第一篇:数学教学中培养学生创新思维能力的探索 关键词:认真观察 引导想象 鼓励思维 诱发灵感
数学教学中培养学生创新思维能力的探索
关键词:认真观察
引导想象
鼓励思维
诱发灵感
所谓创造思维就是与众不同的思考。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它具有独特性、求异性、批判性等思维特征,思考问题的突破常规和新颖独特是创造思维的具体表现。这种思维能力是正常人经过培养可以具备的。那么如何培养学生的创造思维能力呢?在教学实践中,我从以下几方面进行了探索。
一、指导学生认真观察
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,我做到给学生提出明确而又具体的目的、任务和要求。其次,在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,努力培养学生浓厚的观察兴趣。
例如教学“圆柱体的体积”时,我引导学生进行动手实践,将圆柱体拼割成一个近似长方体,先将圆柱沿底面平分割成8等份,对拼成一个近似长方体,学生则观察割拼过程。
我向学生提出问题:“这个圆柱体拼成了一个近似的什么立体图形?为什么说它是近似的?它的哪一部分不是长方体的组成部分?”
学生回答后,我接着再进行演示实验2:将圆柱体沿底面平分16等份,再拼成近似的长方体。再问:“这次是不是更象长方体了?”
这时我启发学生想象;“把它平分成很多很多等份,这样拼成的图形将会怎样?”在学生回答的基础上,我再总结:“将会无限趋近于长方体,并且最终会得到一个长方体。”
然后我再及时引导学生观察这个长方体,并把它与圆柱体进行比较,提问:“这个长方体的哪部分与圆柱体相同?”因为模型各面的颜色不同,所以学生会很快回答出来:“底面积与高。”
“那么这个长方体体积与圆柱体体积有什么关系?”学生回答:“相同。”我再问:“这个长方体同原来的圆柱体相比什么发生了变化?”学生经过观察,很快回答:“这个长方体的表面积同原来圆柱体的表面积相比发生了变化。”我再问学生:“这个长方体的表面积同原来圆柱体的表面积相比较是增加的还是减少的?增加或者减少了哪几个面?”学生很快能回答:“长方体比圆柱体增加了两个侧面,每个侧面的长和宽是圆柱体的高和底面半径。”
在学生掌握了圆柱体的体积计算公式后,我出示了这样一题:“一个圆柱体的高是5厘米,将这个圆柱体割拼成一个长方体后,表面积比原来增加了20平方厘米,求这个圆柱体的体积。”学生因为刚才经过观察,很快能求出这个圆柱体的底面半径为:20÷2÷5=2(厘米),这个圆柱体的体积则为:3.14×2×2×5=62.8(立方厘米)。
这样引导观察,使学生不但掌握了知识,而且还提高了学生的观察能力和学习能力。
二、引导学生数学想象
想象是思维探索的翅膀。爱因斯坦说:“想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。”在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。
想象不同于胡思乱想。数学想象要有扎实的基础知识和丰富的经验的支持;要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力;要有执着追求的情感。因此,在教学实践中,我们培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。例如,在复习三角形、平行四边形、梯形面积时,要求学生想象如何把梯形的上底变得与下底同样长,这时变成什么图形?与梯形面积有什么关系?如果把梯形上底缩短为0,这时又变成了什么图形?与梯形面积有什么关系?问题一提出学生想象的闸门打开了:三角形可以看作上底伪的梯形,平行四边形可以看作是上底和下底相等的梯形。这样拓宽了学生思维的空间,培养了学生想象思维的能力。
又如,在学习“能被3整除的数的特征”时,我先出示一组数12154、718、63、398、570、1495、1506、321。提问:请同学们判断一下,这些数中哪些能被2整除?哪些能被5整除?当学生完成这一复习过程后,我再问:那么这里的数哪些能被3整除?学生通过口算很快就说出了正确答案。此时,我诱发学生猜想:“其实能被3整除的数也有自己的特征,请大家猜一猜,它们有什么特征?”于是,学生思维的闸门打开了,情绪被完全调动起来了。他们尽情地表述自己的意见,有的说:我猜个位上的数字是3、6、9的能被3整除。有的说:我猜一个数各位上的数字之和是6、9、12的能被3整除。也有个别学生猜想到“一个数的各位数字之和能被3整除,这个数就能被3整除。”不管学生的猜想是对还是错,都是难能可贵的,因为这是学生自己在探索知识过程中迈出的可喜的第一步。
三、鼓励学生求异思维
求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。例如:教学“分数应用题”时,我出示了这么一道习题:“修路队修一条3600米的公路,前4天修了全长的1/9,照这样的速度,修完余下的工程还要多少天?”我引导学生从不同角度去思考,用不同方法去解答。
用上具体量:
解一:3600÷(3600×1/9÷4)-4
解二:(3600-3600×1/9)÷(3600×1/9÷4)
解三:4×[(3600-3600×1/9)÷(3600×1/9)]
思维较好的同学将本题与工程问题联系起来,抛开3600米这个具体量,将全程看作单位“1”:
解四:1÷(1/9÷4)-4 解五:(1-1/9)÷(1/9÷4)解6:4×(1÷1/9-1);
此时学生思维处于高度活跃状态,又有同学想出: 解七:4÷1/9-4 解八:4×(1÷1/9)-4 解九:4×(9-1)。
这样使学生在求异思维中不断获得解决问题的简捷方法,有利于各层次的同学参与,有利于创造思维能力的发展。
四、诱发学生思维灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。
在教学中,我注意及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当应用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。
例如,在教学了“折扣”后,我出示了这样一题:“某商场运来300台洗衣机,每台售价500元,每售出1台可得到售价15%的利润,由于其中的20台有些破损,按售价打八五折出售,这批洗衣机售完后实得利润多少元?”
