公务员考试翻译推理练习题(二)

时间:2019-05-15 06:26:26下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《公务员考试翻译推理练习题(二)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《公务员考试翻译推理练习题(二)》。

第一篇:公务员考试翻译推理练习题(二)

9(单选题)判断推理/逻辑判断

增加还是减少全社会和每个人的利益总量,是评价一切行为是否道德的终极标准。这就是说,评价行为是否应该、是否道德,不能看它对行为者的道德、品德、道义的效应如何,而只能看它对全社会和每个人的利益的效用如何:凡是增进全社会和每个人利益总量的行为,不论他的品德境界如何不理想,不完善,也都是应该的,道德的;凡是减少全社会和每个人利益总量的行为,不论他的品德境界多么理想、完善,也都是不应该,不道德的。

下列各项是上述论断的前提假设的是()。

A 不同社会有不同的道德标准

B 道德标准对人心向善并不一定有鼓励作用

C 个人的品德境界,对全社会和每个人的利益总量是有影响的

D 行为是否道德,并非只是一种模糊的概念,而是可以通过具体的标准来考察的

解析

正确答案:C, 你的答案: 本题为支持论证型题目。结论为:增加还是减少全社会和每个人的利益总量,是评价一切行为是否道德的终极标准。要找到这个观点的假设前提。如果C项为假,即个人的品德境界对全社会和每个人的利益总量没有影响,那么结论肯定就不成立,所以C项是必要的前提条件。其他三项都不是必要的假设。正确答案为C。(单选题)判断推理/逻辑判断

依次取n个(n>1)自然数组成一有穷数列,其中的奇数数列和偶数数列显然都比该自然数数列短。但是,假如让该自然数数列无限延长,则其中的奇数数列和偶数数列必定不小于整体;在无穷的世界里,部分可能等于整体。

下面哪一项不可能是上面结论的逻辑推论?()

A 在有穷的世界里,部分可能小于整体 B 在无穷的世界里,部分必然不等于整体

C 在无穷的世界里,整体可能大于部分

D 在有穷的世界里,整体必定大于部分

解析

正确答案:B, 你的答案: 可能命题并不能推导出必然不命题。因此,正确答案为B。(单选题)判断推理/逻辑判断 记者采访时的提问要具体、简洁明了,切忌空泛、笼统、不着边际。约翰·布雷迪在《采访技巧》中剖析了记者采访时向访问对象提出诸如“您感觉如何?”等问题的弊端,认为这些提问“实际上在信息获取上等于原地踏步,它使采访对象没法回答,除非用含混不清或枯燥无味的话来应付。” 由此可以推出()。

A 记者采访时的提问如果具体、简洁明了,就不会给采访对象带来回答的困难 B 采访对象如果没法回答提问,说明他没有用含混不清或枯燥无味的话来应付 C 诸如“您感觉如何?”这样的问题,只能使采访对象抓不住问题的要点而作泛泛的或言不由衷的回答

D 采访对象只有用含混不清或枯燥无味的话来应付,才能回答那些空泛、笼统的提问

解析

正确答案:D, 你的答案: A项,由题干可知,记者提问不具体、不简洁明了→采访对象无法回答,选项中“提问具体、简洁明了”是对前件的否定,否前不能推出确定性结论,即采访对象能否回答不得而知,故A项无法推出。B项,由题干可知,采访对象回答类似“您感觉如何”等问题→用含混不清或枯燥无味的话来应付,B项的“没法回答”并未具体说明是针对哪种问题,故B项无法推出。C项,“含混不清或枯燥无味”不等同于“泛泛的或言不由衷”,故C项无法推出。D项的翻译与题干相同,可以推出。本题选D。(单选题)判断推理/逻辑判断

如果不是有人发明了火车,如果不是有人把铁轨铺进这座深山,谁也不会发现“平儿沟”这个小村庄。若如此,它和生活在那里的乡亲们,会始终被掩藏在大山深处。

如果以上为真,则以下哪项为真?()

A 有了火车就一定能够将铁轨铺进大山

B 没有火车,就不可能发现“平儿沟”

C 没有火车和铁轨,“平儿沟”的乡亲们会生活得很艰难

D 其他没有被发现的村庄之所以未被发现是因为铁路没有修到那里

解析

正确答案:B, 你的答案: 题干的观点是火车的发明和铁轨铺进深山都是“平儿沟”被发现的必要条件。B项否定必要条件之一,必然可以推出“平儿沟”不会被发现。A项,不能推出“火车”与“铁轨铺进大山”的关系;C项,题干中没有谈到乡亲们生活是否艰难;D项,由某个例推出的普遍性结论是或然性的,其他没有被发现的村庄可能不是因为铁路的原因。(单选题)判断推理/逻辑判断

某机构对本市上班族进行了一项问卷调查,统计显示:80%的人喜欢加班,而只有10%的人认为加班剥夺了休闲时间。对于这些“上班族”的问卷统计,某些专家断定:要么上班族们没有说真话,要么他们关于休闲的理念已经改变了。上述结论的假设前提是()。

A 与加班相比,上班族更喜欢休闲,加班无疑会减少他们休闲的时间 B 生活压力使上班族整日埋头工作,逐渐习惯了没有休闲时间的生活 C 加班能使上班族获得物质方面的奖励,这远远大于休闲带来的精神享受 D 工作能让上班族感到生活充实,所以他们更倾向于加班

解析

正确答案:A, 你的答案: 题干专家的结论是:要么上班族们没有说真话,要么他们关于休闲的理念已经改变了。这句话隐含的前提是加班和休闲是冲突的,上班族更喜欢休闲。故选A。从B、C、D项看不出上班族更喜欢休闲,所以不能作为前提假设。(单选题)判断推理/逻辑判断 在本届运动会上,所有参加自由泳比赛的运动员都参加了蛙泳比赛。再加入以下哪项陈述,可以推出“有些参加蝶泳比赛的运动员没有参加自由泳比赛”?()

A 所有参加蝶泳比赛的运动员也参加了蛙泳比赛 B 有些参加蛙泳比赛的运动员参加了蝶泳比赛 C 有些没有参加蛙泳比赛的运动员参加了蝶泳比赛

D 有些没有参加蝶泳比赛的运动员也没有参加蛙泳比赛

解析

正确答案:C, 你的答案: 所有参加自由泳比赛的运动员都参加了蛙泳比赛,而有些没有参加蛙泳比赛的运动员参加了蝶泳比赛,由这两个命题可以推出,有些没有参加自由泳比赛的运动员参与了蝶泳比赛。即题干所求,故选C。play_circle_outline视频解析(单选题)判断推理/逻辑判断 所有操作、携带方便的移动电话显示屏尺寸不可能大于3.5英寸,而所有注重阅读效果的移动电话显示屏尺寸都要大于3.5英寸。S品牌的移动电话的显示屏有4英寸。基于以上事实,以下判断一定正确的是()。

A S品牌的移动电话不注重阅读效果

B S品牌的移动电话既不便于操作和携带,也不注重阅读效果

C S品牌的移动电话不便于操作和携带

D S品牌的移动电话便于操作和携带

解析

正确答案:C, 你的答案: 根据题干可有如下推理:(1)操作携带方便的移动电话→显示屏尺寸不可能大于3.5英寸;(2)注重阅读效果的移动电话→显示屏尺寸大于3.5英寸。已知S品牌的移动电话的显示屏为4英寸,即大于3.5英寸,因此可以推出S品牌的移动电话不方便操作携带。故C项正确。play_circle_outline视频解析(单选题)判断推理/逻辑判断

吸烟有害健康是众所周知的说法,如何在烟盒上做出恰当的警示,从而有效降低人们尤其是青少年的吸烟欲望,却很不容易。加拿大规定,每一条香烟都必须从政府规定的16种警示语中选择至少6种,并且要经常更换;最好不用大字标题,不得出现“禁止向未成年人销售”的字句。

这种做法是以下列哪项为前提假设的?()

Ⅰ.用语气生硬的大字标题容易引起青少年的逆反心理

Ⅱ.“禁止向未成年人销售”的字句会被青少年认为“香烟是成年人的专用品”而更加起劲地尝试

Ⅲ.过分强调吸烟有害健康会引起烟草企业的反对

Ⅳ.警示语经常更换以免被当成老生常谈或出现过期消息

A Ⅰ、Ⅱ、Ⅲ和Ⅳ

B Ⅰ、Ⅱ和Ⅲ

C Ⅰ、Ⅱ和Ⅳ

D Ⅰ和Ⅱ

解析

正确答案:C, 你的答案: 题干的论点是降低青少年的吸烟欲望,Ⅰ、Ⅱ、Ⅳ三项均对加拿大为什么规定在烟盒上采用这样的戒烟警示措施进行了解释,均属于假设前提。Ⅲ项中的论述与题干论点——“降低青少年的吸烟欲望”无关。故本题正确答案为C。play_circle_outline视频解析(单选题)判断推理/逻辑判断

食用碘盐可以预防甲状腺肿大,但过量可能会对人体产生危害。对此,有专家指出,只要食用量不超过专业部门规定的标准,它的危害就完全可以避免。因此,人们对于食用碘盐的担心是毫无必要的。

要使上述结论成立,所需要的前提是()。

A 很少有人大量食用碘盐

B 目前数据显示,碘盐只对极少数的使用者产生了副作用

C 碘盐的副作用对人体的伤害并不大

D 所有人都严格按照专业部门的规定标准食用碘盐

解析

正确答案:D, 你的答案: 题干结论是“人们对于食用碘盐的担心是毫无必要的”,因为“只要食用量不超过专业部门规定的标准,它的危害就完全可以避免”,要使结论成立,须“所有的人都严格按照专业部门的规定标准食用碘盐”,本题选D。

第二篇:2018年公务员判断推理练习题四

更多学习资料请登录网址www.xiexiebang.com

2018年公务员判断推理练习题四

逻辑判断。每道题给出一段陈述,这段陈述被假设是正确的,不容置疑的,要求你根据这段陈述,选择一个答案。注意:正确的答案应与所给的陈述相符合,不需要任何附加说明即可以从陈述中直接推出。

请开始答题:

1.已有研究表明,大脑的功能区并不是一成不变的。研究人员利用功能性磁共振成像技术在先天盲人执行语句理解任务时对其大脑视觉区进行扫描。如果大脑视觉皮层区拥有语言处理能力,那么在接触语言信息时,将会表现出与经典大脑语言区的相同敏感性。结果发现,大脑视觉区对句子结构和词义表现敏感。研究人员认为,先天盲人的视觉皮层可以处理语言。

以下哪项如果为真,最能解释上述现象?

A.研究显示,先天盲人在执行阅读盲文的任务时,左侧视觉皮层有活跃现象

B.语言中枢发挥正常功能的条件下,先天盲人的视觉皮层由于没有获得视觉功能,会形成其他功能

C.如果在人的生命早期实施手术,比如将其神经与大脑视觉皮层连接,视觉皮层将处理声音信息

D.人类大脑视觉皮层的不同部位在发育过程中获得了不同的功能,左视觉区的一部分获得了语言处理功能

2.在20世纪30年代,人们已经发现了一种有绿色和褐色纤维的棉花,但是,直到最近培育出一种可以机纺的长纤维品种后,它们才具有了商业上的价值,由于这种棉花不需要染色,加工企业就省去了染色的开销,并且避免了由染色工艺流程带来的环境污染。

从题干可推出以下哪项结论?

Ⅰ.只能手纺的绿色或褐色棉花不具有商业价值。

Ⅱ.短纤维的绿色或褐色棉花只能手纺。

Ⅲ.在棉花加工中如果省去了染色工艺流程就可以避免造成环境污染。

A.Ⅰ和Ⅱ B.Ⅰ和Ⅲ C.Ⅱ和Ⅲ D.只有Ⅰ

3.田径场上正在进行100米决赛,参加决赛的是A、B、C、D、E、F六个人。赛前,小李、小张、小王对谁会取得冠军谈了自己的看法:小张认为,冠军不是A就是B;小王坚信,冠军决不是C;小李则认为,D、F都不可能取得冠军。比赛结束后,人们发现三个人中只有一个人的看法是正确的。由此推断,谁是100米决赛的冠军?

更多学习资料请登录网址www.xiexiebang.com

A.A B.B C.C D.E

4.何老师、李老师、詹老师都买了新手机,手机的牌子分别是诺基亚、摩托罗拉、三星。他们让小王猜他们各买的是什么牌子的手机。小王猜道:“何老师买的是诺基亚手机,詹老师买的不是三星手机,李老师买的不是诺基亚手机。”事实上,小王的上述猜测,只对了一个。由上述断定可推出以下哪项结论?

