方式的不同,膜蒸馏可分为四种不同结构和操作方式[5](如图1-2所示),即:直接接触式膜蒸馏(DCMD)、气隙式膜蒸馏(AGMD)、吹扫式膜蒸馏(SGMD)和真空膜蒸馏(VMD)。
在直接接触式膜蒸馏[6-15]中透过侧的冷却纯水和膜上游侧的溶液都与膜直接接触,在膜两侧温差引起的水蒸气压力差驱动下传质,透过的水蒸气直接进入冷却的纯水中冷凝。直接接触膜蒸馏的过程装置和运行都比较简单,但是上下游的流体仅有一层薄膜相隔,热量很快从上游传递到下游,最后达到热平衡。冷测需要持续制冷,热侧需要持续加热,因而热利用效率较低。但过程所需要的附属设备最少,操作比较简单,最适用于透过组分为水的应用场合,例如:脱盐、水溶液(果汁)浓缩等。气隙式膜蒸馏[27-35]的透过侧空气与膜接触,增加了热传导的阻力,大大降低了传导热量的损失,但是同时传质阻力也增加。气隙式膜蒸馏的传质机理主要是以分子扩散为主的,但由于透过侧空气的存在,会使膜孔中存在滞留空气,透过蒸汽在穿过膜孔时的阻力增加。与膜接触的气层厚度一般为膜厚度的10~100倍,空气可以视为静止膜,也会使传质阻力增大,导致透过的通量很小。在去除水溶液中的微量易挥发性组分方面占有优势。吹扫气膜蒸馏[37,38,39]同气隙式膜蒸馏一样适用于除去水溶液中的微量易挥发性组分。在吹扫气膜蒸馏中,透过侧为流动气体,克服了气隙式膜蒸馏中静止空气层产生传质阻力的缺点,同时保留了气隙式膜蒸馏中较高的热传导阻力的优点,但是在收集透过侧组分方面存在较大困难,操作过程中为了减少传质阻力,要减小传质边界层的厚度,相应需要较高的吹扫气体速度,操作压力随之升高,目前研究工作相对较少。在真空膜蒸馏[40-57]中,膜的一侧与进料液体直接接触,另一侧的压力保持在低于进料平衡的蒸气压之下,透过的水蒸气被抽出组件外冷凝,增大膜两侧的水蒸气压力差,可得到较大的透过通量,常常应用于去除稀释溶液中的易挥发性组分。由于在VMD过程中,透过侧为真空,水蒸气分子与孔壁的碰撞占主要优势,以努森扩散为主,热传导损失可以忽略不计。因此,真空膜蒸馏的传质压力差较大,传质驱动力大,透过气体的传质阻力较小,膜两侧的绝对压力差较大,与其它分离过程相比,膜通量也具有很大的优势,所以近年来,在脱盐、废水回收方面的研究日益增多。1.1.3膜蒸馏的发展历程
膜蒸馏技术发展到今天大致经历了三个阶段:概念提出阶段(19世纪60年代—19世纪70年代)、初步发展阶段(19世纪80年代—19世纪90年代)、高速发展阶段(19世纪90年代至今)。
膜蒸馏的概念是在1963年Bodell[58]的一篇专利中首先提出来的,他将膜蒸馏描述为“一种可将不可饮用水流体转化为可饮用水的装置和技术”,并指出可用抽真空的方式将渗透蒸汽从装置中移走,但是他并没有指出膜的结构与孔径,也没有给出结果和定量分析。1964年,Weyl[59]发现采用空气填充的多孔疏水膜可在蒸汽压系统内从含盐水中回收去离子水,这个致力于提高脱盐效率的新工艺在1967年被授予美国专利,专利宣称这个用于脱盐的改进方法和改进设备能在最小的外部能量要求和最小的资金和厂房花费下运作。Weyl建议将热的溶液和冷的渗透物都与膜直接接触,以消除气隙,他采用的是厚3.2mm,孔径9μm,孔隙率42%的PTFE膜,所获得的膜蒸馏通量达到了1kg/m2?h,这与当时反渗透5~75kg/m2·h的通量有很大的差距,因此在60年代末人们对膜蒸馏的兴趣逐渐减弱。Findley[60]是第一个公开发表膜蒸馏结果的人,60年代后期他以纸、胶木、玻璃纤维、玻璃纸、尼龙、硅藻土等作为膜材料进行直接接触膜蒸馏实验,其中大部分材料用硅树脂、特氟龙或防水剂处理过,以增强膜的疏水性。实验定性地描述了膜孔中存的在空气、膜的厚度、导热热损失和空隙率对膜蒸馏的影响,并且首次说明了膜蒸馏所用膜材料的一些重要特性:热阻高、厚度小、液体进入压力大、高空隙率及弯曲因子较小。Findley预言,如果能够找到低价位、耐高温、长寿命并且特性理想的膜,膜蒸馏不仅可以用于海水淡化,还会是一种经济可行、用途广泛的蒸发方法。早期的膜蒸馏过程设计中,Rodger[61,62,63]的工作最为出色,他在1968-1975年间有多项专利被批准。有几项专利研究改善热量回收系统,如一项设计中使用带波纹的换热片,以提高对流传热效果。1971年的专利设计了多效膜蒸馏,以分离挥发性不同的组份,如重水的分离。1972年的专利设计了膜蒸馏的脱盐工艺,是包含了料液脱气、膜表面处理等工序在内的完整系统。使用的膜囊括PTFE、PP、PVDF以及疏水处理后的亲水膜。1975年的专利改变了研究方向,设计了家用饮水机。