这题的一般是:先求出300台洗衣机共获利润多少元,再求出20台洗衣机少得利润多少元,然后求出300台洗衣机售完后实得利润多少元。
综合式:500×300×15%-500×20×(1-85%)=22500-1500=21000(元)
这样解答显然较为复杂,我启发学生能否找到更好的解法,学生经过分析,很快找出了更巧妙的解法:因为1台洗衣机可得15%的利润,那么每台洗衣机的成本就只占售价的(1-15%);而其中的20台按售价打八五折出售,说明这20台是保本出售,所以,这批洗衣机所得利润就是“300-20”台洗衣机所获得的利润。
综合式:500×15%×(300-20)=75×280=21000(元)
综上所述,我认为要培养学生的创新思维能力,我们教师一定要创设民主、富于创新精神的教学氛围,尊重学生的主体地位,尊重学生的个性,调动学生的主体积极性,注意抓住一切时机激发学生创新的欲望,培养学生自主学习和自我发展的能力,而不是让学生被动地、机械地学习。要为学生多创造一点思考的时间,多一点活动的余地,多一点表现自我的机会,多一点体尝成功的愉快。
第二篇:语文教学中培养学生创新思维能力的探索
语文教学中培养学生创新思维能力的探索
摘要:
21世纪是以技术创新为核心的知识经济社会,科学技术在社会发展中的作用日益重要和突出,知识更新和转化为现实生产力的速度日益加快。在国际竞争中制胜的法宝再也不是广袤的土地、丰富的自然资源、雄厚的资本。而是人的素质、人的创新精神和创造能力。因此知识经济社会将是一个学习的社会,创新的社会,他要求走出校门的学生不仅善于吸纳、应用不断出现的新的知识,而且要具有知识创新意识和能力。江泽民总书记也曾有过这么一段精辟的论述:创新是一个民族进步的灵魂,是一个国家兴旺发达的不竭动力。小学语文作为基础学科中的基础,它本身就是一门创新思维颇为丰富的学科,学生一旦处于主动状态,必然会爆发出无限的创新火花。因此,在小学语文教学中应该注重对学生创新思维能力的培养。下面,结合我的教学实践,谈谈如何培养学生的创新思维能力。
关键词:创新思维、创新意识、创新精神、创新能力
一、营造和谐氛围,激发创新兴趣
著名心理学家托兰斯说:“我们要想促进创新能力,就需要提供一个完善的和有奖赏的环境,以便使之在其中繁荣发展。”培养学生的创新思维能力,首先必须创设富有创新的情境和气氛。在教学中应以学生为主体,让他们有机会展示自己,让他们永葆本来就有的好奇心,让他们拥有敢于挑战的气概。另外更要发挥教师的主导作用,引导学生多思,启发学生多说,鼓励学生多问,允许学生发表不同意见,充分发挥学生的主动性和独创性,通过组织、引发、释疑、示范、激励……使学生按照创造思维的规律去进行创造思维的实践。
1、建立融洽的师生关系
轻松、和谐、民主的课堂氛围会使学生产生“安全感”,不仅可以调动学生学习的积极性和主动性,还可以激发学生的创造性思维。创设和谐的氛围,教师就要放下“架子”,以良好的心态面对学生,以关切的眼神去关注学生,以饱满的热情影响学生,以幽默的语言去启迪学生。在教学中,鼓励学生敢想、敢说、敢做,激励学生敢于打破常规、标新立异。课堂上教师与学生亲切地交流、共鸣,使学生感到自己被人信任,被人理解,从而使学生亲其师而乐其学。这样课堂就成为师生共同进行创造性活动的乐园。教师是学生学习的指导者、促进者—根据学生的变化和表现,及时进行课堂调控,促进学生创 1 新学习;教师又是询问者—假装不知,问原因,找究竟,引导学生弄明白;教师更是欣赏者—对学生的学习成果进行积极地评价,鼓励学生创造性的想法和做法,欣赏他们的点滴创新。
2、创设和悦的情境氛围
语文学科本身充满着“情”味,这是它有别于其它学科的一个显著特点,也是最大的优势。情感又是儿童素质发展的重要因素和动力,所以语文教学中教师要充分挖掘语文教材中的情感因素,运用自己的情绪感染力,唤起学生的情感,创设出一个充满智慧、蕴涵情趣的教学氛围,使学生的学习情绪高涨,大大激发了学生的求知欲望。如教学《船过三峡》一课,教师要充分发挥语言优势,通过录音、录像等现代化的电教媒体,带领学生去领略长江三峡的神奇,让学生们从内心发出“好神奇啊!”的惊叹,对祖国大好河山的热爱之情和赞美之情冲击着每个学生的心灵,学生情不自禁地放声朗读,抒发自己的感受。这样凭借语言文字,创设和悦的情感氛围使课堂更趋于生动而富于情趣,大大激发了学生的创新兴趣。
3、激发和培养浓厚的创新兴趣
孔子曰:“知之者不如好之者,好之者不如乐之者”。兴趣是最好的老师。因此,教师应想方设法激发学生的创新动机和兴趣。如《草船借箭》一课,一开始教师就提出:为什么课题中用“借”而不用“骗”?由于学生在学习课文之前已经预习,了解了课文的大概,对这样的问题很感兴趣,想弄明白究竟,便会迫不及待地去研读课文,各抒己见,最后总结出答案:一说明有借必还,到以后战斗的时候归还;二与文中的有关句子相对应;三赞扬了诸葛亮的神机妙算和为人。
长此以往,课堂上便会奏响和谐、愉悦的旋律,就能最大限度地激发学生创造的热情,最充分地激励学生的创新兴趣。
二、尊重个性差异,培养创新品质