A.何老师买的是摩托罗拉,李老师买的是诺基亚,詹老师买的是三星

B.何老师买的是诺基亚,李老师买的是三星,詹老师买的是摩托罗拉

C.何老师买的是诺基亚,李老师买的是摩托罗拉,詹老师买的是三星

D.何老师买的是三星,李老师买的是诺基亚,詹老师买的是摩托罗拉

5.传统观点认为鸡蛋黄胆固醇含量高,是直接造成高血压、动脉粥样硬化、冠心病及脑中风的罪魁祸首。所以,很多中老年人不敢吃鸡蛋黄。最近,营养学家组织了一个专门研究鸡蛋黄与胆固醇之间关系的小组,对116名50至65岁的男性进行了为期半年的实验。

假定有以下几种实验结果,哪种将最能削弱传统观点?

A.将被试者分为两组,分别食用蛋黄和蛋清,结果发现食用蛋清的一组被试者体内胆固醇含量明显增加

B.将被试者分为两组,分别食用蛋黄和蛋清,结果发现两组被试者体内胆固醇含量没有明显差异

C.将被试者分为两组,一组食用蛋黄,一组不食用蛋黄,半年后发现没有食用蛋黄的被试者体内胆固醇含量有所减少

D.将被试者分为两组,一组食用蛋黄,一组不食用蛋黄,半年后被试者体内的胆固醇含量均没有发生变化

参考答案及解析

1.【答案】B。解析:题干要解释的现象是:先天盲人的视觉皮层可以处理语言。B项说明先天盲人的视觉皮层由于没有获得视觉功能,而形成了其他功能,很好地解释了这一现象。A、C两项均不能解释这一现象;D项“左视觉区”题干未涉及,且不能体现题干“大脑的功能区并不是一成不变的”这一说法,不是最合理的解释。故答案选B。

2.【答案】D。解析:由题干“直到最近培育出一种可以机纺的长纤维品种后,它们才具有商业价值”,这是一个必要条件假言命题,否定前件可以否定后件,因此Ⅰ可以推出;题干未提及短纤维的棉花,Ⅱ不能推出;由题干最后一句可知“省去染色工艺可以避免该流程带来的环境污染”,不能推出“可以避免造成环境污染”,Ⅲ说法错误。故答案选D。

更多学习资料请登录网址www.xiexiebang.com

3.【答案】C。解析:采用代入法,假设A项或B项正确,则三人的话都为真,均不符合题意;假设C项正确,则小张和小王的话为假,小李的话为真,符合题意;假设D项正确,则小王和小李的话均为真,故答案选C。

4.【答案】D。解析:可以使用假设排除法选择答案。假设“何老师买的是诺基亚手机”为真,根据题中提到“小王的上述猜测,只对了一个”的限定,则“詹老师买的不是三星手机,李老师买的不是诺基亚手机”都是错误的猜测。那么选项BC中“李老师买的是三星或者摩托罗拉手机”就说明小王的猜测“李老师买的不是诺基亚手机”是正确的。这样就与“小王的上述猜测,只对了一个”的限定相矛盾。因此李老师只能买诺基亚手机,这样就与“何老师买的是诺基亚手机”相矛盾。这样就可以判断出“何老师买的是诺基亚手机”不是真的。假设“詹老师买的不是三星手机”的猜测为真,那么詹老师买的应该是诺基亚或者摩托罗拉。同时根据题中“小王的上述猜测,只对了一个”的限定原则,“李老师买的不是诺基亚手机”应为假。由此推断出:李老师只能买诺基亚手机,詹老师买摩托罗拉手机,何老师买的是三星手机。

5.【答案】D。解析:题干的观点是:食用鸡蛋黄胆固醇含量高。要削弱该结论,只要能够通过实验说明食用鸡蛋黄不会使胆固醇含量变高即可。

要对食用鸡蛋黄后的胆固醇含量进行比较,需要设置一个对照组,即一组食用蛋黄,一组不食用蛋黄,而实验结果是胆固醇含量没有变化,说明食用鸡蛋黄不会使胆固醇含量变高,因此D项最能质疑题干观点。A、B两项都涉及了蛋清,不能削弱题干观点;C项的结果也不能削弱题干观点。故答案选D。

第三篇:2014年江苏公务员数字推理练习题

江苏中公教育:http://js.offcn.com/ 2014年江苏公务员数字推理练习题(3)

【1】48,65,80,103,120,149,168,()A.202 B.203 C.221 D.233 【2】2,14,84,420,1680,()A.2400 B.3360 C.4210 D.5040 【3】14, 4, 3,-2,()A.-3 B.4 C.-4 D.-8 【4】8/3,4/5,4/31,()A.2/47 B.3/47 C.1/49 D.1/47 【5】0,4,18,48,100,()A.140 B.160 C.180 D.200

参考答案及解析:

1.B【解析】将数列每两个数字分为一组,得48,65;80,103;120,149;168,()。它们的差分别为:17,23,29,这是一个等差数列,因此答案应该为168+29+6=203,故应选B。

2.D【解析】2×7=14,14×6;84,84×5=420,420×4=1680,故()=1680×3=5040,正确答案为D。

3.C【解析】-2除以3用余数表示的话,可以这样表示商为-1且余数为1,同理,-4除以3用余数表示为商为-2且余数为2。因此14,4,3,-2,(-4),每一项都除以3,余数为2、1、0、1、2 =>选C。根据余数的定义,余数一定是大于0的,但商可以小于0,因此,-2除以3的余数不能为-2,这与2除以3的余数是2是不一样的,同时,根据余数小于除数的原理,-2除以3的余数只能为1。

4.D【解析】8/3,4/5,4/31,(1/47)=>8/

3、40/50、4/

31、1/47=>分子分母的差=>-5、10、27、46二级等差

5.C【解析】 思路一:二级等差。

思路二:0=1的2次方×0;4=2的2次方×1…180=6的2次方×5。

思路三:0=12×0;4=22×1;18=32×2;48=42×3;100=52×4;所以最后一个数为62×5=180

江苏中公微博:江苏中公教育

http://weibo.com/jszgy

微信:jsoffcn

第四篇:公务员考试练习题

1.新中国成立后,我国在一些前沿技术领域取得了一批具有较大国际影响力的创新成果。下列全部属于近30年来取得的重大突破的一项是:

A.哥德巴赫猜想、载人航天、古生物考古、南水北调

B.月球探测、核电工程、反西格玛负超子、陆相成油理论

C.超大规模集成电路、第三代移动通信、高新能计算机、超级杂交水稻

D.激光照排技术、量子通讯、古生物考古、人工合成牛胰岛素结晶

2.关于我国的军衔制度,下列说法正确的是:

A.士兵军衔肩章版面底色有棕绿色、天蓝色、黑色三种。

B.一般分为帅、将、校、尉、士五个等级。

C.刘伯承、陈毅、粟裕等人曾被授予元帅军衔

D.中国人民解放军第一次实行军衔制是在1949年

3.关于中国的交通建设,下列说法不正确的是:

A.目前国道线采用数字编号,分别以1、2、3、4开头

B.我国自建的第一条铁路——京张铁路由詹天佑主持设计修建

C.20世纪50年代,新中国第一架自制飞机在南昌试飞成功

D.宋元时期的泉州港是当时世界上最大的贸易港之一

4.汇率变动会对一国对外经济活动产生影响,假如某国货币升值,则下列表述不正确的是:

A.不利于出口贸易B.有利于公民出境旅游

C.会导致热钱流入D.有利于消除贸易逆差

5.下列关于我国经济发展现状的表述,不正确的是:

A.人均国民生产总值已超过3000美元

B.黄金储备量已超过1000吨

C.对石油进口的依存度已接近30%

D.第三产业增加值已接近第二产业

答案解析:

1.C.[解析] 本题考查科技史。A选项:哥德巴赫猜想的最佳结果是中国数学家陈景润于1966年证明的;B选项:1959年,中国科学院原子能研究所王淦昌领导的实验组,在苏联用丙烷气泡室发现了一种新基本粒子“反西格马负超子”。D选项:1965年9月17日,中国科学院上海生物化学研究所等单位密切合作,人工合成结晶牛胰岛素,这是世界上第一次人工合成一种具有生物活力的结晶蛋白质。所以选择C选项。

2.A.[解析] 本题考查军事常识。B选项:我国现在没有帅这一军衔,国防部长也仅是上将;C选项:粟裕是十大将之首;D选项:第一次实行军衔制是1955年;A选项:士兵军衔肩章的底色中,棕绿色代表陆军,天蓝色代表空军,黑色代表海军。所以选择A选项。

3.A.[解析] 本题考查时事常识。国道的编号根据国道的地理走向分为三类:一类是以北京为中心的放射线国道,其编号为1××,另一类是南北走向国道(纵线国道)。其编号为2××,第三类是东西走向的国道(横线国道),编号为3××。A选项错误,所以选择A选项。

4.D.[解析] 本题考查经济常识。货币升值指某国货币相对于其他国家来说价值增加或上升,这会提高本国产品在世界市场的价格,不利于出口贸易,从而不利于消除贸易逆差。所以选择D选项。

5.C.[解析] 本题考查时事常识。2009年我国的原油进口量首次超过日本,居全球第二,我国原油对外依存度也首度超过50%。所以选择C选项。

第五篇:公务员行测-数列-数字推理-练习题

1,6,20,56,144,()A.256

B.312

C.352

D.384 3, 2, 11, 14,()

A.18

B.21

C.24

D.27

1,2,6,15,40,104,()

A.329

B.273

C.225

D.185 2,3,7,16,65,321,()

A.4546

B.4548

C.4542

D.4544 1/2

6/11

17/29

23/38

()A.117/191

B.122/199

C.28/45 D.31/47

答案 1.C 6=1x2+4 20=6x2+8 56=20x2+16 144=56x2+32 144x2+64=288+64=352

2.D 分奇偶项来看:奇数项平方+2 ;偶数项平方-2 = 1^2 +2 = 2^2-2

11= 3^2 +2

14= 4^2-2(27)=5^2 +2

34= 6^2-2

3.B 273

几个数之间的差为: 1 4 9 25 64

为别为:

1的平方

2的平方 3的平方 5的平方 8的平方 1+2=3 2+3=5 3+5=8 5+8=13

即后面一个为13的平方(169)

题目中最后一个数为:104+169=273 3.A 4546 设它的通项公式为a(n)规律为a(n+1)-a(n)=a(n-1)^2

4.D 原式变为:1/

1、2/

4、6/

11、17/

29、46/76,可以看到,第二项的分子为前一项分式的分子+分母,分母为前一项的分母+自身的分子+1;答案为:122/1 99 2011年国家公务员考试数量关系:数字推理的思维解析

近两年国家公务员考试中,数字推理题目趋向于多题型出题,并不是将扩展题目类型作为出题的方向。因此,在题目类型上基本上不会超出常规,因此专家老师建议考生在备考时要充分做好基础工作,即五大基本题型足够熟练,计算速度与精度要不断加强。

首先,这里需要说明的是,近两年来数字推理题目出题惯性并不是以新、奇、变为主,完全是以基本题型的演化为主。特别指出的一点是,多重数列由于特征明显,解题思维简单,基本上可以说是不会单独出题,但是通过近两年的各省联考的出题来看,简单多重数列有作为基础数列加入其它类型数列的趋势,如2010年9.18中有这样一道题:

【例1】10,24,52,78,().,164

A.106 B.109 C.124 D.126

【答案】D。其解题思路为幂次修正数列,分别为

故答案选D。

基本幂次修正数列,但是修正项变为简单多重数列,国考当中这一点应该引起重视,在国考思维中应该有这样一个意识,幂次的修正并不仅仅为单纯的基础数列,应该多考虑一下以前不被重视的多重数列,并着重看一下简单多重数列,并作为基础数列来用。

下面说一下国考中的整体思维,多级数列,幂次数列与递推数列,三者在形式上极其不好区分,幂次数列要求考生对于单数字发散的敏感度要够,同时要联系到多数字的共性联系上,借助于几个题目的感觉对于理解和区别幂次数列是极为重要的。

对于多级数列与递推数列,其区分度是极小的,几乎看不出特别明显的区别,考生在国考当中遇到这类题目首先应该想到的就是做差,通过做差来看数列的整体趋势,如果做差二次,依然不成规律,就直接进行递推,同时要看以看做一次差得到的数列是否能用到递推中。