19世纪80年代起以企业为主的研发带动了膜蒸馏技术前所未有的发展。80年代早期,由于新的制膜技术的出现,人们又开始对膜蒸馏产生兴趣,因为这时可以制得高达80%孔隙率和50μm厚的膜,比Weyl和Findley在60年代所用的膜,渗透通量提高了100倍。膜组件设计的改进及进一步认识温度和浓度极化对MD性能的影响,也促使人们恢复对膜蒸馏的关注,同时也使膜蒸馏更具竟争力。
Gore和Associacs公司[64](美国)、Swedish Development Co.[65,66]和EnkaAG.[67-69](德国)从商业应用的角度开发他们的测试膜蒸馏系统。如Gore开发出了一种卷式膜组件用于“Gore-Tex膜蒸馏”,最终由于其热传递差的技术原因及成本过高,Gore在其即将商品化之前放弃了这一计划。值得注意的是,有人使用Gore-Tex膜完成了中试,认为膜蒸馏用于脱盐尚需两个条件:膜成本大幅度下降,提高热量回收热交换器的传热效果[70]。几乎同时瑞典National Development Co.公布了他们研制的膜蒸馏系统,包括样机运行情况[71],采用了板框结构的膜蒸馏,但同样未进入市场。EnkaAG开发了中空纤维膜组件的“传递膜蒸馏”,Kjellander提交了气隙膜蒸馏用于脱盐的专利[72]。80年代末,Enka公司宣称制造了一种可用于商业生产的MD系统。这个阶段MD在许多领域只能是一个有竞争的系统,还不能够可顶替别的技术。学术界对MD兴趣的增强,是因为该过程的多样性及MD研究能产生“有利于环境”的结果。
80年代大量发表的膜蒸馏文献主要集中于过程机理研究,这些研究将常规的传递理论应用于膜蒸馏,分析流体温度、流量、压力等操作参数的影响,建立了传热传质模型。特别对膜传质过程做了很多理论研究,从理论上明确了膜结构参数对渗透通量的影响。这一时期膜蒸馏技术的应用研究也取得了相当重要的成果,研究者开发了诸如脱盐、溶液浓缩、废水处理、非常规分离等诸多领域的膜蒸馏应用。值得一提的是Shneider[73]和Schofield[74]等人用直接接触式膜蒸馏进行脱盐分别得到了足以同反渗透竞争的高达75kg/m2·h的跨膜通量;Lawson[75]等人通过优化膜组件的设计和采用性能优良的膜,将跨膜通量提高到了反渗透技术的2~3倍。但就通量大小来说,膜蒸馏过程同反渗透相比已经具有了很大的优势,同时膜蒸馏技术还具有能耗低、操作条件温和、可利用废热等诸多优势。人们在这一领域取得的成果足以让该技术在工业脱盐竞争中占有一席之地。
自90年代以后,学术界对膜蒸馏的兴趣由于其广泛的应用范围和对多重工程概念的涵盖而被迅速催化,研究文章每年迅速递增。随着研究的深入,膜蒸馏的优势也逐渐被揭示出来,各国对于膜蒸馏技术的研究与开发的关注逐年升温,特别是西方发达国家和一些大公司都在相当程度上加大了对膜蒸馏研发的投入,都希望能够拥有其知识产权,以期收获它带来的丰厚利润和和战略利益。
这一阶段膜蒸馏机理的研究并无重大突破,许多研究只是以前工作的进一步核实。机理研究大都集中在极化现象的影响及通过各种方式削弱极化现象,这是许多膜分离技术遇到过的工程问题,反映出膜蒸馏技术逐步进入实用化阶段的趋势。该阶段代表性的研究工作比如Lawson[76]从统计力学观点分析了蒸汽分子通过微孔疏水膜的过程,用尘气模型(dusty gas model)统一了膜蒸馏各种情况下的透膜传质过程。(待续)
第三篇:大棚蔬菜膜下滴灌技术
大棚蔬菜膜下滴灌技术
作者: 来源: 发表时间:2008-10-25 10:14:07 点击次数:
【字体:减小 增大】 【选择视力保护色:
次
】 【双击鼠标左键自动滚屏浏览】