学生的差异是创新教育关注的个性的前提。每个学生都是特殊个性,需要充分的尊重和关怀,每个学生都有创造的潜能,需要的是激发和培养。不同的学生有着不同的生活体验、知识背景和思维方式,教师应关注学生的个人体验,珍视学生的独特性,努力为不同的学生创造不同的发展机会,让他们从不同角度、不同侧面展示自己,寻求发展的可能。因此,在教学中教师要正视差异,承认差异,尊重差异,尽可能发现每个学生的聪明才智,尽力捕捉他们身上表现出的或潜在的优势,使每个学生都形成自己的特色和鲜明的个性。
1、培养思维的求异求优性
人的创新能力主要是依靠求异思维,它是创新思维的核心。许多科学技术的重大发明,正是摆脱习惯性思维束缚的结果。牛顿发现万有引力,哥白尼确立日心说,都是求异思维的结果。求异思维要求学生凭借自己的智慧和能力,积极、独立的思考问题,主动探求知识,多方面、多角度、创造性地解决问题。在教学中,教师要注意培养学生求异思维的能力,引导学生打破思维定势的束缚,不断拓展新的思维空间,提高独立思考和解决问题的能力,从而培养创新品质。如教学《狐狸和乌鸦》一课时,让学生在懂得像乌鸦那样爱听奉承话的人要上当受骗的这一深刻思想内涵后,可启发学生从狐狸是如何吃到乌鸦嘴里的肉这一角度,经过多方位的比较思考,让学生明白狐狸虽狡猾,但聪明,遇到问题,能想办法解决,从而使学生树立只要开动脑筋,就能战胜困难的信心。《司马光砸缸》、《称象》也可采用这一方法。如《司马光砸缸》一课:当孩子掉入水缸的危急时刻,司马光当机立断拿起石头砸破水缸,救出了孩子。在教学中引导学生思考:除了司马光的办法外,还有什么办法救出小孩?这时,让学生展开思维,充分发散,然后,引导学生分析比较哪种办法好?为什么?这样做,通过发散和聚合思维的结合让学生的创造性思维得到培养,学到创造性地解决问题的方法,懂得“同”中求“异”,“异”中求“优”的思维方法。
2、培养思维的深刻性
在语文教学中引导学生纵向探究,就是启发他们在学习中或追根溯源,探究事物的起因,或沿着原先的思维方向进一步探求,深入事物的发展变化。这样做,学生对问题的认识更加深刻,他们的思维在不断探索的过程中向纵向发展。如《狼和小羊》一课,狼三次找碴儿是作者写文章的思路和文章的线索。教学时,教师可以根据这条线索,有层次地设计几个思考题,把学生的思维逐步引向纵深阶段:①狼为什么故意找碴儿?②狼一共找了几次碴儿?③狼为什么不立刻吃掉小羊?这说明了什么?经过一个个问题的讨论,学生进一步弄明白狼找借口的实质,小羊反驳的理由,懂得对狼这样的坏家伙是没有道理可讲的。为了进一步揭露狼狡猾凶残的本质,还可启发学生思考:如果,狼再碰到别的小羊又会怎样呢?这样使学生加深了对课文的理解,锻炼了思维的深刻性。
三、鼓励质疑问难,激活创新思维
巴浦洛夫说:“怀疑是发现的设想,是探索的动力,是创新的前提。”学贵有疑,学则须疑,问题是创造之源,是思维之本。常有疑问,才能思考;常有思考,才能探索、创新。这也是培养学生创新思维的重要途径。因此,在语文教学中要善于引导学生质疑 问难。对学生“质疑”精神的培养,应贯穿于课堂教学的各个环节之中。
1、敢于质疑,培养学生创新意识
“学起于思,思起于疑”,质疑可以使教师的教学更有的放矢,可以引导学生深入理解课文,可以促进学生主动探究,积极发现,激活学生的思维。其实,越是敢于质疑的学生,其主体作用越能得到充分的发挥。因此,在教学中必须潜移默化地培养学生敢于质疑的精神。但由于学生的知识水平,认知结构的差异,提出的问题五花八门,深浅不一,有可能只停留在字、词的表面,作为教师不管学生提出的问题是深是浅,都应给予表扬鼓励。这也是训练学生勤思、敢问、善问的关键。如教学《秋天的果园》一课时,当学生们读后交流体会时,有位学生说:“我读懂了红通通的苹果、黄澄澄的梨、紫紫的葡萄都是在秋天成熟的。”另一位学生大胆地反驳:“老师,现在一年四季都有新鲜的水果,不一定秋天才成熟。”教师满意地直点头,夸奖他真能干。然后,顺势给学生讲解科学种植的原理和方法,学生们听得津津有味,刚才提问的学生更是喜形于色,这样大大激活了学生的创新思维。
2、多向质疑,激活学生发散思维
所谓“多向”是指从各个方面进行发散性思考,可以由里向外,作辐射发散质疑,也可由外向里作“聚点”质疑。从各方面来认识对象,引导学生从多角度、多层面去思考问题。如教学《我的伯父鲁迅先生》时,有这样一句话:“你想,四周围黑洞洞的,还不容易碰壁吗?”教师可以抓住这个句子作为思考问题的起点进行质疑:①从字面上来看,这句话是什么意思?②从语气来看,说这句话时,鲁迅先生的心情是怎样的?③从上下文来看,这句话揭露了什么?表现了什么?④从表达手法来看,“四周围黑洞洞”指的是什么?谁会“碰壁”?为什么这样说?⑤从说话的对象来看,面对一个孩子纯真的发问,鲁迅先生能将反动派的迫害,清清楚楚地告诉她吗?用什么办法让她理会呢?⑥从时代背景来看,这句话有什么特殊含义?这样,通过多向地质疑,学生理解这句话就有了一种多侧面、多方位、多层次的思维出发点。
3、随机质疑,培养学生多向思维