【例2】(国考 2010-41)1,6,20,56,144,()

A.384 B.352 C.312 D.256

【答案】B。在这个题目中,我们可以得到这样一个递推规律,即(6-1)×4=20,(20-6)×4=56,(56-20)×4=144,因此(144-56)×4=352。这个规律实际上就是两项做一次差之后4倍的递推关系,也就是充分利用了做差来进行递推。

【例3】(联考 2010.9.18-34)3,5,10,25,75,(),875

A.125 B.250 C.275 D.350

【答案】B。这个题目中,其递推规律为:(5-3)×5=10,(10-5)×5=25,(25-10)×5=75,(75-25)×5=250,(250-75)×5=875,故答案为B选项。

联系起来说,考生首先应当做的是进行单数字的整体发散,判断数字推理中哪几个题目为幂次或幂次修正数列,其次需要做的就是进行做差,最后进行递推,递推的同时要考虑到做一次差得到的二级数列。

这里针对许多学员遇到幂次修正数列发散不准确的问题,提出这样一个方法,首先我们知道简单的幂次及幂次修正数列可以当成多级数列来做,比如二级和三级的等差和等比数列。在2010年的国考数字推理中,我们发现这样一道数字推理题:

【例4】(2010年国家第44题)3,2,11,14,(),34

A.18 B.21 C.24 D.27

我们可以看出,这个题中,未知项在中间而且是一个修正项为+2,-2的幂次修正数列。从这里我们得到这样一个信息,国考当中出题人已经有避免幂次修正数列项数过多,从而使得考试可以通过做差的方式解决幂次修正数列的意识。未知项在中间的目的就是变相的减少已知项数,避免做差解题。

因此,在今后的行测考试中,如果出现未知项在中间的数字推理题目,应该对该题重点进行幂次数的发散,未知项在中间,本身就是幂次数列的信号,这是由出题人思维惯性而得出的一个结论。

这一思维描述起来极为简单,但是需要充分考虑到国考出题的思维惯性,对于知识点的扩充要做好工作,然后再联系起来思考,在运用的时候要做到迅速而细致,这才是国家公务员考试考察的方向与出题思路。

题海

几道最BT公务员考试数字推理题汇总 1、15,18,54,(),210 A 106 B 107 C 123 D 112 2、1988的1989次方+1989的1988的次方…… 个位数是多少呢? 3、1/2,1/3,2/3,6/3,(),54/36 A 9/12, B 18/3 ,C 18/6 ,D 18/36 4、4,3,2,0,1,-3,()A-6 , B-2 , C 1/2 ,D 0 5、16,718,9110,()A 10110,B 11112,C 11102,D 10111 6、3/2,9/4,25/8,()A 65/16, B 41/8, C 49/16, D 57/8 7、5,(),39,60,105.A.10 B.14 C.25 D.30 1、3 2 53 32()A. 7/5 B.5/6 C.3/5 D.3/4 2、17 126 163 1124()

3、-2,-1,1,5()29(2000年题)A.17 B.15 C.13D.11 4、5 9 15 17()A 21 B 24 C 32 D 34

5、81,30,15,12(){江苏真题} A10 B8 C13 D14 6、3,2,53,32,()A 75 B 5 6 C 35 D 34 7、2,3,28,65,()A 214B 83C 414D 314 8、0,1,3,8,21,(),144 9、2,15,7,40,77,()A96,B126,C138,,D156 10、4,4,6,12,(),90 11、56,79,129,202()A、331 B、269 C、304 D、333 12、2,3,6,9,17,()A 19 B 27 C 33 D 45 13、5,6,6,9,(),90 A 12, B 15, C 18, D 21 14、16 17 18 20()A21

B22

C23

D24 15、9、12、21、48、()16、172、84、40、18、()17、4、16、37、58、89、145、42、(?)、4、16、.....KEYS:

1、答案是A 能被3整除嘛

2、答:应该也是找规律的吧,1988的4次个位就是6,六的任何次数都是六,所以,1988的1999次数个位和1988的一次相等,也就是8 后面那个相同的方法个位是1 忘说一句了,6乘8个位也是8

3、C(1/3)/(1/2)=2/3 以此类推

4、c两个数列 4,2,1-〉1/2(依次除以2);3,0,-3

5、答案是11112 分成三部分:

从左往右数第一位数分别是:5、7、9、11 从左往右数第二位数都是:1 从左往右数第三位数分别是:6、8、10、12

6、思路:原数列可化为1又1/2, 2又1/4, 3又1/8。故答案为4又1/16 = 65/16

7、答案B。5=2^2+1,14=4^2-2,39=6^2+3,60=8^2-4,105=10^2+5

17、分数变形:A 数列可化为:3/1 4/2 5/3 6/4 7/5

18、依次为2^3-1,3^3-1,……,得出6^3-1

19、依次为2^3-1,3^3-1,……,得出6^3-1 20、思路:5和15差10,9和17差8,那15和(?)差6 5+10=15 9+8=17 15+6=21 21、81/3+3=30,30/3+5=15,15/3+7=12,12/3+9=13 答案为1322

22、思路:小公的讲解

2,3,5,7,11,13,17.....变成2,3,53,32,75,53,32,117,75,53,32......3,2,(这是一段,由2和3组成的),53,32(这是第二段,由2、3、5组成的)75,53,32(这是第三段,由2、3、5、7组成的),117,75,53,32()这是由2、3、5、7、11组成的)

不是,首先看题目,有2,3,5,然后看选项,最适合的是75(出现了7,有了7就有了质数列的基础),然后就找数字组成的规律,就是复合型数字,而A符合这两个规律,所以才选A 2,3,5,后面接什么?按题干的规律,只有接7才是成为一个常见的数列:质数列,如果看BCD接4和6的话,组成的分别是2,3,5,6(规律不简单)和2,3,5,4(4怎么会在5的后面?也不对)质数列就是由质数组成的从2开始递增的数列

23、无思路!暂定思路为:2*65+3*28=214,24、0+3=1*3,1+8=3*3,3+21=8*3,21+144=?*3。得出?=55。

25、这题有点变态,不讲了,看了没有好处

26、答案30。4/4=1,6/12=1/2,?/90=1/3

27、不知道思路,经过讨论:

79-56=23 129-79=50 202-129=73 因为23+50=73,所以下一项和差必定为50+73=123 ?-202=123,得出?=325,无此选项!

28、三个相加成数列,3个相加为11,18,32,7的级差 则此处级差应该是21,则相加为53,则53-17-9=27 答案,分别是27。

29、答案为C 思路: 5×6/5=6,6*6/4=9,6*9/3=18(5-3)*(6-3)=6(6-3)*(6-3)=9(6-3)*(9-3)=18 30、思路:

22、23结果未定,等待大家答复!

31、答案为129 9+3=12,12+3平方=21,21+3立方=48

32、答案为7 172/2-2=84 84/2-2=40 40/2-2=18 18/2-2=7

经典推理:

1,4,18,56,130,()A.26 B.24 C.32 D.16 2,1,3,4,8,16,()A.26 B.24 C.32 D.16 3,1,1,3,7,17,41,()A.89 B.99 C.109 D.119 4,1,3,4,8,16,()A.26 B.24 C.32 D.16 5,1,5,19,49,109,()A.170 B.180 C 190 D.200 6,4,18,56,130,()A216 B217 C218 D219

KEYS:

答案是B,各项除3的余数分别是1.0.2.1 0.对于1、0、2、1、0,每三项相加=>3、3、3 等差

我选B 3-1=2 8-4=4 24-16=8 可以看出2,4,8为等比数列 我选B 1*2+1=3 2*3+1=7 2*7+3=17 … 2*41+17=99 我选 C 1+3=4 1+3+4=8 … 1+3+4+8=32 1*1+4=5 5*3+4=19 9*5+4=49 13*7+4=95 17*9+4=157 我搜了一下,以前有人问过,说答案是A 如果选A的话,我又一个解释

每项都除以4=>取余数0、2、0、2、0 仅供参考

1.256,269,286,302,()A.254 B.307 C.294 D.316 2.72 , 36 , 24 , 18 ,()A.12 B.16 C.14.4 D.16.4 3.8 , 10 , 14 , 18 ,()A.24 B.32 C.26 D.20 4.3 , 11 , 13 , 29 , 31 ,()A.52 B.53 C.54 D.55 5.-2/5,1/5,-8/750,()A 11/375 B 9/375 C 7/375 D 8/375 6.16 , 8 , 8 , 12 , 24 , 60 ,()A.90 B.120 C.180 D.240 10.2,3,6,9,17,()A.18 B.23 C.36 D.45 11.3,2,5/3,3/2,()A.7/5 B.5/6 C.3/5 D.3/4 13.20,22,25,30,37,()A.39 B.45 C.48 D.51 16.3 ,10 ,11 ,(),127 A.44 B.52 C.66 D.78 25.1,2/3,5/9,(1/2),7/15,4/9,4/9 A.1/2 B.3/4 C.2/13

D.3/7 32.(),36,19,10,5,2 A.77 B.69 C.54 D.48 33.1,2,5,29,()A.34 B.846 C.866 D.37 36.1/3,1/6,1/2,2/3,()

41.3 , 8 , 11 , 9 , 10 ,()A.10 B.18 C.16 D.14 42.4,3,1,12,9,3,17,5,()A.12 B.13 C.14 D.15 44.19,4,18,3,16,1,17,()A.5 B.4 C.3 D.2

45.1,2,2,4,8,()A.280 B.320 C.340 D.360

46.6,14,30,62,()A.85 B.92 C.126 D.250

48.12,2,2,3,14,2,7,1,18,3,2,3,40,10,(),4

A.4 B.3 C.2 D.1

49.2,3,10,15,26,35,()A.40 B.45 C.50 D.55 50.7 ,9 ,-1 , 5 ,(-3)A.3 B.-3 C.2 D.-1 51.3,7,47,2207,()A.4414 B 6621 C.8828 D.4870847 52.4,11,30,67,()A.126 B.127 C.128 D.129

53.5 , 6 , 6/5 , 1/5 ,()A.6 B.1/6 C.1/30 D.6/25 54.22,24,27,32,39,()A.40 B.42 C.50 D.52

55.2/51,5/51,10/51,17/51 ,()

A.15/51 B.16/51 C.26/51 D.37/51

56.20/9,4/3,7/9,4/9,1/4,()A.5/36 B.1/6 C.1/9 D.1/144 57.23,46,48,96,54,108,99,()

A.200 B.199 C.198 D.197

58.1.1,2.2,4.3,7.4,11.5,()

A.155 B.156 C.158 D.166

59.0.75,0.65,0.45,()

A.0.78 B.0.88 C.0.55 D.0.96

60.1.16,8.25,27.36,64.49,()

A.65.25 B.125.64 C.125.81 D.125.01

61.2,3,2,(),6

A.4 B.5 C.7 D.8

62.25,16,(),4

A.2 B.3 C.3 D.6

63.1/2,2/5,3/10,4/17,()

A.4/24 B.4/25 C.5/26 D.7/26

65.-2,6,-18,54,()

A.-162 B.-172 C.152 D.164

68.2,12,36,80,150,()

A.250 B.252 C.253 D.254

69.0,6,78,(),15620 A.240 B.252 C.1020 D.7771 74.5 , 10 , 26 , 65 , 145 ,()A.197 B.226 C.257 D.290 75. 76.65,35,17,3,(1)77.23,89,43,2,(3)

79.3/7,5/8,5/9,8/11,7/11,()

A.11/14 B.10/13 C.15/17 D.11/12 80.1,2,4,6,9,(),18 A.11 B.12 C.13 D.14 85.1,10,3,5,()A.11 B.9 C.12 D.4 88.1,2,5,29,()

A.34 B.846 C.866 D.37 89.1 , 2 , 1 , 6 , 9 , 10 ,()A.13

B.12 C.19

D.17 90.1/2,1/6,1/12,1/30,()

A.1/42 B.1/40 C.11/42 D.1/50 91.13 , 14 , 16 , 21 ,(), 76 A.23

B.35 C.27 92.1 , 2 , 2 , 6 , 3 , 15 , 3 , 21 , 4 ,(A.46

B.20 C.12 D.44 93.3 , 2 , 3 , 7 , 18 ,()A.47 B.24 C.36 D.70 94.4,5,(),40,104 A.7 B.9 C.11 D.13 95.0,12,24,14,120,16,()A.280 B.32 C.64 D.336 96.3 , 7 , 16 , 107 ,()98.1 , 10 , 38 , 102 ,()