1、膜下滴灌的供水 大棚滴水灌溉用水多数为井水,但用提井水的泵直接向棚内滴灌供水,存在着同时供水而又多品种蔬菜不同时用水的矛盾。因此,大棚滴灌的供水一般应选择以下几种形式:
(1)压力灌供水。对于大棚多而又集中的片区,一般采用压力罐集中加压,压力罐安装在水泵和滴灌之间,可在无人控制下保证管网连续工作,棚内不再另设加压设备。在水源处设置旋流水沙分离器和筛网过滤器组成的过滤设施。压力罐供水一次性投资小、管理方便,缺点是增加了灌溉运行的费用。
(2)建水塔供水。在大棚集中的区域中心,建设供每个大棚滴灌用水的水塔,满足大棚滴灌所需的压力和不稳定的用水。在水泵与水塔的输水管道上装过滤器等。建设水塔一次性投资较大,但运行费用低,还可起到一定调蓄水量的作用。
(3)单棚小泵供水。对于每个大棚,在大棚外附近建5-7立方米地埋式蓄水池,用机井集中向池中供水,滴灌时单棚装微型水泵加压,并在滴灌首部装过滤器等。就整体计算,投资较大,但就每个大棚来说易建易管。
2、膜下滴灌的应用
(1)滴灌毛管的选用。对蔬菜等条播密植作物,根系发育范围小,对水分和养分的供应十分敏感,要求滴头布置密度大,毛管用量多,因而毛管选用价格较低的滴灌带,可有效地降低滴灌造价,且运行可靠,安装使用方便。
(2)膜下滴灌的布置。在滴灌进棚前,应顺棚跨(或棚长)起垄,垄宽40厘米,高10-15厘米,做成中间低的双高垄,滴灌带放在双高垄的中间低凹处,垄上覆盖地膜。双高垄的中心距一般为1米,因而滴灌毛管的布置间距为1米。滴灌毛管的每根长度一般与棚宽(或棚长)相等,对需水量大的蔬菜有时也布置两道。支管布置一般顺棚的后墙(或顺棚跨)长度与棚长(或棚跨)相等。在支管的首部安装施肥装置和二级网式过滤器等。
(3)滴灌蔬菜的效益。大棚温室膜下滴灌一般比大水漫灌节水70%左右,并能大幅度降低棚内湿度,减少病虫害,提高蔬菜的品质;比大水漫灌棚温高,鲜菜可提前上市半个月。大棚温室膜下滴灌蔬菜可增产20%-40%,投资回收期一般为4-6个月。
3、膜下漓灌的管理
(1)规范操作。要想达到蔬菜滴灌的最佳效果,设计、安装、管理必须规范操作,不能随意拆掉过滤设施和在任意位置自行打孔。
(2)注意过滤。大棚温室膜下滴灌蔬菜,要经常清洗过滤器内的网,发现滤网破损要更换,滴灌管网发现泥沙应及时打开堵头冲洗。
(3)适量灌水。每次滴灌时间长短要根据缺水程度和蔬菜品种决定,一般控制在1-4个小时。
杨金麒:推广膜下滴灌技术 提高节水增产增效水平(第十八期)
2008年5月20日
新疆天业(集团)有限公司 杨金麒
编辑:管理员
归档时间:2008-5-21
推广膜下滴灌技术 提高节水增产增效水平(ppt文档)——请点击下载或查看
新疆天业认真践行“把节水灌溉作为一项革命性措施”的方针,消化、吸收、创新国际先进节水技术和设备,结合我国人多、人穷的特点,开发出具有中国特色的性能可靠,使用方便,价格低廉的,当今世界上田间灌溉最省水的技术“膜下滴灌技术”,使该技术种棉花由原来的2400元/亩降到350元/亩左右,成为农民节水增产增效的法宝。开创了中国滴灌技术进入大田的先河,为中国节水农业做出了突出贡献。到目前为止,预计全国推广膜下滴灌技术面积累计达2400万亩,其中天业节水占1400万亩,达58.3%。
一、膜下滴灌技术及其特点
(一)膜下滴灌技术:把滴水器铺于地表,农膜覆盖其上的滴灌技术和农膜覆盖技术有机结合的高效节水增产增效技术。其内容主要包括两个方面,一是和滴水器配套的首部设施、供水管网、管件等组成的滴灌系统;二是在膜下滴灌条件下的各种作物增产增效栽培技术和管理运行方案。
(二)膜下滴灌技术的特点:
1、节水。地膜覆盖大大减少了地表蒸发,滴灌系统又是管道输水,局部灌溉,无深层渗漏,和沟灌比节水50%左右;和喷灌比因其是全面灌溉,地表蒸发量大,节水30%左右。因其是地下全面灌溉,有些地方为解决表墒差出苗不足的问题实施播前灌和配套喷灌,增加了成本和用水量,如果下层土壤是沙壤土或戈壁层时,会出现深层渗漏现象。
2、抗堵塞能力强。大流量、大流道滴灌带通过能力强,抗堵塞性能好。
3、抑制土壤盐碱化。膜下滴灌可使滴圆点形成的湿润峰外围形成盐份积累区,湿润峰内形成脱盐区有利于作物生长。在0~100cm土层平均含盐率2.2%的重盐碱地上,经过3年连续膜下滴灌植棉,土壤耕作层盐份降至0.35%;而喷灌及地埋滴灌均为全面灌溉,棵间蒸发量大,会使地下盐分上行,造成耕作层盐分增加。