只要有学生创新学习,就会出现学习过程中的质疑。的确如此,作为教师对学生的质疑不要形成固定的模式。有的课文教学过程就可以从质疑开始;有的课文学生质疑可以放在结课阶段,有的则宜安排在课文研读之中。如教学《小音乐家杨科》一课时,教师先板书“音乐家”,提问:什么样的人,才称得上音乐家?待学生回答后,将课题补充完整,又问:看了课题,你有什么问题想提吗?由于学生课前预习了课文,基本了解 课文大概,所以马上便会发现问题:杨科是一个连摸一摸真正的乐器的权利都没有的穷孩子,用上“小音乐家”的称号合适吗?然后,教师马上给予极大的赞许,并顺水推舟引导学生抓住这一关键问题去研读课文。这样既达到了思维训练,又是一个创新思维培养的过程。又如在教《田忌赛马》一课时,在学习了第一场比赛和第二场比赛后,让前后四位同学讨论,马的出场顺序还有哪些搭配方法?这些方法能不能让田忌取胜?从而让学生明白虽然还有四种调换方法,但每种方法田忌都是两败一胜,而能转败为胜的,只有孙膑的那种安排马的出场顺序的方法,从而懂得孙膑是一个观察细致、考虑全面、善于思考的人。继而再让学生想一想,如果齐威王不轻敌,在第二场的第一轮比赛后,及时发现对方马的出场顺序改变了,推测对方的策略,在下面两场比赛中还有没有取胜的可能这样在教学过程中不断地提出具有探索性的新问题,引导学生通过思考讨论来探求答案,并在成功的体验中逐步养成勇于冒险、敢于挑战的精神,不断强化创新动机,使其最终内化为创新人格。
所以说,质疑是发现,发现是成功的一半。一个人只有会提出问题,并去分析问题,解决问题才能达到成功的彼岸。
四、发挥丰富想象,训练学生创新思维
爱因斯坦指出:想象力比知识更重要,因为知识是有限的,而想象力概括着世界上的一切,并且是一切知识的源泉。也有人说:想象是创新的翅膀。一切创新活动都离不开想象,让学生展开丰富的想象可以使他们的智力活动突破个人的认识局限,使知识和能力融会连接起来。当然,想象并不是胡思乱想,一要合情合理,二要有根有据,三要力求丰富。小学语文教材本身也为培养学生的想象能力提供了得天独厚的条件。因此,教师在教学中要善于发现和培养学生想象的契机,充分发掘学生奇思妙想的潜能。
如教学《黄山奇石》一课时,在学习课文中几块奇石的基础上,借助录像让学生们再来观赏几块奇石,为它们取名。对于一块奇石,学生们各抒己见,有的取名:天狗望月;有的说:骏马长嘶;也有的说:八戒思故乡„„瞧,名字取得多棒。然后,再次让学生展开丰富的想象力,学着作者的写法,说一说你最喜欢的一块奇石。结果,学生们争先恐后,纷纷要求来展示一番,有一位学生说道:“仙女弹琴”栩栩如生,那仙女披着长发,身穿白衣,怀抱月琴,似乎正在弹奏美妙动听的乐曲,它是在赞美黄山的美景吗?寥寥数语,“仙女弹琴”跃然纸上。又如在教了《富饶的西沙群岛》后,让学生们写一写《海底世界漫游记》或《海底探宝》等想象作文。此外,教学中教师还可以挖掘出可供学生进行丰富想象的语言因素,故事情节,引导学生展开想象,进行扩写、续写、改写等,既是对课文的理解更具体化,同时又发展了学生的创造想象能力,让学生在大胆而丰富的想象中,相互启发,感受着创造的快乐。
五、强调主动尝试,培养学生创新能力
心理学家皮亚杰曾经指出:教育的目标在于培养有创新能力的人,而不是培养那些只能重复前人所做的事的人。少年儿童的思维尚处于形象思维为主的阶段。让学生动手操作,更能促进思维,激发灵感。正因为这样,在每一堂语文课上,我们应该让学生更多地主动思考、主动选择、主动判断。如教学《黄山奇石》的三块石头时,我让学生喜欢哪块石就先学哪块;喜欢哪句话就针对这句话理解;自己感觉哪句话理解得好,就把哪句话读给大家听……结果,学生参与的热情高涨,在讨论和背诵中,思维更积极,感知更敏锐,想象更丰富,记忆更巩固。可见,在充分地选择和表达的过程中,不仅培养了学生的听说能力,训练了学生的语言,而且丰富了学生的感情。使学生不仅获得了知识上、认识上、情感上的满足,而且创新能力和创新精神也得到了锻炼和发展。
又如在课堂教学中,组织学生开展小组学习,学生在小组合作学习中,易于投入,利于尝试,不受拘束,更加主动,而且参与面也广,使每一位学生都能够参与到课堂学习中来,让他们在合作学习中,悟出新知,闪现出创新思维的火花,从中培养了学生的创新能力。
二十一世纪在呼唤具有创新精神的高素质人才,作为一名语文教师要发展学生的创新思维,开发学生的创新潜能,培养学生的创新个性,在创新教育中与学生共同成长。那么,我们的课堂教学便会呈现出陶行知先生所追求的境界:“处处是创造之地,天天是创造之时,人人是创造之人。”
第三篇:数学教学中培养学生创造思维能力
悦考网www.xiexiebang.com
数学教学中培养学生创造思维能力
21世纪将是一个知识创新的世纪,新世纪正在召唤大批高素质创造型人才。人的创造力包括创造思维能力和创造个性两个方面,而创造思维是创造力的核心。所谓创造思维就是与众不同的思考。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物,提示新规律,创造新方法,解决新问题等思维过程。尽管这种思维结果通常并不是首次发现或前所未有的,但一定是思维主体自身的首次发现或超越常规的思考。它具有独特性、求异性、批判性等思维特征,思考问题的突破常规和新颖独特是创造思维的具体表现。这种思维能力是正常人经过培养可以具备的。那么如何培养学生的创造思维能力呢?
一、指导观察
观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?