A.221 B.223 C.225 D.227 101.11,30,67,()

102.102 ,96 ,108 ,84 ,132,()103.1,32,81,64,25,(),1,1/8 104.-2,-8,0,64,()105.2,3,13,175,()108.16,17,36,111,448,()

A.639

B.758 C.2245 D.3465 110.5,6,6,9,(),90 A.12 B.15 C.18 D.21 111.55 , 66 , 78 , 82 ,())A.98 B.100 C.96 D.102 112.1 , 13 , 45 , 169 ,()A.443 B.889 C.365 D.701 113.2,5,20,12,-8,(),10 A.7

B.8

C.12

D.-8 114.59 , 40 , 48 ,(),37 , 18 A.29 B.32 C.44 D.43 116.1/3 , 5/9 , 2/3 , 13/21 ,()A.6/17 B.17/27 C.29/28 D.19/27 117.1 , 2 , 1 , 6 , 9 , 10 ,()A.13

B.12 C.19

D.17 118.1 , 2/3 , 5/9 ,(), 7/15 , 4/9 , 4/9 119.-7,0,1,2,9,()120.2,2,8,38,()

A.76 B.81 C.144 D.182 121.63,26,7,0,-2,-9,()122.0,1,3,8,21,()123.0.003,0.06,0.9,12,()124.1,7,8,57,()125.4,12,8,10,()126.3,4,6,12,36,()127.5,25,61,113,()129.9,1,4,3,40,()A.81 B.80 C.121 D.120 130.5,5,14,38,87,()A.167 B.168 C.169 D.170 133.1 , 5 , 19 , 49 , 109 ,()A.170 B.180 C.190 D.200 134.4/9 , 1 , 4/3 ,(), 12 , 36 135.2 , 7 , 16 , 39 , 94 ,()A.227 B.237 C.242 D.257 136.-26 ,-6 , 2 , 4 , 6 ,()A.8 B.10 C.12 D.14 137.1 , 128 , 243 , 64 ,()A.121.5 B.1/6 C.5 D.358 1/3138.5 , 14,38,87,()

A.167 B.168 C.169 D.170 139.1,2,3,7,46 ,()

A.2109 B.1289 C.322 D.147 140.0,1,3,8,22,63,()142.5 , 6 , 6 , 9 ,(), 90 A.12 B.15 C.18 D.21 145.2 , 90 , 46 , 68 , 57 ,()

A.65 B.62.5 C.63 D.62 146.20 , 26 , 35 , 50 , 71 ,()A.95 B.104 C.100 D.102 147.18 , 4 , 12 , 9 , 9 , 20 ,(), 43 A.8 B.11 C.30 D.9 148.-1 , 0 , 31 , 80 , 63 ,(), 5 149.3 , 8 , 11 , 20 , 71 ,()A.168 B.233 C.91 D.304 150.2 , 2 , 0 , 7 , 9 , 9 ,()A.13 B.12 C.18 D.17 151.8 , 8 ,(), 36 , 81 , 169 A.16

B.27 C.8 D.26 152.102 , 96 , 108 , 84 , 132 ,()154.-2 ,-8 , 0 , 64 ,()155.2 , 3 , 13 , 175 ,()156.3 , 7 , 16 , 107 ,()166.求32+62+122+242+42+82+162+322 A.2225 B.2025 C.1725 D.2125 178.18 , 4 , 12 , 9 , 9 , 20 ,(), 43 179.5 , 7 , 21 , 25 ,()

A.30 B.31 C.32

D.34 180.1 , 8 , 9 , 4 ,(), 1/6 A.3 B.2 C.1

D.1/3 181.16 , 27 , 16 ,(), 1 A.5

B.6 C.7

D.8 182.2 , 3 , 6 , 9 , 18 ,()183.1 , 3 , 4 , 6 , 11 , 19 ,()184.1,2,9,121,()

A.251 B.441 C.16900 D.960 187.5 , 6 , 6 , 9 ,(), 90 A.12 B.15 C.18 D.21 188.1 , 1 , 2 , 6 ,()

A.19 B.27 C.30 D.24 189.-2 ,-1 , 2 , 5 ,(),29 190.3,11,13,29,31,()191.5,5,14,38,87,()A.167 B.68 C.169 D.170 192.102 , 96 , 108 ,84 , 132 ,()193.0,6,24,60,120,()

194.18 , 9 , 4 , 2 ,(), 1/6 A.3

B.2

C.1 D.1/3 198.4.5,3.5,2.8,5.2,4.4,3.6,5.7,()A.2.3 B.3.3 C.4.3 D.5.3 200.0,1/4,1/4,3/16,1/8,(5/64)201.16 , 17 , 36 , 111 , 448 ,()A.2472 B.2245 C.1863 D.1679 203.133/57 , 119/51 , 91/39 , 49/21 ,(), 7/3 A.28/12 B.21/14 C.28/9 D.31/15 204.0 , 4 , 18 , 48 , 100 ,()A.140 B.160 C.180 D.200 205.1 , 1 , 3 , 7 , 17 , 41 ,()A.89 B.99 C.109 D.119 206.22 , 35 , 56 , 90 ,(), 234 A.162 B.156 C.148 D.145 207.5 , 8 ,-4 , 9 ,(), 30 , 18 , 21 208.6 , 4 , 8 , 9 , 12 , 9 ,(), 26 , 30 A.12 B.16 C.18 D.22 209.1 , 4 , 16 , 57 ,()A.165 B.76 C.92 D.187

210.-7,0,1,2,9 ,()A.12 B.18 C.24 D.28 211.-3,-2,5,24,61 ,(122)A.125 B.124 C.123 D.122 212.20/9,4/3,7/9,4/9,1/4,(5/36)A.5/36 B.1/6 C.1/9 D.1/144 216.23,89,43,2,()A.3 B.239 C.259 D.269 217.1 , 2/3 , 5/9 ,(), 7/15 , 4/9 A.1/2 B.3/4 C.2/13 D.3/7 220.6 , 4 , 8 , 9 ,12 , 9 ,(), 26 , 30 223.4 , 2 , 2 , 3 , 6 , 15 ,(?)A.16 B.30 C.45 D.50 261.7 , 9 , 40 , 74 , 1526 ,()262.2 , 7 , 28 , 63 ,(), 215 263.3 , 4 , 7 , 16 ,(), 124 264.10,9,17,50,()

A.69 B.110 C.154 D.199 265.1 , 23 , 59 ,(), 715 A.12 B.34 C.214 D.37 266.-7,0,1,2,9,()A.12 B.18 C.24 D.28 267.1 , 2 , 8 , 28 ,()A.72 B.100 C.64 D.56 268.3 , 11 , 13 , 29 , 31()A.52 B.53 C.54 D.55 269.14 , 4 , 3 ,-2 ,(-4)A.-3 B.4 C.-4 D.-8 解析: 2除以3用余数表示的话,可以这样表示商为-1且余数为1,同理,-4除以3用余数表示为商为-2且余数为2,因此14,4,3,-2,(-4),每一项都除以3,余数为2、1、0、1、2 =>选C ps:余数一定是大于0的,但商可以小于0,因此,-2除以3的余数不能为-2,这与2除以3的余数是2是不一样的,同时,根据余数小于除数的原理,-2除以3的余数只能为1 270.-1,0,1,2,9,(730)271.2,8,24,64,(160)

272.4 , 2 , 2 , 3 , 6 , 15,(45)A.16 B.30 C.45 D.50 273.7,9,40,74,1526,(5436)274.0,1,3,8,21,(55)280.8 , 12 , 24 , 60 ,()289.5,41,149,329,(581)290.1,1,2,3,8,(13)291.2,33,45,58,(612)297.2 , 2 , 0 , 7 , 9 , 9 ,()A.13 B.12 C.18 D.17 299.3 , 2 , 5/3 , 3/2 ,()A.7/5 B.5/6 C.3/5 D.3/4

【例 1】-81、-

36、-9、0、9、36、()【广州2005-3】 A.49 B.64 C.81 D.100 【例 2】582、554、526、498、470、()A.442 B.452 C.432 D.462 【例 3】8、12、18、27、()【江苏2004A类真题】 A.39 B.37 C.40.5 D.42.5 【例 5】5、5、()、25、25 5 【云南2003真题】【山东2006-3】 A.5 5 B.5 5 C.15 5 D.15 5 【例 6】

18、-27、36、()、54 【河北2003真题】 A.44 B.45 C.-45 D.-44 【例 7】2、3、5、7、11、13、()【云南2003 真题】 A.15 B.17 C.18 D.19 【例 8】11、13、17、19、23、()【云南2005真题】 A.27 B.29 C.31 D.33

二级数列

【例 1】12、13、15、18、22、()【国2001-41】 A.25 B.27 C.30 D.34 【例 2】32、27、23、20、18、()【国2002B-3】 A.14 B.15 C.16 D.17 【例 3】-2、1、7、16、()、43【国2002B-5】 A.25 B.28 C.31 D.35 【例 4】2、3、5、9、17、()【国1999-28】 A.29 B.31 C.33 D.37 【例 5】-

2、-1、1、5、()、29【国2000-24】 A.17 B.15 C.13 D.11 【例 6】102、96、108、84、132、()【国2006一类-31】【国2006二类-26】A.36 B.64 C.70 D.72 【例 7】20、22、25、30、37、()【国2002A-2】

A.39 B.45 C.48 D.51 【例 8】1、4、8、13、16、20、()【国2003A-1】 A.20 B.25 C.27 D.28 【例 9】1、2、6、15、31()【国2003B-4】 A.53 B.56 C.62 D.87 【例 10】1、2、2、3、4、6、()【国2005二类-30】 A.7 B.8 C.9 D.10 【例 11】22、35、56、90、()、234【国2000-22】 A.162 B.156 C.148 D.145 【例 12】17、18、22、31、47、()【云南2003真题】 A.54 B.63 C.72 D.81 【例 13】3、5、8、13、20、()【广州2007-27】 A.31 B.33 C.37 D.44 【例 14】37、40、45、53、66、87、()【广州2007-28】 A.117 B.121 C.128 D.133 【例 15】67、54、46、35、29、()【国2008-44】 A.13 B.15 C.18 D.20

三级数列

【例 1】1、10、31、70、133、()【国2005 一类-33】 A.136 B.186 C.226 D.256 【例 2】0、4、18、48、100、()【国2005二类-33】 A.140 B.160 C.180 D.200 【例 3】0、4、16、40、80、()【国2007-44】 A.160 B.128 C.136 D.140 【例 4】()、36、19、10、5、2【国2003A-4】 A.77 B.69 C.54 D.48 【例 5】0、1、3、8、22、63、()【国2005 一类-35】 A.163 B.174 C.185 D.196 【例 6】-8、15、39、65、94、128、170、()【广东2006 上-2】 A.180 B.210 C.225 D.256 【例 7】-

26、-6、2、4、6、()【广州2005-5】 A.11 B.12 C.13 D.14

多级数列绝大部分题目集中在相邻两项两两做差的“做差多级数列”当中,除此之外还有相当一部分相邻两项两两做商的“做商多级数列” 【例 1】1、1、2、6、24、()【国2003B-2】 A.48 B.96 C.120 D.144 【例 2】2、4、12、48、()【国2005一类-26】 A.96 B.120 C.240 D.480 【例 3】3、3、6、18、()【广州2005-1】 A.24 B.72 C.36 D.48 【例 4】1、2、6、24、()【广州2005-4】 A.56 B.120 C.96 D.72

分组数列

【例 1】3、15、7、12、11、9、15、()【国2001-44】 A.6 B.8 C.18 D.19 【例 2】1、3、3、5、7、9、13、15、()、()【国2005 一类-28】 A.19、21 B.19、23 C.21、23 D.27、30 【例 3】1、4、3、5、2、6、4、7、()【国2005二类-35】 A.1 B.2 C.3 D.4 【例 4】1、1、8、16、7、21、4、16、2、()【国2005二类-32】 A.10 B.20 C.30 D.40 【例 5】400、360、200、170、100、80、50、()【江苏2006C-1】 A.10 B.20 C.30 D.40 【例 6】1、2、3、7、8、17、15、()A.31 B.10 C.9 D.25 【例 7】0、3、1、6、2、12、()、()、2、48【江苏2005真题】 A.3、24 B.3、36 C.2、24 D.2、36 【例 8】9、4、7、-4、5、4、3、-4、1、4、()、()【广州2005-2】 A.0,4 B.1,4 C.-1,-4 D.-1,4 【例 9】12、12、18、36、90、()【广州2007-30】 A.186 B.252 C.270 D.289