4、提高肥料的利用率。采用膜下滴灌技术,可溶性化肥随水直接施入作物根系范围,使氮肥综合利用率从30~40%提高到47~54%,磷肥利用率从12%—20%提高到18.73%—26.33%,使目标产量下,肥料投放减少30%以上。
一般是采用先滴水60%,然后滴肥20%的水,最后滴水20%的水的操作方式,即水—肥—水的施肥方式,磷肥移动速度加快,使中层居多,土壤中全磷平均含量为1.03,所以滴施磷肥当年即可见效果。
5、提高土地利用率。由于膜下滴灌系统采用管道输水,田间不修农、中心渠、毛渠,土地利用率可提高5~7%。
6、减少机耕作业,降低机耕成本。由于滴灌改变了传统沟灌所需的田间渠网系统,且垄间无水,杂草少,因此可减少中耕、打毛渠、开沟、机力施肥等作业,节省机力费20%左右。
7、提高作物产量和品质。在各种作物上试验表明,采用膜下滴灌技术苗肥、苗壮、增加收获株数,并为作物生长创造了良好的水、肥、气、热环境,可使作物增产30%左右。
8、提高劳动生产率、提高农民(工)收入。棉花常规灌溉农民(工)管理定额为25-30亩/人,采用膜下滴灌后,减少了作业层次,降低了劳动强度,使管理作物定额提高到60~80亩/人,农民(工)收入也相应增加。
二、膜下滴灌系统投入成本及其应用效果
(一)投入成本
以目前应用的一膜一管四行棉花滴灌模式为例进行分析,膜下滴灌系统一次性亩投入为356.5元(包括系统首部、干管、支管、毛管及安装费用等),考虑折旧后,年均分摊亩投入为86.9元左右;而膜下滴灌技术与常规沟灌相比,通过节约水、电、节省机力、提高肥料利用率和省工,每亩可省投资81.8元左右((见表
1、表2)。
以上数据表明,膜下滴灌技术每年投入设备等费用为86—90元/亩左右,而应用该技术后,每亩可省81.8—109.3元,农工在基本不增加亩成本的状况下应用了膜下滴灌技术,增产的都是效益。
(二)应用效果
由于膜下滴灌技术有非常突出的节水增产增效作用,所以在以新疆得到快速大面积应用,同时又在宁夏、甘肃、陕西、内蒙古、黑龙江、湖北和广西等省建立了各类示范基地,辐射到全国20多个省市,除大田棉花、番茄外,还推广应用到玉米、辣椒、甘蔗、烟草、大豆、马铃薯等30多种作物。期间实现了中国节水灌溉技术首次成功输出国门,2003-2005年在塔吉克斯坦推广应用棉花膜下滴灌技术800公顷,与当地常规灌相比,实现节水70%、增产133%以上,获得较好的节水增产增效示范效果,2006年在巴基斯坦建立花卉、洋葱、甘蔗、棉花等四种作物滴灌技术示范25.7公顷,2007年又将滴灌技术和产品输送至非洲津巴布韦,取得了显著效果。
滴灌是迄今为止农田灌溉最节水的灌溉技术之一。但因其价格较高,一度被称作“昂贵技术”,仅用于高附加值的经济作物中。近年来,随着滴灌带的广泛应用,“昂贵技术”不再昂贵,完全可以在普通大田作物上应用。现对大棚滴灌、果树滴灌和棉花滴灌如何布置与施工的技术作一简要介绍,其他宽行作物可参照实施。
一、大棚滴灌
大棚作物尤其是蔬菜作物的生长与棚内小气候环境息息相关,如气温、地温、湿度、水分等都是直接影响蔬菜产量和质量的主要因素。大棚蔬菜采用滴灌,并在滴灌毛管上覆盖塑膜,完全可以控制棚内的湿度、温度和灌溉的水量等,从而改善棚内蔬菜的生长环境,减少蔬菜发病,提高蔬菜的产量和质量。
大棚滴灌系统毛管选用滴灌带,一般选用直径16毫米、滴头间距0.3米、工作压力0.05-0.1兆帕、滴头流量1.8-3.2升/小时的滴灌带。黏性较大的土壤应选流量较小的滴头,砂性较大的土壤应选流量较大的滴头,对中壤土一般选用流量为2.5升/小时的滴头。滴灌带的长度一般不宜超过80米。滴灌带应铺设在菜行中、地表上、地膜下。大棚滴灌还可配置施肥装置,一般选择文丘里施肥器,施肥罐选用10-30升开敞式。在施肥装置后面还应安装过滤器,一般选用5-10吨/小时的筛网式过滤器,以防止滴头堵塞。