首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。例如教学圆的认识时,我把一根细线的两端各系一个小球,然后甩动其中一个小球,使它旋转成一个圆。引导学生观察小球被甩动时,一端固定不动,另一端旋转一周形成圆的过程。提问:“你发现了什么?”学生们纷纷发言:“小球旋转形成了一个圆”小球始终绕着中心旋转而不跑到别的地方去。“我还看见好像有无数条线”„„¨从这些学生朴素的语言中,其实蕴含着丰富的内涵,渗透了圆的定义:到定点的距离相等的点的轨迹。看到“无数条线”则为理解圆的半径有无数条提供了感性材料。
二、引导想象
想象是思维探索的翅膀。爱因斯坦说:“想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。”在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。
想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。例悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
如,在复习三角形、平行四边形、梯形面积时,要求学生想象如何把梯形的上底变得与下底同样长,这时变成什么图形?与梯形面积有什么关系?如果把梯形上底缩短为0,这时又变成了什么图形?与梯形面积有什么关系?问题一提出学生想象的闸门打开了:三角形可以看作上底为0的梯形,平行四边形可以看作是上底和下底相等的梯形。这样拓宽了学生思维的空间,培养了学生想象思维的能力。
三、鼓励求异
求异思维是创造思维发展的基础。它具有流畅性、变通性和创造性的特征。求异思维是指从不同角度,不同方向,去想别人没想不到,去找别人没有找到的方法和窍门。要求异必须富有联想,好于假设、怀疑、幻想,追求尽可能新,尽可能独特,即与众不同的思路。课堂教学要鼓励学生去大胆尝试,勇于求异,激发学生创新欲望。例如:教学“分数应用题”时,有这么一道习题:“修路队修一条3600米的公路,前4天修了全长的1/6,照这样的速度,修完余下的工转程还要多少天?”就要引导学生从不同角度去思考,用不同方法去解答。用上具体量,解1;3600÷(3600×1/6÷4)-4;解2:(3600-3600×1/6)÷(3600×1/6÷4);解3:4×[(3600-3600×1/6)]÷(3600×1/6÷4)。思维较好的同学将本题与工程问题联系起来,抛开3600米这个具体量,将全程看作单位“1”,解4:1÷(1/6÷4)-4;解5:(1-1/6)÷(1/6÷4);解6:4×(1÷1/6-1);此时学生思维处于高度活跃状态,又有同学想出解7:4÷1/6-4;解8:4×(1÷1/6)-4;解9:4×(6-1)。学生在求异思维中不断获得解决问题的简捷方法,有利于各层次的同学参与,有利于创造思维能力的发展。
四、诱发灵感
灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。
在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当运用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。
例如,有这样的一道题:把3/
7、6/
13、4/
9、12/25用“>”号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,我在教学中,安排学生回头观察后桌同学抄的题目(7/
3、13/
6、9/
4、25/12),然后再想一想可以怎样比较这些数的大小,倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。
悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。
与初三同学谈如何学好数学
经过二年多的初中学习,同学们随着年龄的增长,知识的不断丰富,学习自觉性的不断增强,理解力和思维能力的不断提高,教材也随之加深拓广,老师的教学也由扶着同学们走路到逐渐放开手让同学们自己走路,这是在中学阶段深化学习的必由之路。
二年多来,大部分同学的学习都取得了一定的进步,有的同学很快就适应了初中数学课程的学习,通过自己的努力,进步很大;但也有的同学一下子不能适应初三阶段紧张的学习和生活,自信心下降,与其他同学拉大了差距。随着学习的进一步深入,这种差距在顺其自然的情况下还会不断加大。
为了同学们的前途和末来,我觉得同学们在学习中不能顺其自然,而应力求改变现状,变被动学习为主动学习,尽快把学习成绩赶上去。根据我多年的教学经验,我认为同学们掌握正确的数学思想和方法是至关重要的,是事半功倍的关键所在。
通过二年多的学习,想必同学们都有这样的亲身体会,在学初中的有关基础知识内容时,只要认真听老师讲解,都能听得懂,所以要掌握一般的基础知识并不难。练习中一步到位的与新知识有关的简单题也并不难做,难的是较复杂一点的、与以前学过但自己又没有掌握好的知识联系在一起的综合题。所谓“数学学习,一步跟不上,则步步跟不上”,就是指这一类的题目。但这并不是说,因为这样,就不要去学新知识,就学不好新知识。完全不是这么回事。即使你以前的知识都没学好,仍然能依据新学的这些知识去解决有关的简单问题。并且从中可以增强自己的自信心:我这节课认真学了,听懂了,会用学到的新知识去解决一些问题了。之所以碰到难一点的题我不会做,那是因为我以前的知识没学好,在某一个地方卡住了,做不下去了,只要我把以前的知识好好补一补,像现在这样把知识一点一滴地学到手,我就不信学习成绩赶不上去。
事实是,前几届有好些个同学原本数学成绩很差,到初三了才着急起来,认真地持之以恒地补习旧知识,学习新知识,最后在中考时取得了较理想的成绩。有的从平时考十几、二十几分到中考考出七、八十分,有的从五、六十分到中考考出一百多分。当然,除这些同学自身的努力外,还与中考题大部分题目比较容易也有一定的关系(虽然中考是选拔性考试,但也要考虑到初中毕竟还是属于九年义务教育阶段,中考面临的是全体同学们,必然要照顾到绝大多数同学的实际情况;中考成绩也是体现九年义务教育阶段素质教育成果的一个重要方面,因此中考题里面始终都会有大量基础题。)但再容易的题目也要你能掌握有关知识的最基础的东西才行呀!如果你自暴自弃,每一节课都不认真学,连最简单的题也不会做,我看你到中考时也只有望题兴叹,后悔莫及。有不少同学中考后都有这样的感叹:早知中考数学题这么容易,我平时学习只要稍微认真一点,平时测验悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
能真正拿个五、六十分(不是掺假的),中考拿个一百多分绝对没问题。(中考数学满分为150分)
我介绍这些情况,目的只有一个,就是劝那些怕数学的同学不要放弃数学,数学的基础知识并不难学,相信每一位同学都能学好。应树立起自信心,相信自己,相信自己通过努力一定能与其他同学缩小差距!
也许有的同学要问,那么怎样努力呢?您能不能介绍一点行之有效且并不难学的好方法啊?当然有,下面我就来谈谈如何操作才能真正学好数学。
一、该记的记,该背的背,不要以为理解了就行
有的同学认为,数学不像英语、社政,要背单词、背年代、背人名、地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9×9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比如在化简二次根式时规定:“如果没有特别说明,本章根号内的字母都是正数。”等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“乘法公式、求根公式”“特殊角三角函数值”等,我看我们的同学有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这些公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这些公式和数据。