幂次修正数列

【例 1】2、3、10、15、26、()【国2005一类-32】 A.29 B.32 C.35 D.37 【例 2】0、5、8、17、()、37【浙江2004-6】 A.31 B.27 C.24 D.22 【例 3】5、10、26、65、145、()【浙江2005-5】 A.197 B.226 C.257 D.290 【例4】-

3、-

2、5、()、61、122【云南2005 真题】 A.20 B.24 C.27 D.31 【例 5】0、9、26、65、124、()【国2007-43】 A.165 B.193 C.217 D.239 【例 6】2、7、28、63、()、215【浙江2002-2】 A.116 B.126 C.138 D.142 【例 7】0、-

1、()、7、28【浙江2003-2】 A.2 B.3 C.4 D.5 【例 8】4、11、30、67、()【江苏2006A-2】 A.121 B.128 C.130 D.135 【例 9】-1、10、25、66、123、()A.214 B.218 C.238 D.240 【例 10】-3、0、23、252、()【广东2005下-2】 A.256 B.484 C.3125 D.3121 【例 11】14、20、54、76、()【国2008-45】 A.104 B.116 C.126 D.144

【例 1】1、3、4、7、11、()【国2002A-04】【云南2004 真题】 A.14 B.16 C.18 D.20 【例 2】0、1、1、2、4、7、13、()【国2005一类-30】 A.22 B.23 C.24 D.25 【例 3】18、12、6、()、0、6【国1999-29】 A.6 B.4 C.2 D.1 【例 4】25、15、10、5、5、()【国2002B-4】 A.10 B.5 C.0 D.-5 【例 5】1、3、3、9、()、243【国2003B-3】 A.12 B.27 C.124 D.169

【例 6】1、2、2、3、4、6、()【国2005二类-30】 A.7 B.8 C.9 D.10 【例 7】3、7、16、107、()【国2006一类-35】【国2006二类-30】 A.1707 B.1704 C.1086 D.1072 【例 9】144、18、9、3、4、()A.0.75 B.1.25 C.1.75 D.2.25 【例 10】172、84、40、18、()【云南2005 真题】 A.5 B.7 C.16 D.22 【例 11】1、1、3、7、17、41、()【国2005二类-28】 A.89 B.99 C.109 D.119 【例 12】118、60、32、20、()【北京应届2007-2】 A.10 B.16 C.18 D.20 【例 13】323,107,35,11,3,?【北京社招2007-5】 A.-5 B.13,C1 D2 【例 14】1、2、3、7、46、()【国2005一类-34】 A.2109 B.1289 C.322 D.147 【例 15】2、3、13、175、()【国2006 一类-34】【国2006 二类-29】 A.30625 B.30651 C.30759 D.30952 【例 16】6、15、35、77、()【江苏2004A类真题】 A.106 B.117 C.136 D.163 【例 17】1、2、5、26、()【广东2002-93】 A.31 B.51 C.81 D.677 【例 18】2、5、11、56、()【江苏2004A类真题】 A.126 B.617 C.112 D.92 【例 19】157、65、27、11、5、()【国2008-41】

A.4 B.3 C.2 D.1

数字推理题725道详解

【1】7,9,-1,5,()

A、4;B、2;C、-1;D、-3 分析:选D,7+9=16; 9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比

【2】3,2,5/3,3/2,()A、1/4;B、7/5;C、3/4;D、2/5 分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5

【3】1,2,5,29,()

A、34;B、841;C、866;D、37 分析:选C,5=12+22;29=52+22;()=292+52=866

【4】2,12,30,()

A、50;B、65;C、75;D、56;

分析:选D,1×2=2; 3×4=12; 5×6=30; 7×8=()=56

【5】2,1,2/3,1/2,()

A、3/4;B、1/4;C、2/5;D、5/6;

分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】 4,2,2,3,6,()

A、6;B、8;C、10;D、15;

分析:选D,2/4=0.5;2/2=1;3/2=1.5; 6/3=2; 0.5,1,1.5, 2等比,所以后项为2.5×6=15

【7】1,7,8,57,()

A、123;B、122;C、121;D、120;

分析:选C,12+7=8; 72+8=57; 82+57=121;

【8】 4,12,8,10,()A、6;B、8;C、9;D、24;

分析:选C,(4+12)/2=8;(12+8)/2=10;(8+10)/2=9

【9】1/2,1,1,(),9/11,11/13 A、2;B、3;C、1;D、7/9;

分析:选C,化成 1/2,3/3,5/5(),9/11,11/13这下就看出来了只能 是(7/7)注意分母是质数列,分子是奇数列。

【10】95,88,71,61,50,()

A、40;B、39;C、38;D、37;

分析:选A,思路一:它们的十位是一个递减数字 9、8、7、6、5 只是少开始的4 所以选择A。思路二:955 = 81;888 = 72;711 = 63;611 = 54;500 = 45;400 = 36,构成等差数列。

【11】2,6,13,39,15,45,23,()A.46;B.66;C.68;D.69;

分析:选D,数字2个一组,后一个数是前一个数的3倍

【12】1,3,3,5,7,9,13,15(),()

A:19,21;B:19,23;C:21,23;D:27,30;

分析:选C,1,3,3,5,7,9,13,15(21),(30)=>奇偶项分两组1、3、7、13、21和3、5、9、15、23其中奇数项1、3、7、13、21=>作差2、4、6、8等差数列,偶数项3、5、9、15、23=>作差2、4、6、8等差数列

【13】1,2,8,28,()A.72;B.100;C.64;D.56;

分析:选B,1×2+2×3=8;2×2+8×3=28;8×2+28×3=100

【14】0,4,18,(),100 A.48;B.58; C.50;D.38; 分析: A,思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差数列;

3232323232思路二:1-1=0;2-2=4;3-3=18;4-4=48;5-5=100; 思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100;

思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100 可以发现:0,2,6,(12),20依次相差2,4,(6),8,222222思路五:0=1×0;4=2×1;18=3×2;()=X×Y;100=5×4所以()=4×3

【15】23,89,43,2,()A.3;B.239;C.259;D.269; 分析:选A,原题中各数本身是质数,并且各数的组成数字和2+3=5、8+9=17、4+3=7、2也是质数,所以待选数应同时具备这两点,选A

【16】1,1, 2, 2, 3, 4, 3, 5,()分析:

思路一:1,(1,2),2,(3,4),3,(5,6)=>分1、2、3和(1,2),(3,4),(5,6)两组。

思路二:第一项、第四项、第七项为一组;第二项、第五项、第八项为一组;第三项、第六项、第九项为一组=>1,2,3;1,3,5;2,4,6=>三组都是等差

【17】1,52, 313, 174,()A.5;B.515;C.525;D.545;

分析:选B,52中5除以2余1(第一项);313中31除以3余1(第一项);174中17除以4余1(第一项);515中51除以5余1(第一项)

【18】5, 15, 10, 215,()A、415;B、-115;C、445;D、-112;

答:选B,前一项的平方减后一项等于第三项,5×5-15=10; 15×15-10=215; 10×10-215=-115

【19】-7,0, 1, 2, 9,()

A、12;B、18;C、24;D、28;

33333

3答: 选D,-7=(-2)+1;

0=(-1)+1; 1=0+1;2=1+1;9=2+1; 28=3+1

【20】0,1,3,10,()

A、101;B、102;C、103;D、104;

答:选B,思路一: 0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102;

2222思路二:0(第一项)+1=1(第二项)

1+2=3

3+1=10

10+2=102,其中所加的数呈1,2,1,2 规律。

思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1;

【21】5,14,65/2,(),217/2

A.62;B.63;C.64;D.65;

3答:选B,5=10/2 ,14=28/2 , 65/2,(126/2), 217/2,分子=> 10=2+2;

28=3+1;65=4+1;(126)=5+1;217=6+1;其中2、1、1、1、1头尾相加=>1、2、3等差 3

3【22】124,3612,51020,()

A、7084;B、71428;C、81632;D、91836; 答:选B,思路一: 124 是1、2、4; 3612是 3、6、12; 51020是5、10、20;71428是 7,14 28;每列都成等差。

思路二: 124,3612,51020,(71428)把每项拆成3个部分=>[1,2,4]、[3,6,12]、[5,10,20]、[7,14,28]=>每个[ ]中的新数列成等比。

思路三:首位数分别是1、3、5、(7),第二位数分别是:2、6、10、(14);最后位数分别是:4、12、20、(28),故应该是71428,选B。

【23】1,1,2,6,24,()A,25;B,27;C,120;D,125 解答:选C。思路一:(1+1)×1=2,(1+2)×2=6,(2+6)×3=24,(6+24)×4=120 思路二:后项除以前项=>1、2、3、4、5 等差

【24】3,4,8,24,88,()A,121;B,196;C,225;D,344 解答:选D。

02468思路一:4=2 +3,8=2 +4,24=2 +8,88=2 +24,344=2 +88 思路二:它们的差为以公比2的数列:

024684-3=2,8-4=2,24-8=2,88-24=2,?-88=2,?=344。

【25】20,22,25,30,37,()A,48;B,49;C,55;D,81 解答:选A。两项相减=>2、3、5、7、11质数列

【26】1/9,2/27,1/27,()A,4/27;B,7/9;C,5/18;D,4/243;

答:选D,1/9,2/27,1/27,(4/243)=>1/9,2/27,3/81,4/243=>分子,1、2、3、4 等差;分母,9、27、81、243 等比

【27】√2,3,√28,√65,()

A,2√14;B,√83;C,4√14;D,3√14;

答:选D,原式可以等于:√2,√9,√28,√65,()2=1×1×1 + 1;9=2×2×2 + 1;28=3×3×3 + 1;65=4×4×4 + 1;126=5×5×5 + 1;所以选 √126,即 D 3√14

【28】1,3,4,8,16,()

A、26;B、24;C、32;D、16;

答:选C,每项都等于其前所有项的和1+3=4,1+3+4=8,1+3+4+8=16,1+3+4+8+16=32

【29】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;

答:选C,2, 1 , 2/3 , 1/2 ,(2/5)=>2/1, 2/2, 2/3, 2/4(2/5)=>分子都为2;分母,1、2、3、4、5等差

【30】 1,1,3,7,17,41,()A.89;B.99;C.109;D.119 ;

答:选B,从第三项开始,第一项都等于前一项的2倍加上前前一项。2×1+1=3;2×3+1=7;2×7+3=17; …;2×41+17=99

【31】 5/2,5,25/2,75/2,()

答:后项比前项分别是2,2.5,3成等差,所以后项为3.5,()/(75/2)=7/2,所以,()=525/4

【32】6,15,35,77,()A. 106;B.117;C.136;D.163 答:选D,15=6×2+3;35=15×2+5;77=35×2+7;163=77×2+9其中3、5、7、9等差

【33】1,3,3,6,7,12,15,()A.17;B.27;C.30;D.24;

答:选D,1,3,3,6,7,12,15,(24)=>奇数项1、3、7、15=>新的数列相邻两数的差为2、4、8

作差=>等比,偶数项 3、6、12、24 等比

【34】2/3,1/2,3/7,7/18,()

A、4/11;B、5/12;C、7/15;D、3/16 分析:选A。4/11,2/3=4/6,1/2=5/10,3/7=6/14,…分子是4、5、6、7,接下来是8.分母是6、10、14、18,接下来是22

【35】63,26,7,0,-2,-9,()A、-16;B、-25;C;-28;D、-36 3333333分析:选C。4-1=63;3-1=26;2-1=7;1-1=0;(-1)-1=-2;(-2)-1=-9;(-3)()=146(22+34=56;34+56=90,56+90=146)

【46】32,98,34,0,()A.1;B.57;C.3;D.5219; 答:选C,思路一:32,98,34,0,3=>每项的个位和十位相加=>5、17、7、0、3=>相减=>-12、10、7、-3=>视为-1、1、1、-1和12、10、7、3的组合,其中-1、1、1、-1 二级等差12、10、7、3 二级等差。

思路二:32=>2-3=-1(即后一数减前一个数),98=>8-9=-1,34=>4-3=1,0=>0(因为0这一项本身只有一个数字, 故还是推为0),?=>?得新数列:-1,-1,1,0,?;再两两相加再得出一个新数列:-2,0,1.?;2×0-2=-2;2×1-2=0;2×2-3=1;2×3-3=?=>3