二、果树滴灌。果树采用滴灌,具有节水、节能,提高肥料的利用率,减少除草、施肥等劳动,调节土壤水、肥、气、热的关系,适用于不同土壤和地形等优点。果树滴灌一般对树行距不大于3米的果园,沿树行布置一条滴灌带;当树行距大于3米时,沿树行布置两条滴灌带。对于砂性较大的土壤,不管树距多大都布置两条滴灌带;对砂性非常严重的地块,可绕树环形布置滴灌带。滴头的间距,中壤土为0.4米,土壤越黏间距越大,反之土壤越砂间距越小。滴头的流量,黏土小、砂土大,可选用流量为1.8-3.2升/小时的滴头。
果树滴灌由于轮灌区面积较大,一般施肥、过滤设备设在水源处。过滤设备的选择根据不同的水源而定,井水选择离心网式过滤器;水库、池塘等敞开水面的水源,可选择离心、砂石组合过滤系统或网式过滤系统。施肥罐一般选用容积为100-150升的。
三、棉花滴灌
棉花或其他一些宽行大田作物发展滴灌也是完全可行的。棉花种植模式为40厘米-80厘米-40厘米,一般40厘米行距种两行棉花盖一层地膜,间隔80厘米再种两行棉花,照此类推。滴灌带置于地膜下,大大减少了棵间蒸发,极大地提高了水的利用率。滴灌带滴头间距0.3米,滴头流量一般为中壤土2.5升/小时,黏性土1.8-2.5升/小时,砂性土2.5-3.2升/小时。首部枢纽(过滤器、施肥装置等)基本与果树滴灌相同。(043800 山西省闻喜县水务局 杨少俊)
大棚滴灌技术的设计与安装
来源:农机网 发布时间: 2008-09-23
一、喷滴灌装置及其设置
大棚喷滴灌要求安装容易,移动方便,配套性好,出水均匀,寿命长,故障少,价格低。目前,生产上应用的滴灌系统主要有控制首部、输水管路和滴灌管、微喷头三部分组成,亩投资成本在1500—3000元之间。
1、控制首部 通常设在滴灌系统供水水源处,由水泵、肥料桶、过滤器及压力表等组成,具有动力、过滤、进肥等作用。控制首部可安装定时装置。水源可以是河水、塘水、溪水、水库水或池塘水等,水经过水泵加压、并经过滤器过滤后进入滴灌系统。
首部根据肥料进人滴灌系统的方式不同可以分为泵后(压入)式和泵前(吸人)式喷滴灌系统。泵后式滴灌系统肥料是在水泵出水口后,在肥料桶内与灌溉水一起压入滴灌系统。水泵可以是潜水泵、自吸泵、管道泵,肥料桶要求强度大,能承受较大的压力,可以是铁制,也可以是水泥制,在生产上使用较少。
泵前式滴灌系统 肥料是在水泵进水口,通过水泵吸力与水一起进入滴灌系统,水泵要选择管道泵或潜水泵、自吸泵。管道泵一般用于棚群固定式喷滴灌系统;潜水泵、自吸泵一般用于单棚或几棚移动式喷滴灌系统。就自吸泵而言,其动力有370瓦、550瓦等多种型号,370瓦自吸泵可同时灌溉667平方米大棚,550瓦自吸泵可同时灌溉667—1234平方米大棚。过滤器可以是沙石式过滤、筛网式过滤或离心式过滤等,其作用是过滤水与肥料混合物,确保进人滴灌系统的水质清洁,无杂质。在生产上用的较多的是筛网式过滤,可根据灌溉面积和主管要求流量选择不同大小的过滤器。在使用中要经常清洗滤网,以防堵塞。泵前式肥料桶的容积根据灌溉水量需要建造,一般移动式容积为25—50升,固定式为200—1000升。
2、输水管路 为滴灌系统的输水部分,由主管、支管等组成。主管一般用聚氯乙烯管(UPVC),支管也可采用聚氯乙烯管(UPVC)或黑聚乙烯管等材料。为节约土地,防止老化,延长使用寿命,主管多埋在地下。支管在每只大棚的端面,为便于移动,多铺设在地面。因此,需选用黑色管,管径为25毫米,以防止老化。在大棚支管与主管连接处装一阀门,用于控制大棚灌水与否。
3、滴灌管、微喷是喷滴灌系统的出水部分,滴灌管其上安装滴头,微喷其上安装微喷头。滴灌管滴头间距取决于滴头流量、蔬菜种类及土壤透水性等多种因素,一般为0.3米。滴灌管铺设在畦面植株根部,与畦长相同;为节省成本,也可铺在畦面两行株中间。铺设时,滴灌管要铺乎、拉直。根据滴头安装在滴灌管上的不同方式可分为软管滴灌管、内镶式滴管、外镶式管等多种。悬挂式微喷悬挂安装在离地面2.2—2.5米高,输水管管径为25毫米,微喷头间距4米。
(1)软管滴灌管 这是一种直径为2—4厘米的高强度聚乙烯薄膜管、壁厚0.15—0.4毫米,管壁一侧每隔10—30厘米打二排直径为0.8毫米左右的小孔。这种软管安装时小孔朝上,一端接在支管上,另一端倒折用细绳扎牢堵住。薄壁软管不供水时成扁状带,供水时软管充圆。水压大时,水从管壁上小孔中喷出,滴人畦面;水压小时,水呈水滴状滴出。使用时水压不可过大,以免软管破裂。其主要优点是价格便宜,其缺点是前末端出水不均,使用寿命较短。由农业部规划设计院环能公司设计,安徽省界首市塑料制品总厂生产的软管滴灌管已在生产上大面积推广应用。