对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打造不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手,左右逢源。
二、了解几个重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度×时悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二和初三我们学习了解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而为学好其它形式的方程打好基础。
所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支——代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
3、“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在化简求值计算中,将式子中有关字母或某个整体的值,对应代入,直接算出原式的结果。又比如我们到初三综合学习了与圆有关的角,圆心角、圆周角、弦切角的数量关系必须“对应”同一段弧才能成立。这就是运用“对应”的思想和方法来解题。初
二、初三我们还看到数轴上的点与实数之间的一一对应,悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。总之,“对应”的思想在今后的学习中将会发挥越来越大的作用。
4、“转化”的思想
解数学题最根本的途径是“化难为易,化繁为简,化未知为已知”,也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变成一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。
比如,我们学校要扩大校园,需要向某村征地。而某村给了一块形状不规则的地,如何丈量它的面积呢?首先,使用适当的测量工具,依据一定的比例,将实际地形绘制成纸上图形,然后将纸上图形分割成若干块梯形、长方形、三角形,利用学过的面积计算方法,计算出这些图形的面积之和,也就得到了这块不规则地形的总面积。在这里,我们把无法计算的不规则图形转化成了可以计算的规则图形,从而解决了土地丈量问题。另外,我们前面提到的各种多元方程、高次方程,利用“消元”、“降次”等方法,最终都可以把它们转化成一元一次方程或一元二次方程,然后用已知的步骤或公式把它们解决。
“转化和替代”的思想,是解题的最重要的思维习惯。面对难题,面对没有见过的题,首先就要想到“转化”,也总是能够“转化”的。平时,要多留心老师是怎样解题的,是怎样“化难为易、化繁为简、化未知为已知”的。同学之间也应多交流交流“成功转化”的体会,深入理解“转化”的真正含义,切实掌握“转化”的思维和技巧。
三、自学能力的培养是深化学习的必由之路
在学习新概念、新运算时,老师们总是通过已有知识自然而然过渡到新知识,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。
我们在课堂上听老师讲解,不光是学习新知识,更重要的是潜移默化老师的那种数学思维习惯,逐渐地培养起自己对数学的一种悟性。去年年底我去浙江教育学院开会时,杭二中吴副校长的一番话使我感触良多。他说:我是教物理的,可是经常外出,同学们物理学得好,不是我教出来的,而是他们自己悟出来的。当然,吴副校长是谦虚的,但他说明了一个道理,同学们不能被动地学习,而应主动地学习。一个班里几十个学生,同一个老师教,差异那么大,这就是学习主动性问题了。
自学能力越强,悟性就越高。随着年龄的增长,同学们的依赖性应不断减弱,而自学能力则应不断增强。因此,要养成预习的习惯。在老师讲新课前,要能够运用自己所学过的已掌握的旧知识去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学知识的无矛盾性,你所学过的数学知识永远都是有用悦考网www.xiexiebang.com 悦考网www.xiexiebang.com 的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了基础,就不难自学新课。同时,在预习新课时,碰到什么自己解决不了的问题,带着问题去听老师讲解新课,收获之大是不言而喻的。有些同学为什么听老师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是因为没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把知识变为自己的。学来学去,知识还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。
四、自信才能自强
在以往的历次考试中,总会看见有些同学的试卷出现许多空白,即有好几题根本没有动手去做。当然,俗话说,艺高胆大,艺不高就胆不大。但是,做不出是一回事,没有去做则是另一回事。稍为难一点的数学题都不是一眼就能看出它的解法和结果的。要去分析、探索、比比画画、写写算算,经过迂回曲折的推理或演算,才显露出条件和结论之间的某种联系,整个思路才会明朗清晰起来。你都没有动手去做,又怎么知道自己不会做呢?即使是老师,拿到一道难题,也不能立即答复你。也同样要先分析、研究,找到正确的思路后才向你讲授。不敢去做稍为复杂一点的题(不一定是难题,有些题只不过是叙述多一点),是缺乏自信心的表现。在数学解题中,自信心是相当重要的。要相信自己,只要不超出自己的知识范畴,不管哪道题,总是能够用自己所学过的知识把它解出来。要敢于去做题,要善于去做题。这就叫做“在战略上藐视敌人,在战术上重视敌人”。
具体解题时,一定要认真审题,紧紧抓住题目的所有条件不放,不要忽略了任何一个条件,包括隐含条件。然后,从“所求”看“需知”,由“已知”看“可知”,构筑“可知”和“需知”之间的桥梁,形成从“已知”到“所求”的通道,使问题得以顺利解决。其实,一道题和一类题之间有一定的共性,可以想想这一类题的一般思路和一般解法,但更重要的是抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。数学的题目几乎没有相同的,总有一个或几个条件不尽相同,因此思路和解题过程也不尽相同。有些同学老师讲过的题会做,其它的题就不会做,只会依样画葫芦,题目有些小小变化就干瞪眼,无从下手。当然,做题先从哪儿下手是一件棘手的事,不一定找得准。但是,做题一定要抓住其特殊性则绝对没错。选择一个或几个条件作为解题的突破口,看由这个条件能得出什么,得出的越多越好,然后从中选择与其它条件有关的、或与结论有关的、或与题目中的隐含条件有关的,进行推理或演算。一般难题都有多种解法,所谓“条条大路通罗马”。要相信利用这道题的条件,加上自己学过的那些知识,一定能推出正确的结论。
数学题目是无限的,但数学的思想和方法却是有限的。我们只要学好了有关的基础知识,掌握了必要的数学思想和方法,以不变应万变,就能顺利地对付那无限的题目。题目并不是做得越多越好,题海无边,总也做不完,但不做也不行,关键是一个“度”。在一定的限度内,我还是鼓励同学们要“多做多练,因为熟悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
能生巧;多看多想,才能见多识广。”这样,通过强化的训练,培养自己良好的数学思维习惯,掌握正确的数学解题方法。那么到了中考的时候,由于题目类型见得多,所以能“触类旁通,熟能生巧”,加快了速度,节省了时间,这一点在考试时间有限的中考时显得特别重要。
解数学题目需要丰富的知识,更需要自信心。没有自信就会畏难,就会放弃;只有自信,才能勇往直前,才不会轻言放弃,才会加倍努力地学习,才有希望攻克一道道难关,到达成功的彼岸,创造属于自己的辉煌的明天!