【47】5,17,21,25,()A.34;B.32;C.31;D.30 答:选C,5=>5 , 17=>1+7=8 , 21=>2+1=3 , 25=>2+5=7 ,?=>?得到一个全新的数列5 , 8 , 3 , 7 , ?前三项为5,8,3第一组, 后三项为3,7,?第二组,第一组:中间项=前一项+后一项,8=5+3,第二组:中间项=前一项+后一项,7=3+?,=>?=4再根据上面的规律还原所求项本身的数字,4=>3+1=>31,所以答案为31

【48】0,4,18,48,100,()A.140;B.160;C.180;D.200;

答:选C,两两相减===>?4,14,30,52,{()-100} 两两相减 ==>10.16,22,()==>这是二级等差=>0.4.18.48.100.180==>选择C。思路二:4=(2的2次方)×1;18=(3的2次方)×2;48=(4的2次方)×3;100=(5的2次方)×4;180=(6的2次方)×5

【49】 65,35,17,3,()A.1;B.2;C.0;D.4;

答:选A,65=8×8+1;35=6×6-1;17=4×4+1;3=2×2-1;1=0×0+1

【50】 1,6,13,()A.22;B.21;C.20;D.19; 答:选A,1=1×2+(-1);6=2×3+0;13=3×4+1;?=4×5+2=22

【51】2,-1,-1/2,-1/4,1/8,()

A.-1/10;B.-1/12;C.1/16;D.-1/14;

答:选C,分4组,(2,-1);(-1,-1/2);(-1/2,-1/4);(1/8,(1/16))===>每组的前项比上后项的绝对值是 2

【52】 1,5,9,14,21,()A.30;B.32;C.34;D.36;

答:选B,1+5+3=9;9+5+0=14;9+14+(-2)=21;14+21+(-3)=32,其中3、0、-

2、-3二级等差

【53】4,18, 56, 130,()A.216;B.217;C.218;D.219 答:选A,每项都除以4=>取余数0、2、0、2、0

【54】4,18, 56, 130,()A.26;B.24;C.32;D.16;

答:选B,各项除3的余数分别是1、0、-1、1、0,对于1、0、-1、1、0,每三项相加都为0

【55】1,2,4,6,9,(),18 A、11;B、12;C、13;D、18;

答:选C,1+2+4-1=6;2+4+6-3=9;4+6+9-6=13;6+9+13-10=18;其中1、3、6、10二级等差

【56】1,5,9,14,21,()A、30;B.32;C.34;D.36; 答:选B,思路一:1+5+3=9;9+5+0=14;9+14-2=21;14+21-3=32。其中,3、0、-

2、-3 二级等差,思路二:每项除以第一项=>5、9、14、21、32=>5×2-1=9;9×2-4=14;14×2-7=21; 21×2-10=32.其中,1、4、7、10等差

【57】120,48,24,8,()

A.0;B.10;C.15;D.20;

答:选C,120=112-1; 48=72-1; 24=52-1; 8=32-1; 15=(4)2-1其中,11、7、5、3、4头尾相加=>5、10、15等差

【58】48,2,4,6,54,(),3,9 A.6;B.5;C.2;D.3;

答:选C,分2组=>48,2,4,6 ; 54,(),3,9=>其中,每组后三个数相乘等于第一个数=>4×6×2=48 2×3×9=54

【59】120,20,(),-4 A.0;B.16;C.18;D.19;

3210答:选A,120=5-5;20=5-5;0=5-5;-4=5-5

【60】6,13,32,69,()

A.121;B.133;C.125;D.130 答:选B,6=3×2+0;13=3×4+1;32=3×10+2;69=3×22+3;130=3×42+4;其中,0、1、2、3、4 一级等差;2、4、10、22、42 三级等差

【61】1,11,21,1211,()

A、11211;B、111211;C、111221;D、1112211 分析:选C,后项是对前项数的描述,11的前项为1 则11代表1个1,21的前项为11 则21代表2个1,1211的前项为21 则1211代表1个2、1个1,111221前项为1211 则111221代表1个1、1个2、2个1

【62】-7,3,4,(),11 A、-6;B.7;C.10;D.13;

答:选B,前两个数相加的和的绝对值=第三个数=>选B

【63】3.3,5.7,13.5,()A.7.7;B.4.2;C.11.4;D.6.8;

答:选A,小数点左边:3、5、13、7,都为奇数,小数点右边:3、7、5、7,都为奇数,遇到数列中所有数都是小数的题时,先不要考虑运算关系,而是直接观察数字本身,往往数字本身是切入点。

【64】33.1, 88.1, 47.1,()A.29.3;B.34.5;C.16.1;D.28.9;

答:选C,小数点左边:33、88、47、16成奇、偶、奇、偶的规律,小数点右边:1、1、1、1 等差

【65】5,12,24, 36, 52,()A.58;B.62;C.68;D.72; 答:选C,思路一:12=2×5+2;24=4×5+4;36=6×5+6;52=8×5+12 68=10×5+18,其中,2、4、6、8、10 等差; 2、4、6、12、18奇数项和偶数项分别构成等比。

思路二:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,37质数列的变形,每两个分成一组=>(2,3)(5,7)(11,13)(17,19)(23,29)(31,37)=>每组内的2个数相加=>5,12,24,36,52,68

【66】16, 25, 36, 50, 81, 100, 169, 200,()A.289;B.225;C.324;D.441;

22222答:选C,奇数项:16,36,81,169,324=>分别是4, 6, 9, 13,18=>而4,6,9,13,18是二级等差数列。偶数项:25,50,100,200是等比数列。

【67】1, 4, 4, 7, 10, 16, 25,()A.36;B.49;C.40;D.42 答:选C,4=1+4-1;7=4+4-1;10=4+7-1;16=7+10-1;25=10+16-1;40=16+25-1

【68】7/3,21/5,49/8,131/13,337/21,()

A.885/34;B.887/34;C.887/33;D.889/3 答:选A,分母:3,5,8,13,21,34两项之和等于第三项,分子:7,21,49,131,337,885分子除以相对应的分母,余数都为1,【69】9,0,16,9,27,()

A.36;B.49;C.64;D.22;

答:选D,9+0=9;0+16=16;16+9=25;27+22=49;其中,9、16、25、36分别是32, 42, 52, 62,72,而3、4、5、6、7 等差

【70】1,1,2,6,15,()A.21;B.24;C.31;D.40;

答:选C,思路一两项相减=>0、1、4、9、16=>分别是02, 12, 22, 32, 42,其中,0、1、2、3、4 等差。思路二头尾相加=>8、16、32 等比 【71】5,6,19,33,(),101 A.55;B.60;C.65;D.70;

答:选B,5+6+8=19;6+19+8=33;19+33+8=60;33+60+8=101

【72】0,1,(),2,3,4,4,5 A.0;B.4;C.2;D.3 答:选C,思路一:选C=>相隔两项依次相减差为2,1,1,2,1,1(即2-0=2,2-1=1,3-2=1,4-2=2,4-3=1,5-4=1)。

思路二:选C=>分三组,第一项、第四项、第七项为一组;第二项、第五项、第八项为一组;第三项、第六项为一组=>即0,2,4;1,3,5;

2,4。每组差都为2。

【73】4,12, 16,32, 64,()A.80;B.256;C.160;D.128;

答:选D,从第三项起,每项都为其前所有项之和。

【74】1,1,3,1,3,5,6,()。A.1;B.2;C.4;D.10;

答:选D,分4组=>1,1; 3,1; 3,5; 6,(10),每组相加=>2、4、8、16 等比

【75】0,9,26,65,124,()

A.186;B.217;C.216;D.215;

3333 3答:选B,0是1减1;9是2加1;26是3减1;65是4加1;124是5减1;故6加1为217

【76】1/3,3/9,2/3,13/21,()

A.17/27;B.17/26;C.19/27;D.19/28;

答:选A,1/3,3/9,2/3,13/21,(17/27)=>1/

3、2/

6、12/

18、13/

21、17/27=>分子分母差=>2、4、6、8、10 等差

【77】1,7/8,5/8,13/32,(),19/128 A.17/64;B.15/128;C.15/32;D.1/4 答:选D,=>4/4, 7/8, 10/16, 13/32,(16/64), 19/128,分子:4、7、10、13、16、19 等差,分母:4、8、16、32、64、128 等比

【78】2,4,8,24,88,()A.344;B.332;C.166;D.164 答:选A,从第二项起,每项都减去第一项=>2、6、22、86、342=>各项相减=>4、16、64、256 等比

【79】1,1,3,1,3,5,6,()。

A.1;B.2;C.4;D.10;

答:选B,分4组=>1,1; 3,1; 3,5; 6,(10),每组相加=>2、4、8、16 等比

【80】3,2,5/3,3/2,()

A、1/2;B、1/4;C、5/7;D、7/3 分析:选C;

思路一:9/3,10/5,10/6,9/6,(5/7)=>分子分母差的绝对值=>6、5、4、3、2 等差,思路二:3/

1、4/

2、5/

3、6/

4、5/7=>分子分母差的绝对值=>2、2、2、2、2 等差

【81】3,2,5/3,3/2,()A、1/2;B、7/5;C、1/4;D、7/3 3分析:可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5

【82】0,1,3,8,22,64,()A、174;B、183;C、185;D、190;

答:选D,0×3+1=1;1×3+0=3;3×3-1=8;8×3-2=22;22×3-2=64;64×3-2=190;其中1、0、-

1、-

2、-

2、-2头尾相加=>-

3、-

2、-1等差

【83】2,90,46,68,57,()

A.65;B.62.5;C.63;D.62

答:选B, 从第三项起,后项为前两项之和的一半。

【84】2,2,0,7,9,9,()

A.13;B.12;C.18;D.17;

答:选C,从第一项起,每三项之和分别是2,3,4,5,6的平方。

【85】 3,8,11,20,71,()A.168;B.233;C.211;D.304 答:选B,从第二项起,每项都除以第一项,取余数=>2、2、2、2、2 等差

【86】-1,0,31,80,63,(),5 A.35;B.24;C.26;D.37;

7654321答:选B,-1=0-1,0=1-1,31=2-1,80=3-1,63=4-1,(24)=5-1,5=6-1

【87】11,17,(),31,41,47 A.19;B.23;C.27;D.29;

答:选B,隔项质数列的排列,把质数补齐可得新数列:11,13,17,19,23,29,31,37,41,43,47.抽出偶数项可得数列: 11,17,23,31,41,47

【88】18,4,12,9,9,20,(),43 A.8;B.11;C.30;D.9 答:选D, 把奇数列和偶数列拆开分析:

偶数列为4,9,20,43.9=4×2+1, 20=9×2+2, 43=20×2+3,奇数列为18,12,9,(9)。18-12=6, 12-9=3, 9-(9)=0

【89】1,3,2,6,11,19,()

分析:前三项之和等于第四项,依次类推,方法如下所示: 1+3+2=6;3+2+6=11;2+6+11=19;6+11+19=36

【90】1/2,1/8,1/24,1/48,()A.1/96;B.1/48;C.1/64;D.1/81

答:选B,分子:1、1、1、1、1等差,分母:2、8、24、48、48,后项除以前项=>4、3、2、1 等差

【91】1.5,3,7.5(原文是7又2分之1),22.5(原文是22又2分之1),()

A.60;B.78.25(原文是78又4分之1);C.78.75;D.80 答:选C,后项除以前项=>2、2.5、3、3.5 等差

【92】2,2,3,6,15,()A、25;B、36;C、45;D、49 分析:选C。2/2=1 3/2=1.5 6/3=2 15/6=2.5 45/15=3。其中,1, 1.5, 2, 2.5, 3 等差

【93】5,6,19,17,(),-55 A.15;B.344;C.343;D.11; 答:选B,第一项的平方减去第二项等于第三项

【94】2,21,(),91,147 A.40;B.49;C.45;D.60;

答:选B,21=2(第一项)×10+1,49=2×24+1,91=2×45+1,147=2×73+1,其中10、24、45、73 二级等差

【95】-1/7,1/7,1/8,-1/4,-1/9,1/3,1/10,()A.-2/5;B.2/5;C.1/12;D.5/8;

答:选A,分三组=>-1/7,1/7; 1/8,-1/4;-1/9,1/3; 1/10,(-2/5),每组后项除以前项=>-1,-2,-3,-4 等差

【96】63,26,7,0,-1,-2,-9,()A、-18;B、-20;C、-26;D、-28;