(2)内镶式滴灌管 这种滴灌管因其滴头镶嵌在滴灌管管壁内侧而得名,是目前世界上应用广泛,性能先进的滴灌器械。内镶式滴灌管滴头采用了流道消压技术,即滴灌管内水进入滴头时,水通过滴头内一条弯曲狭长的流道,水流与流道壁产生磨擦,形成细微的水流而消压,从而使滴灌管近端和远端滴头压力均匀。另外,内镶式滴灌管滴头还具有过滤作用。因此,这种滴灌管具有出水均匀,抗堵性能好的优点。由于滴头内镶,滴灌管外表光滑,安装和移动时不易破损,使用寿命长。国际上内镶式滴灌管以以色列生产的最先进,国内北京绿源塑料联合公司已引进滴灌设备生产线,生产出内镶式滴灌管。该公司生产的内镶式滴灌管是以聚乙烯为原料的黑色塑料园管,管壁厚有0.2毫米、0.4毫米、0.6毫米多种,滴头间距有0.3米、0.4米、0.5米等规格,滴头工作压力0.1—1千克/平方厘米。
(3)大棚悬挂式微喷头 大棚悬挂式微喷头按散水方式分为单流道旋转式悬挂式喷头和压力散水式微喷头,工作压力2.5—3千克/平方厘米,散水直径4米。
二、大棚喷管设计
(1)大棚群喷滴管系统:系统由水源、部首(大小泵、施肥器、过滤器、节制闸阀组成)、主管(管径110毫米)、支管(75毫米)、接滴喷管道(25毫米)、闸阀、滴管和微喷头组成。滴管和微喷为同一系统,通过开启不同泵和闸阀进行滴管和微喷调节。该系统控制面积为50亩,实行轮灌,单次灌溉面积5亩,灌溉时间为1—2小时。
(2)单棚移动式喷滴管系统:系统由水源、手推车式部首(泵、小型施肥器、过滤器、快速接头组成)、接滴喷管软管道(25毫米)、滴管和微喷头组成。该系统适用于小规模农户生产,同时要求灌溉田块近水源。
第四篇:《萃取与蒸馏》教案
萃取与蒸馏教案设计
克山三中 贺成宇
一.教学内容: 萃取与蒸馏 二.教学目标 1.知识与技能目标
(1)了解萃取原理,掌握萃取的实验操作;(2)了解蒸馏原理,练习蒸馏操作.2.过程与方法目标
通过实验操作和实验安全问题的分析,让学生对实验探究有进一步的认识.3.情感态度与价值观目标
通过组织学生完成药品回收、仪器清洗和实验室整理等工作让学生养成良好的实验习惯,通过分组实验培养学生的合作精神,让学生明白细节决定成败的道理,体验成功的乐趣。三.教学重点,难点 1.萃取与蒸馏的原理;2.萃取与蒸馏的操作及注意事项.四.教学方法 探究――实验 五.教学过程 萃取
〔引入〕我们前面学习了一些分离提纯的方法,比如过滤,它是用来分离什么样的混合物 固体和液体的混合物,或者说不溶物和可溶物的混合物.那么,蒸发结晶和蒸馏呢,它们又是用来分离什么样的混合物的 蒸发结晶得到的是溶质,还是溶剂 蒸馏得到的是什么 溶剂.这说明蒸发结晶和蒸馏是用来分离溶液中溶质和溶剂的,这也是分离固体和液体的混合物的.如果液体和液体的混合物,怎么分离 〔联系生活〕精油:是一种由天然植物中的花、叶、种子、果皮、枝干、树皮等地方提取出来的浓缩液体,它是挥发性芳香物质以及植物免疫与修护系统的精华,具有细胞再生、杀菌、镇定、免疫等功能。大量的植物才能提取到少量的精油,因此,精油的价格十分昂贵。韩国影星金喜善代言的DHC就是一种比较昂贵的橄榄精油。精油的主要成分是有机物,具有抗水性,水煮的方法很难获得,因此提取主要采用化学溶剂萃取法。这就是我们今天要学习的两种分离方法之一——萃取。
〔讨论〕如果把碘块溶于水制成碘水,是否也可以寻找一种物质来荟萃精华呢 什么样的物质 麻油 太贵了.汽油,可以.我们这里没有汽油,我们用具有相似性质的另一种有机物CCl4来代替汽油.〔学生实验〕在试管中倒入约5ml碘水,再加入2mlCCl4(提醒怎样使精华充分荟萃),振荡,静置.提醒学生观察现象并据此分析.〔讨论〕
1.碘水什么颜色 CCl4什么气味
2.静置前后现象有什么不同 液体分为两成,上层液体是什么 下层液体是什么 如何判断
3.出现这种现象的原因是什么?将CCl4换成酒精可以吗?苯、汽油呢?