资料来自:悦考网www.xiexiebang.com 悦考网www.xiexiebang.com
第四篇:在数学教学中培养学生的创新思维
在数学教学中培养学生的创新思维
摘 要:创新已成为当今教育教学改革研究和实验的一个重要课题。数学作为一门锻炼学生思维的基础学科,在整个的学校教育中有着举足轻重的作用,数学教师的创新意识是培养学生创新能力的前提,学生的创新兴趣是培养和发展创新能力的关键,培养学生良好的思维习惯是发展学生创新能力的根本。
关键字:创新、引导、培养
创新,是数学课堂文化的灵魂。教师们不能再墨守成规了,要勇于创新。新课程理念下的数学教学应该有一个开放的教学环境。这就要求在数学课堂教学中,教师要努力创设各种课堂教学情境,如创设问题情境、形象情境、故事情境、音乐情境等。穆勒说过,“现在一切美好的事物,无一不是创新的结果。”创设有利用学生学习的情境,引导学生进行积极的自主探究,合作交流和主动建构,从而获得知识、经验和方法,提高学习兴趣,形成正确的价值观,这才是每一位教师都应该努力去探索的课题。数学学科的丰富内容非常有利于培养学生分析、综合、抽象、概括的能力,有利于培养他们对事物进行对比、类比、判断、推理以及跨越时空的想象力。实践证明,数学课堂教学是实施创造教育,培养学生创新精神和实践能力的主战场。
一、数学教师自身要具备创新精神。
教师必须具有创新意识,改变以知识传授为中心的教学思路,以培养学生的创新意识和实践能力为目标,从教学思想到教学方式上,大胆突破,确立创新性教学原则。培养学生的创新能力,教师首先应该具有改革创新的意识和锐意进取的精神,只有这样才能自觉的把思想认识从那些不合时宜的观念、做法和体制解放出来,端正教育思想,面向全体学生;才能改革落后教学方法,改变陈旧教学模式,重视培养学生的创新意识和开拓精神。学生数学知识的获得和能力的形成,教师的主导作用不可忽视,因此教师的创新精神会极大地鼓舞学生的创新热情。因此应该充分调动教师的积极性和创新精神,努力提高创新能力,掌握更具有创新性、更灵活的教学方法,在教学实践中,不断探索和创新,不断丰富和提高自己。
轻松的课堂气氛、和谐的师生关系,为培养学生创新能力营造良好的环境。教育过程是师生互动、教学相长的过程,教师的主导作用主要反映在教学的全过程,如精心设计导入,安排好教学的层次,精心挑选训练题进行小结,注意气氛反馈,重视教具的使用等。教师要把学生作为真正的教育主体,以学生为出发点和归宿,在课堂教学中,实行民主的教育和管理方式,营造充满民主的学习氛围,鼓励学生求异创新、敢于提问,允许有不同的答案。
在教育学的观点来看,教师的形象、知识、爱好,能力无不对学生起着潜移默化的作用。伟大的人民教育家陶行知就是教师“以身立教”的杰出典范。作为新世纪的教师,更加需要完善自我,在不断学习中塑造自己的形象,成为知识渊博,爱好广泛,业务能力强,富有创新意识的教师。当然,在课堂教学中,教师不能把现成答案告诉学生,而要引导学生逐步养成敢于提问题,善于提问题的主动学习的习惯。传统教学过分强调预设和封闭,其典型表现就是以教案为本位,实行计划教学。这种以教案为本位,教师为主体的教学是一种封闭式教学,这种教学使课堂教学变得沉闷、机械和程式化,缺乏生气和乐趣,缺乏对智慧的挑战和对好奇心的刺激。要使学生的思维在课堂中得到充分的发挥,则应培养学生创造性思维,在课堂上应以学生为主体,以学生的独立活动为中心,处理好全班学生共性与个性一般与差异的矛盾。真正做到因人而异、因材施教,按创造性思维培养的思维去分析教材,设计教案。
二、学生的创新兴趣是培养和发展创新能力的关键
兴趣是最好的老师,是推动学生自主学习的源动力。在数学教学中培养学生具有浓厚的数学学习兴趣,使学生能在学习中克服困难,勇于探索,产生强烈的求知欲和积极的情感体验,激励学生带着兴趣走进数学,探索数学,提高数学课堂教学效率。
良好的学习思维是创新能力发展的重要保证。良好的思维习惯不是生来就有的,它是在有意识的培养中形成,并在不断的实践中得到发展。培养和发展学生的数学良好的思维习惯是每一位数学教育工作者的追求和职责,是指导学生后继行为的重要认知策略,也是学生智慧技能学习的最高阶段。数学学习过程是一个观察、实验、模拟、推断、计算、交流等活动的综合过程,在教学中,应尊重学生的个性特征,允许不同的学生从不同的角度认识问题,采用不同的方法表达自己的想法,用不同的知识和方法解决问题。尽力帮助学生构建起一个包括数学思想方法在内的完整的数学知识结构体系,这都有益于提高学生学习的主动性及分析问题和解决问题能力。
在数学课堂教学中调动学生思维的积极性,利用定理证明与发现的联系激发学生思维。在多种解题思路探求中开发学生智力,激励学生创新思维。经过中考,我们深深地体会到:培养创新精神和实践能力是中考成功的保障,教师在教学中一定要有意识的去培养学生灵活运用数学知识去分析综合、探索联想,创造性地解决社会发展的实际问题,全面提高学生的能力素质。
学生创新思维是在自己探求新知的过程中逐渐形成的。因此,在平时教学中,教师要注重教给学生学习的方法,让学生学会如何发现问题,提出问题和解决问题。手脑并用,培养学生正确解决问题的能力。心理学家皮亚杰提出人的思维只有在活动中才能得到发展,离开了实践活动,创新意识和创新思维就得不到培养,只有积极引导学生多求、多问、多想、多动,才能使每个学生的创造性思维在原有的基础上得到培养和提高。
教育本身就是一个创新的过程,教师必须具有创新意识,改变以知识传授为中心的教学思路,以培养学生的创新意识和实践能力为目标,从教学思想到教学方式上,大胆突破,确立创新性教学原则。总之,培养学生的创新思维和创新意识要真正落到实处,把美好的愿望化为具体的行动,必须要把培养学生的创新思维和创新意识,不失时机地贯穿于教学的始终,尤其是科学地使用教材和巧妙地设计教法,并持之以恒,从小抓起,从平时抓起,使未来学生的创新意识和思维得到开发,才能不负于时代重望,担负起培养适应新世纪现代建设需要的社会主义创新人才的重任。
参考文献:
[1] 陈洪平.如何提高课堂提问的有效性[J].江南时报.2007.10.30
[2] 张奠宙,李士.《数学教育学导论》,高等教育出版社,2003.作者简介:吴学菲,女,贵州晴隆人,单位:贵州省晴隆县紫马中学,职称:中学高级
第五篇:数学教学中如何培养学生的创新思维
数学教学中如何培养学生的创新思维