33333333答:选D,63=4-1,26=3-1,7=2-1,0=1-1,-1=0-1,-2=(-1)-1,-9=(-2)-1-28=(-3)-1,【97】5,12 ,24,36,52,(), A.58;B.62;C.68;D.72 答:选C,题中各项分别是两个相邻质数的和(2,3)(5,7)(11,13)(17,19)(23,29)(31,37)

【98】1,3, 15,(),A.46;B.48;C.255;D.256

答:选C,3=(1+1)2-1

15=(3+1)2-1

255=(15+1)2-1

【99】3/7,5/8,5/9,8/11,7/11,()A.11/14;B.10/13;C.15/17;D.11/12;

答:选A,奇数项:3/7,5/9,7/11

分子,分母都是等差,公差是2,偶数项:5/8,8/11,11/14 分子、分母都是等差数列,公差是3

【100】1,2,2,3,3,4,5,5,()A.4;B.6;C.5;D.0 ;

答:选B,以第二个3为中心,对称位置的两个数之和为7

【101】 3,7, 47,2207,()A.4414;B.6621;C.8828;D.4870847 答:选D,第一项的平方5 => 16=3×7-5 107=16×7-5 1707=107×16-5

【128】2,3,13,175,()A.30625;B.30651;C.30759;D.30952;

222答:选B, 13(第三项)=3(第二项)+2(第一项)×2

175=13+3×2

30651=175+13×2

【129】1.16,8.25,27.36,64.49,()A.65.25;B.125.64;C.125.81;D.125.01;

答:选B,小数点左边:1,8,27,64,125分别是1,2,3,4,5的三次方,小数点右边:16,25,36,49分别是4,5,6,7,8的平方。

【130】,2,(),A.; B.; C.;D.;

答:选B,,2,=>,,【131】 +1,-1,1,-1,()A.;B.1 ;C.-1;D.-1;

答:选C, 选C=>第一项乘以第二项=第三项

【132】 +1,-1,1,-1,()A.+1;B.1;C.;D.-1;

答:选A,选A=>两项之和=>(+1)+(-1)=2 ;(-1)+1= ;1+(-1)= ;(-1)+(+1)=2 =>2 , , ,2 =>分两组=>(2 ,),(,2),每组和为3。

【133】,,()A.B.C.D.答:选B, 下面的数字=>2、5、10、17、26,二级等差

【134】,1/12,()A.; B.; C.;D.; 答:选C,,1/12,=>,,,外面的数字=>1、3、4、7、11 两项之和等于第三项。里面的数字=>5、7、9、11、13 等差

【135】 1,1,2,6,()A.21;B.22;C.23;D.24;

答:选D, 后项除以前项 =>1、2、3、4 等差

【136】1,10,31,70,133,()A.136;B.186;C.226;D.256 答:选C,思路一:两项相减=>9、21、39、63、93=>两项相减=>12、18、24、30 等差.思路二:10-1=9推出3×3=9 31-10=21推出3×7=21 70-31=39推出3×13=39 133-70=63推出3×21=63 而3,7,13,21分别相差4,6,8。所以下一个是10,所以3×31=9393+133=226

【137】0,1, 3, 8, 22,63,()A.163;B.174;C.185;D.196;

答:选C, 两项相减=>1、2、5、14、41、122 =>两项相减=>1、3、9、27、81 等比

【138】 23,59,(),715 A、12;B、34;C、213;D、37;

答:选D, 23、59、37、715=>分解=>(2,3)(5,9)(3,7)(7,15)=>对于每组,3=2×2-1(原数列第一项)9=5×2-1(原数列第一项),7=3×2+1(原数列第一项),15=7×2+1(原数列第一项)

【139】2,9,1,8,()8,7,2

A.10;B.9;C.8;D.7;

答:选B, 分成四组=>(2,9),(1,8);(9,8),(7,2),2×9 = 18 ; 9×8 = 72

【140】5,10,26,65,145,()A、197; B、226;C、257;D、290; 答:选D, 思路一:5=2+1,10=3+1,26=5+1,65=8+1,145=12+1,290=17+1,思路二:三级等差

【141】27,16,5,(),1/7 A.16;B.1;C.0;D.2;

答:选B,27=3,16=4,5=5,1=6,1/7=7差

【142】1,1,3,7,17,41,()

A.89;B.99;C.109;D.119;

答:第三项=第一项+第二项×2

【143】1, 1, 8, 16, 7, 21, 4, 16, 2,()A.10;B.20;C.30;D.40;

答:选A,每两项为一组=>1,1;8,16;7,21;4,16;2,10=>每组后项除以前项=>1、2、3、4、5 等差

【144】0,4,18,48,100,()A.140;B.160;C.180;D.200; 答:选C,思路一:0=0×1 4=1×4 18=2×9 48=3×16 100=4×25 180=5×36=>其中

3210

(-1)

2,其中,3,2,1,0,-1;3,4,5,6,7等0,1,2,3,4,5 等差,1,4,9,16,25,36分别为1、2、3、4、5的平方

思路二:三级等差

【145】1/6,1/6,1/12,1/24,()A.1/48;B.1/28;C.1/40;D.1/24;

答:选A,每项分母是前边所有项分母的和。

【146】0,4/5,24/25,()A.35/36;B.99/100;C.124/125;D.143/144;

答:选C,原数列可变为 0/1,4/5,24/25,124/125。分母是5倍关系,分子为分母减一。

【147】1,0,-1,-2,()A.-8;B.-9;C.-4;D.3;

答:选C,第一项的三次方-1=第二项

【148】0,0,1,4,()A、5;B、7;C、9;D、11 分析:选D。0(第二项)=0(第一项)×2+0,1=0×2+1

4=1×2+2

11=4×2+3

【149】0,6,24,60,120,()A、125;B、196;C、210;D、216 333233分析: 0=1-1,6=2-2,24=3-3,60=4-4,120=5-5,210=6-6,其中1,2,3,4,5,6等差

【150】34,36,35,35,(),34,37,()A.36,33;B.33,36; C.37,34;D.34,37;

答:选A,奇数项:34,35,36,37等差;偶数项:36,35,34,33.分别构成等差

【151】1,52,313,174,()

A.5;B.515;C.525;D.545 ;

答:选B,每项-第一项=51,312,173,514=>每项分解=>(5,1),(31,2),(17,3),(51,4)=>每组第二项1,2,3,4等差;每组第一项都是奇数。

【152】6,7,3,0,3,3,6,9,5,()

A.4;B.3;C.2;D.1;

答:选A,前项与后项的和,然后取其和的个位数作第三项,如6+7=13,个位为3,则第三项为3,同理可推得其他项

【153】1,393,3255,()

A、355;B、377;C、137;D、397;

答:选D,每项-第一项=392,3254,396 =>分解=>(39,2),(325,4),(39,6)=>每组第一个数都是合数,每组第二个数2,4,6等差。

【154】17,24,33,46,(),92 A.65;B.67; C.69 ;D.71 答:选A,24-17=7,33-24=9,46-33=13,65-46=19,92-65=27.其中7,9,13,19,27两项作差=>2,4,6,8等比

【155】8,96,140,162,173,()A.178.5;B.179.5;C 180.5;D.181.5 答:选A,两项相减=>88,44,22,11,5.5 等比数列 【156】(),11,9,9,8,7,7,5,6 A、10; B、11; C、12; D、13 答:选A,奇数项:10,9,8,7,6 等差;偶数项:11,9,7,5 等差

【157】1,1,3,1,3,5,6,()。A.1;B.2;C.4;D.10;

答:选D,1+1=2 3+1=4 3+5=8 6+10=16,其中,2,4,8,10等差

【158】1,10,3,5,()A.4;B.9;C.13;D.15;

答:选C,把每项变成汉字=>一、十、三、五、十三=>笔画数1,2,3,4,5等差

【159】1,3,15,()A.46;B.48;C.255;D.256 1248答:选C,21 = 3 ,21 = 255,【160】1,4,3,6,5,()A.4;B.3;C.2;D.7 答:选C,思路一:1和4差3,4和3差1,3和6差3,6和5差1,5和2差3。思路二:1,4,3,6,5,2=>两两相加=>5,7,9,11,7=>每项都除以3=>2,1,0,2,1

【161】14,4,3,-2,()A.-3;B.4;C.-4;D.-8 ;

答:选C,余数一定是大于0的,但商可以小于0,因此,-2除以3的余数不能为-2,这与2除以3的余数是2是不一样的,同时,根据余数小于除数的原理,-2除以3的余数只能为1。因此14,4,3,-2,(-4),每一项都除以3,余数为2、1、0、1、2

【162】8/3,4/5,4/31,()

A.2/47;B.3/47;C.1/49;D.1/47; 答:选D,8/3,4/5,4/31,(1/47)=>8/

3、40/50、4/

31、1/47=>分子分母的差=>-5、10、27、46=>两项之差=>15,17,19等差

【163】59,40,48,(),37,18 A、29;B、32;C、44;D、43; 答:选A,思路一:头尾相加=>77,77,77 等差。

思路二:59-40=19; 48-29=19; 37-18=19。

思路三:59 48 37 这三个奇数项为等差是11的数列。40、19、18 以11为等差

【164】1,2,3,7,16,(),191

A.66;B.65;C.64;D.63;

22222答:选B,3(第三项)=1(第一项)+2(第二项),7=2+3,16=3+7,65=7+16 191=16+65

【165】2/3,1/2,3/7,7/18,()A.5/9;B.4/11;C.3/13;D.2/5

答:选B,2/3,1/2,3/7,7/18,4/11=>4/6,5/10,6/14,7/18,8/22,分子4,5,6,7,8等差,分母6,10,14,18,22 等差

【166】5,5,14,38,87,()A.167;B.168;C.169;D.170;

22222答:选A,两项差=>0,9,24,49,80=>1-1=0,3-0=9,5-1=24,7-0=49,9-1=80,其中底数1,3,5,7,9等差,所减常数成规律1,0,1,0,1

【167】1,11,121,1331,()

A.14141;B.14641;C.15551;D.14441;

答:选B,思路一:每项中的各数相加=>1,2,4,8,16等比。

思路二:第二项=第一项乘以11。

【168】0,4,18,(),100 A.48;B.58;C.50;D.38;

答:选A,各项依次为1 2 3 4 5的平方,然后在分别乘以0 1 2 3 4。

【169】19/13,1,13/19,10/22,()A.7/24;B.7/25;C.5/26;D.7/26;

答:选C,=>19/13,1,13/19,10/22,7/25=>19/13,16/16,13/19,10/22,7/25.分子:19,16,13,10,7等差分母:13,16,19,22,25等差

【170】12,16,112,120,()A.140;B.6124;C.130;D.322 ; 答:选C,思路一:每项分解=>(1,2),(1,6),(1,12),(1,20),(1,30)=>可视为1,1,1,1,1和2,6,12,20,30的组合,对于1,1,1,1,1 等差;对于2,6,12,20,30 二级等差。

思路二:第一项12的个位2×3=6(第二项16的个位)第一项12的个位2×6=12(第三项的后两位),第一项12的个位2×10=20(第四项的后两位),第一项12的个位2×15=30(第五项的后两位),其中,3,6,10,15二级等差

【171】13,115,135,()A.165;B.175;C.1125;D.163 答:选D,思路一:每项分解=>(1,3),(1,15),(1,35),(1,63)=>可视为1,1,1,1,1和3,15,35,63的组合,对于1,1,1,1,1 等差;对于3,15,35,63.3=1×3,15=3×5,35=5×7,63=7×9每项都等于两个连续的奇数的乘积(1,3,5,7,9).思路二:每项中各数的和分别是1+3=4,7,9,10 二级等差

【172】-12,34,178,21516,()

A.41516;B.33132;C.31718;D.43132 ;

答:选C,尾数分别是2,4,8,16下面就应该是32,10位数1,3,7,15相差为2,4,8下面差就应该是16,相应的数就是31,100位1,2下一个就是3。所以此数为33132。

【173】3,4,7,16,(),124

1234分析:7(第三项)=4(第二项)+3(第一项的一次方),16=7+3,43=16+3 124=43+3,【174】7,5,3,10,1,(),()

A.15、-4 ;B.20、-2;C.15、-1;D.20、0 答:选D,奇数项=>7,3,1,0=>作差=>4,2,1等比;偶数项5,10,20等比

【175】81,23,(),127 A.103;B.114;C.104;D.57; 答:选C,第一项+第二项=第三项

【176】1,1,3,1,3,5,6,()。A.1;B.2;C.4;D.10;