概念:萃取是一种重要而常用的分离方法,请描述萃取的原理,指出萃取溶剂的选择依据.并据此,例举几个生活中利用萃取的例子.大家想想,富集精华即萃取后,如何分离 比如西红柿蛋汤上面的油层怎么弄出来
(学生:勺子舀,吸管吸.但是,无法分离完全,怎么办)我们试想可不可以想办法使汤从下面流走,让油刚好留在容器中.容器下面有通道,汤从下面流走,在汤刚好流完的时候,关闭通道,这样汤和油是不是分开了.请大家想像这样的容器,下面有通道,且能关闭,那么是不是需要一个活塞 想到了吗 请看我们的分离仪器―分液漏斗,让学生解说分液漏斗结构.〔学生实验〕搭建实验装置(提醒学生检查分液漏斗上面的塞子和下面的活塞是否密闭不漏水,以防溶液漏掉而损失),碘水和CCl4的混液倒入分液漏斗后,提醒学生充分振荡,并不时放气.操作步骤: 1.将待分液的液体倒入已验过漏的分液漏斗中,右手压住分液漏斗口部,左手握住活塞部分,把它倒过来振荡,并不时放气(强调放气的重要性,错误操作的事例).2.将分液漏斗置于铁圈上,打开上端活塞或使活塞上的凹槽与漏斗上的水孔使漏斗内外空气相通,静置,分层(如果不这样,会出现什么结果,让学生试试).3.打开活塞,使下层液体慢慢流出,待刚好流完,迅速关闭活塞,将上层液体从分液漏斗上口倒出.实验注意事项: 〔思考讨论〕
1.一次萃取就完全了吗 水层颜色怎么样 说明什么问题 需不需要进行第二次第三次萃取
2.从漏斗中放出的精华即CCl4萃取的碘液仍然是混合物,怎么分离 〔归纳补充〕 蒸馏
〔引入〕上次课我们学习了粗盐的提纯,通过除杂质过滤的方法得到比较纯的盐水,大家想想如果我们要把盐水变为淡水,该怎么做呢
〔学生思考,讨论,教师引导〕比如说在海边,渔民们怎么解决生活用水的问题;前段时间,中央电视台播放了郑和下西洋的那段历史,大家知道他们是怎么解决长期在海上漂泊的吃水问题的吗
〔展示〕海水变淡水(太阳能解决淡水问题)〔提醒学生联系生活〕暖气,去方山途中看到路边冒蒸汽的情景;烧西红柿蛋汤时,观察过锅盖没有,锅盖上有水珠,与汤有什么不同 为什么会有水珠 水蒸汽凝结 为什么水蒸汽会凝结成水珠
〔引导出蒸馏的概念〕汤沸腾后,水蒸汽遇温度低的锅盖(遇空气)而凝 成水珠附于锅盖.那么这是一个什么过程 在化学上我们怎么称呼(沸腾冷凝的过程)大家想想蒸馏是不是一种分离混合物的方法 如果是,那么是分离什么样的混合物
〔讨论〕在生活中还有什么时候要用到蒸馏的分离方法(引出酿酒,可以让学生在课余查阅酿酒工艺方面的知识)〔思考〕今天,我们不酿酒(这是我们实验选修课的内容),我们用蒸馏自来水的方法来制备蒸馏水.刚才我们已经谈到蒸馏的过程需要先沸腾蒸发后冷凝,请大家思考我们的蒸馏装置会长什么样
〔引导〕首先要沸腾蒸发,需要什么仪器 烧杯 烧瓶 为什么(蒸汽要能便于冷凝收集)引出蒸馏烧瓶,给出实物.(知识拓宽:如果方便拆卸,可以用什么仪器代替 引出普通烧瓶与带支管的蒸馏头)〔思考〕如果要测量蒸汽的温度,怎么测 温度计应该放哪 蒸馏烧瓶的什么位置
〔引导〕液体沸腾,蒸汽产生后,怎么使它凝结并能搜集到蒸出来的蒸馏水 刚才已说到水蒸汽在锅盖上凝结成水珠,原因是空气冷凝的结果,那我们蒸馏自来水是怎么使水蒸汽凝结并能收集到蒸馏水 也用空气冷凝 冷凝的原因是什么 需要降温 生活中有哪些常用的降温手段,比如给你一瓶开水,在没有冰箱的情况下,你又很渴, 想想可以用什么既简捷又方便可行的方法使开水冷下来 放冷水里面 静止的水好还是流动水 生活经验告诉你谁的冷却效果更好
〔思考讨论〕流动水放多少效果最好 放满溢出 水流速度越快越好 那么在我们的蒸馏冷凝中怎么实现 〔引导学生想像冷凝管的样子,给出实物〕