[]创新能力,是指人在顺利完成以原有知识、经验为基础的创建新事物的活动过程中表现出来的潜在的心理品质。而创新能力的作用就是教人如何进行创新实践,如何解决遇到的各种现实问题。
[]创新思维,创新意识,个性品质,数学思维能力,创新人才
创新思维的培养不仅是学数学的需要,更是时代的要求。作者根据自己多年的教学实践,就在教学中如何培养学生的创新思维作出了阐释。
一、深化理性思维,改善思维品质,培养创新意识 兴趣是培养学生创新意识的前提,是构成创新动机最现实、最活泼的心理成份,是创新的动力源泉。教学中应充分利用教材,恰当的引导,适时的启发,激发不同层次学生的学习动力、兴趣,调整学生学习心理的转变,有意识的培养学生有效的思维意识和思维习惯。
1.培养学生观察问题,发现问题,解决问题的思维习惯,激发创新意识
人们发现新问题的能力是与大脑的积极思维分不开的,培养学生发现问题的能力是培养创新意识的前提。数学知识的获得,主要是通过对实物和模型的观察和思考,抽象概括出它们的本质属性,并用自己的语言给出定义或命题;让学生发
第 1 页 现数学问题的解决过程,体验思维的形成过程。
例如,将边长为3的正方体的六个面涂上颜色,而后分割成大小均匀的边长为1的正方体,则所得小正方体中只有一个面有颜色的概率是(B)。A.827B.29C.127D.49 分析:“将边长为3的正方体的六个面涂上颜色,而后分割成大小均匀的边长为1的正方体”在生活中的实物模型—魔方:
所得小正方体中,①三个面有颜色的是位于原正方体八个顶点的八个小正方体;
②二个面有颜色的是位于原正方体十二条棱中间的十二个小正方体;
③一个面有颜色的是位于原正方体六个面正中间的六个小正方体;
④没有面有颜色的是位于原正方体正中心的一个小正方体。【评述】培养学生发现问题的能力,着重是培养学生数学地提出问题的能力,以及分析问题,解决问题的能力及过程。上述解决问题的过程是:数学问题情景—实物(或模型)—特征分析—归类整理—数学计算—结论。不但起到了巩固固有的思维结构与形式,而且收到了发散结论的思维效果。2.培养学生的质疑能力,促进创新意识的萌动
创新思维是从发现问题开始的,“学起于思,思源于疑”。
第 2 页 疑,是点燃学生思维的火种,有疑问才会去探索。如果对某些地方大胆质疑,便可促其深思,以求悟解。在数学教学中,要鼓励学生质疑,问难,敢于思考、猜测,敢于超越常规;鼓励学生善于生疑,反思。学生质疑越多,求知欲越旺,兴趣会越浓,这样学生的创新意识、创新思维、创新精神就会在质疑、解疑中得到培养和提高。
例如,异面直线间的距离的求法—线面间的距离,这一转化一旦直接提出学生是很难接受的,在其思维活动中必然产生疑虑,促使其利用现有知识去佐证:异面直线的公垂线的找法,从而整理如下材料。
①a,b为异面直线,过直线b上一点B有且只有一条直线c与a平行;-a∥c;
②过两条相交直线b,c有且只有一个平面α-a∥α; ③过直线a上一点A有且只有一条直线d与平面α垂直于C;-d⊥α即-AC⊥α;
④直线a∩直线d=A,过b,c有且只有一个平面β,使得β⊥α于直线e;-β⊥α;
⑤a∥α,a∩β,α∩β=e,则a∥e,又由a∥c知e∥c; ⑥在平面α中,e∥c,b∩c=B则b∩e=D;
⑦在平面β中,a∥e,过D有且只有一条直线f与d平行且f⊥a于E即DE∥AC且DE=AC;
⑧DE⊥a与E,DE⊥b与D则DE即为直线a,b的公垂线段亦
第 3 页 即异面直线a,b间的距离。
结论:异面直线a,b间的距离即为直线a到平面α的距离AC。
【评述】在疑问中探索,不仅能加强思维的形成过程,而且能拓展思维的广度,深度,促进创新意识的原始萌动。3.加强学生个性品质的养成,增强创新意识
个性品质是指学生具有一定的数学视野及数学意识,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎思维的习惯,体会数学的美学意义。在课堂上要培养学生创造性的心理素质,就必须尊重学生个性,努力创造一个让学生积极主动参与的教学活动,并敢于发表自己见解的民主氛围,让不同层次的学生获得不同程度的成功。在教学中要充分发挥学生的自主性和创造性,善于适时利用课堂中的每次“意外”,引导学生,鼓励学生即兴创造,超越预设的教学目标。
二、培养学生的数学思维能力,提高探究能力,发展学生的创新意识和实践能力
数学教学中注重培养学生数学地提出问题,分析问题和解决问题的能力,发展学生的创新意识和实践能力,提高学生数学探究能力,数学建模能力和数学交流能力。努力培养学生的数学思维能力。
1.“纵横联系”形成类比,培养学生思维的连续性,拓展性,第 4 页 发展学生的创新意识
类比,是一种思维跳跃,借助于类比,可以发现新领域里的新结论。教学中有意识地对相关知识模块进行比较,找出其异同点,以此获得更新,更高的理解,所以说类比是培养学生创新思维的一种重要方法。
例如,同一平面中线线位置关系→空间平面与平面;平面向量→空间向量。
2.“往前多走一步”,通过归纳,培养学生思维的全面性,深刻性,培养学生创新思维
归纳是由特殊到一般的认知过程;是通过对特例或事物的一部分进行观察与综合,进而发现和提出一般性结论或规律的过程;归纳能使我们迅速地发现事物的特征、属性和规律,是我们作出科学猜想的基础和依据,是发现数学问题的重要手段之一。因此,借助归纳是培养学生发现能力和创新思维的一条基本途径。
例如,求数列的通项的8种模式。
3.“多反思”,通过变式培养学生的发散思维,形成探索意识
教学中要求学生思考问题时要注重多思路,多方法,换角度;解决问题时要注重多路径,多方式。对同一个问题,从不同的方向、不同的角度、不同的层次横向拓展,纵向深入,去探索、转化、变换、迁移、分析,激发学生潜能,提高学生
第 5 页 素质。
例如,全集I={1,2,3,4,5},{1,3}?A?I,则符合条件的集合A有()个。
变式1{1,3}?A?I,则符合条件的集合A有()个。变式2{1,3}?A?I,则符合条件的集合A有()个。变式3{1,3}?A?I,则符合条件的集合A有()个。
【评述】变式训练不仅能增强例题的使用价值,强化了固有思维模式极其形成过程,而且培养了学生的发散思维,挖掘了学生的创新潜力,形成探究意识。
综上所述,我们应以培养学生创新思维为核心目标,充分给予学生自主学习的机会,鼓励学生敢于探索,勇于创新,科学运用数学思想、观点和方法解决问题,为一代创新人才的培养打下坚实的基础。
第 6 页