〔引导〕水从冷凝管的哪个口进去,哪个口出来 或者说哪个是进水口,哪个是出水口 为什么 想想冷凝管怎么安放 放在什么位置 横着还是竖着 斜着 怎么倾斜 为什么 需要考虑与蒸馏瓶的搭配吗(知识拓宽:如果需要…………,引出分馏和回流冷凝管――处理溶剂)接好冷凝水后,怎么收集蒸馏水 水滴掉下来可能会乱滴 我们需不需要引流 引流装置什么样呢 引出牛角管,给出实物.(知识拓宽:收集多个温度段的馏 分,用尾接管;若是有机物,则要密闭有磨口的锥形瓶).接收仪器用的是锥形瓶,而不是烧杯,为什么(接收器用锥形瓶好还是烧杯好)〔学生实验〕装置安装好后,检查系统是否通畅;大家想想先加热还是先通冷凝水 为什么 加热前,要在蒸馏烧瓶中加入两块沸石,作用是什么(提醒学生加水的量和石棉网加热)(放录像)〔讨论〕怎么检验蒸馏水(是否盐水变为淡水――检验氯离子)(提醒学生观察蒸馏瓶)(联系生活)现今世界上有很多淡水短缺的国家,利用蒸馏法来将海水淡化变为饮用水,但是这种方法成本很高,不是很适用,那请同学们课后查阅资料,提出解决淡水问题的方案并作比较分析优势,我们将做一次展览,张贴在宣传栏,让大家都看到,都来关心淡水问题,提醒大家节约用水.课后作业: 1.分馏原理和装置
2.列举相似相溶原理的运用实例 3.当今的主要分离技术有哪些(查阅资料)4.家庭实验探究:炖猪肚前加盐会使猪肚容易炖烂,为什么 请解释原因(提示:请查阅资料或向别人请教;加入盐后,水的沸点是否发生变化).六、模拟试题
1.如果你家里的食用花生油混有水份,你将采用下列何种方法分离
A.过滤 B.蒸馏 C.分液 D.萃取
2.选择萃取剂将碘水中的碘萃取出来,这种萃取剂应具备的性质是 A.不溶于水,且必须易与碘发生化学反应 B.不溶于水,且比水更容易使碘溶解 C.不溶于水,且必须比水密度大 D.不溶于水,且必须比水密度小
3.下列制取蒸馏水的实验装置与操作的说法中,不正确的是 ...A.温度计的水银球应插入蒸馏烧瓶中的自来水中 B.冷凝管中的水流方向是从下口进入,上口排出
C.实验中需要在蒸馏烧瓶中加入几粒碎瓷片,防止出现暴 沸现象 D.蒸馏烧瓶必须垫石棉网
4,CCl4和蒸馏水都是无色液体,请按下列要求用实验方法鉴别.(简要地写出实验过程)① 只允许用一种试剂
②不用任何试剂
七、小结:本节我们通过探究的方法学习了化学基本操作——蒸馏与萃取
八、课后作业: 1.分馏原理和装置
2.列举相似相溶原理的运用实例 3.当今的主要分离技术有哪些
4.家庭实验探究:炖猪肚前加盐会使猪肚容易炖烂,为什么?请解释原因
九、课后反馈:学生对本节探究形式兴趣浓厚,乐于参与其中,效果良好。
第五篇:常压蒸馏实际操作
蒸汽空气烧焦具体步骤如何?
操作步骤:1.准备工作:加热炉停工后,将炉管全部用蒸汽吹扫干净,然后加盲板将炉子与其他部分隔离开,再将空气-蒸汽系统按流程倒好,炉管中通入水蒸气,然后点燃火嘴,逐渐开大火嘴,炉出口开始升温.2.剥离阶段:增大蒸汽量,同时开大火嘴,保持炉出口温度,从气体取样口中引出气体,通入水中急冷.根据水不的颜色判断焦炭的剥离是否开始,水的颜色应乳白色变成灰色,最后变成黑色.3.烧焦阶段:开始烧焦以前,应降低蒸汽流量,然后通入空气.烧焦正常时,炉管是暗红色,如果是桃红色,说明温度过高,应适当减少空气量,增加蒸汽量.4.烧焦结束后,立即头小火嘴并停止通入空气,但应继续通蒸汽.要严格控制冷却速度,这一点对采用胀接弯头时龙为重要.冷却时间不得少于3-4小时.材料工具:防爆”F”铜板子防爆对讲机
安全生产、技术要求:1.员工劳保着装要符合要求。2.开始升温时炉温用手动控制,炉管出口温度按60-150度/时速度升温,直至炉膛温度达到500-600度。3.烧焦时空气量应缓慢增加,调节蒸汽与空气的比例,使烧焦速度保持最大而又不使炉管过热。4.烧焦速度以同时烧一至二要管子为好,炉管由红变黑,说明焦已烧完。5.烧焦的炉管依次由前向后,全部烘一遍。6.在烧焦阶段中,还应定期用大量的蒸汽吹扫炉管,以除去松散的焦炭和灰渣。7.烧焦是否完成,可以取样分析气体中二氧化碳的含量,或由冷却废气的水浅红色来判断。