答:选D,1+1=2 3+1=4 3+5=8 6+10=16,其中2 4 8 16等比

【177】48,32,17,(),43,59。A.28;B.33;C.31;D.27;

答:选A,59-18=11 43-32=11

28-17=11

【178】19/13,1,19/13,10/22,()a.7/24;b.7/25;c.5/26;d.7/26;

答:选B,1=16/16 , 分子+分母=22=>19+13=32 16+16=32

10+22=32

7+25=32

【179】3,8,24,48,120,()A.168;B.169;C.144;D.143;

222222答:选A,3=2-1 8=3-1 24=5-1 48=7-1

120=11-1 168=13-1,其中2,3,5,7,11质数数列

【180】21,27,36,51,72,()A.95;B.105;C.100;D.102; 答:选B,27-21=6=2×3,36-27=9=3×3,51-36=15=5×3,72-51=21=7×3,105-72=33=11×3,其中2、3、5、7、11质数列。

【181】1/2,1,1,(),9/11,11/13

A.2;B.3; C.1;D.9;

答:选C,1/2,1,1,(),9/11,11/13 =>1/2,3/3,5/5,7/7,9/11,11/13=>分子1,3,5,7,9,11等差;分母2,3,5,7,11,13 连续质数列。

【182】 2,3,5,7,11,()A.17;B.18;C.19;D.20 答:选C,前后项相减得到1,2,2,4 第三个数为前两个数相乘,推出下一个数为8,所以11+8=19

【183】2,33,45,58,()A、215;B、216;C、512;D、612

分析:答案D,个位2,3,5,8,12=>作差1,2,3,4等差;其他位3,4,5,6等差

【184】 20/9,4/3,7/9,4/9,1/4,()A、3/7;B、5/12;C、5/36;D、7/36 分析:选C。20/9,4/3,7/9,4/9,1/4,(5/36)=>80/36,48/36,28/36,16/36,9/36,5/36;分母36,36,36,36,36,36 等差;分子80,48,28,16,9,5 三级等差

【185】5,17, 21, 25,()A、29;B、36;C、41;D、49 分析:答案A,5×3+2=17,5×4+1=21,5×5=0=25,5×6-1=29

【186】2,4,3,9,5,20,7,()A.27;B.17;C.40;D.44;

分析:答案D,奇数项2,3,5,7连续质数列;偶数项4,9,20,44,前项除以后项=>4/9,9/20,20/44=>8/18,9/20,10/22.分子8,9,10等差,分母18,20,22等差

【187】2/3,1/4,2/5,(),2/7,1/16,A.1/5;B.1/17;c.1/22;d.1/9 分析:答案D,奇数项2/3,2/5,2/7.分子2,2,2等差,分母3,5,7等差;偶数项1/4,1/9,1/16,分子1,1,1等差,分母4,9,16分别为2,3,4的平方,而2,3,4等差。

【188】1,2,1,6,9,10,()

A.13;B.12;C.19;D.17;

分析:答案D,每三项相加=>1+2+1=4;2+1+6=9;1+6+9=16;6+9+10=25;9+10+X=36=>X=17

【189】8,12,18,27,()A.39;B.37;C.40.5;D.42.5;

分析:答案C,8/12=2/3,12/18=2/3,18/27=2/3,27/?=2/3

27/(81/2)=2/3=40.5,【190】2,4,3,9,5,20,7,()A.27;B.17;C.40; D.44 分析:答案D,奇数项2,3,5,7连续质数列;偶数项4,9,20,44=>4×2+1=9

9×2+2=20

20×2+4=44

其中1,2,4等比

【191】1/2,1/6,1/3,2,(),3,1/2 A.4;B.5;C.6;D.9

分析:答案C,第二项除以第一项=第三项

【192】1.01,2.02,3.04,5.07,(),13.16 A.7.09;B.8.10;C.8.11;D.8.12

分析:答案C,整数部分前两项相加等于第三项,小数部分二级等差

【193】256,269,286,302,()A.305;B.307;C.310;D.369

分析:答案B,2+5+6=13;256+13=269;2+6+9=17;269+17=286;2+8+6=16 286+16=302;3+0+2=5;302+5=307

【194】1,3,11,123,()

A.15131;B.1468;C16798;D.96543 2222分析:答案A,3=1+2 11=3+2 123=11+2()=123+2=15131

【195】1,2,3,7,46,()A.2109;B.1289;C.322;D.147

22分析:答案A,3(第三项)=2(第二项)-1(第一项),7(第四项)=3(第三项)-2(第二项),46=7-3,()=46-7=2109

【196】18,2,10,6,8,()A.5;B.6;C.7;D.8;

分析:答案C,10=(18+2)/2,6=(2+10)/2,8=(10+6)/2,()=(6+8)/2=7

【197】-1,0,1,2,9,()A、11;B、82;C、729;D、730;

33333分析:答案D,(-1)+1=0 0+1=1 1+1=2 2+1=9 9+1=730

【198】0,10,24,68,()

A、96;B、120;C、194;D、254;

33333分析:答案B,0=1-1,10=2+2,24=3-3,68=4+4,()=5-5,()=120

【199】7,5,3,10,1,(),()22A、15、-4;B、20、-2 ; C、15、-1 ;D、20、0;

分析:答案D,奇数项的差是等比数列 7-3=4 3-1=2 1-0=1 其中1、2、4 为公比为2的等比数列。偶数项5、10、20也是公比为2的等比数列

【200】2,8,24,64,()

A、88;B、98;C、159;D、160;

分析:答案D,思路一:24=(8-2)×4

64=(24-8)×4

D=(64-24)×4,思路二:2=2的1次乘以1

8=2的2次乘以2

24=2的3次乘以3

64=2的4次乘以4,(160)=2的5 次乘以5

【201】4,13,22,31,45,54,(),()A.60, 68;B.55, 61; C.63, 72;D.72, 80 分析:答案C,分四组=>(4,13),(22,31),(45,54),(63,72)=>每组的差为9

【202】9,15,22, 28, 33, 39, 55,()A.60;B.61;C.66;D.58;

分析:答案B,分四组=>(9,15),(22,28),(33,39),(55,61)=>每组的差为6

【203】1,3,4,6,11,19,()

A.57;B.34;C.22;D.27;

分析:答案B,数列差为2 1 2 5 8,前三项相加为第四项 2+1+2=5 1+2+5=8 2+5+8=15 得出数列差为2 1 2 5 8 15

【204】-1,64,27,343,()

A.1331;B.512;C.729;D.1000;

分析:答案D,数列可以看成 -1三次方, 4的三次方, 3的三次方, 7的三次方,其中-1,3,4,7两项之和等于第三项,所以得出3+7=10,最后一项为10的三次方

【205】3,8,24,63,143,()A.203,B.255,C.288,D.195,分析:答案C,分解成2-1,3-1,5-1,8-1,12-1;2、3、5、8、12构成二级等差数列,它们的差为1、2、3、4、(5)所以得出2、3、5、8、12、17,后一项为17-1 得288

【206】3,2,4,3,12,6,48,()A.18;B.8;C.32;D.9;

分析:答案A,数列分成 3,4,12,48,和 2,3,6,(),可以看出前两项积等于第三项

【207】1,4,3,12,12,48,25,()A.50;B.75;C.100;D.125 分析:答案C,分开看:1,3,12,25; 4,12,48,()差为2,9,13 8,36,? 因为2×4=8,9×4=36,13×4=52,所以?=52,52+48=100

【208】1,2,2,6,3,15,3,21,4,()

A.46;B.20;C.12;D.44;

分析:答案D,两个一组=>(1,2),(2,6),(3,15),(3,21),(4,44)=>每组后项除以前项=>2,3,5,7,11 连续的质数列

【209】 24,72,216, 648,()A.1296;B.1944;C.2552;D.3240

2分析:答案B,后一个数是前一个数的3倍

【210】4/17,7/13, 10/9,()A.13/6;B.13/5;C.14/5;D.7/3;

分析:答案B,分子依次加3,分母依次减4

【211】 1/2,1,1,(),9/11,11/13, A.2;B.3;C.1;D.7/9 ;

分析:答案C,将1分别看成3/3,5/5,7/7.分子分别为1,3,5,7,9,11.分母分别为2,3,5,7,11,13连续质数列

【212】13,14,16,21,(),76 A.23;B.35;C.27;D.22

分析:答案B,差分别为1,2,5,而这些数的差又分别为1,3,所以,推出下一个差为9和27,即()与76的差应当 为31。

【213】2/3,1/4,2/5,(),2/7,1/16,A.1/5;B.1/17;C.1/22; D.1/9 ;

分析:答案D,将其分为两组,一组为2/3,2/5,2/7,一组为1/4,(),1/16,故()选1/9

【214】3,2,3,7,18,()A.47;B.24;C.36;D.70; 分析:答案A,3(第一项)×2(第二项)--3(第一项)=3(第三项);3(第一项)×3(第三项)--2(第二项)=7(第四项);3(第一项)×7(第四项)--3(第三项)=18(第五项);3(第一项)×18(第五项)--7(第四项)=47(第六项)

【215】3,4,6,12,36,()

A.8;B.72;C.108;D.216 分析:答案D,前两项之积的一半就是第三项

【216】125,2,25,10,5,50,(),()

A.10,250;B.1,250; C.1,500 ; D.10,500;

分析:答案B,奇数项125,25,5,1等比,偶数项2,10,50,250等比

【217】15,28,54,(),210 A.78;B.106;C.165;D.171; 分析:答案B,思路一:15+13×1=28, 28+13x2=54,54+13×4=106, 106+13x8=210,其中1,2,4,8等差。思路二:2×15-2=28,2×28-2=54,2×54-2=106,2×106-2=210,【218】 2,4,8,24,88,()

A.344;B.332; C.166;D.164;

分析:答案A,每一项减第一项=>2,4,16,64,256=>第二项=第一项的2次方,第三项=第一项的4次方,第四项=第一项的6次方,第五项=第一项的8次方,其中2,4,6,8等差

【219】22,35,56,90,(),234 A.162;B.156;C.148;D.145;

分析:答案D,后项减前项=>13,21,34,55,89,第一项+第二项=第三项

【220】1,7,8, 57,()A.123;B.122;C.121;D.120;

222分析:答案C,1+7=8,7+8=57,8+57=121

【221】1,4,3,12,12,48,25,()A.50;B.75;C.100;D.125 分析:答案C,第二项除以第一项的商均为4,所以,选C100

【222】5,6,19,17,(),-55 A.15;B.344;C.343;D.11;

分析:答案B,5的平方-6=19,6的平方-19=17,19的平方-17=344,17平方-344=-55

【223】3.02,4.03,3.05,9.08,()A.12.11;B.13.12;C.14.13;D.14.14;

分析:答案B,小数点右边=>2,3,5,8,12 二级等差,小数点左边=>3,4,3,9,13 两两相加=>7,7,12,22 二级等差

【224】95,88,71,61,50,()A.40;B.39;C.38;D.37;

分析:答案A,955 = 81,888 = 72,711 = 63,611 = 54,500 = 45,400 = 36,其中81,72,63,54,45,36等差

【225】4/9,1,4/3,(),12,36 A.2;B.3;C.4;D.5;

分析:答案C,4/9,1,4/3,()12,36=>4/9,9/9,12/9,36/9,108/9,324/9,分子:

(1/2)14,9,12,36,108,324=>第一项×第二项的n次方=第三项,4×(9)=12,4×(9)=36,4×(9(3/2))=108,4×(9)=324,其中1/2,1,3/2,2等差,分母:9,9,9,9,9,9等差 2

【226】 1,2,9,121,()

A.251;B.441;C.16900;D.960;

分析:答案C,(1+2)的平方等于9,2+9的平方等于121,9+121的平方等于16900

【227】6,15,35,77,()A.106;B.117;C.136;D.163;

分析:答案D,15=6×2+3,35=15×2+5,77=35×2+7,?=77×2+9

【228】16,27,16,(),1 A.5;B.6;C.7;D.8;

43210分析:答案A,2=16 3=27 4=16

5=5 6=1

【229】4,3,1, 12, 9, 3, 17, 5,()

A.12;B.13;C.14;D.15;

分析:答案A,1+3=4,3+9=12,?+5=17,?=12,【230】1,3,15,()A.46;B.48;C.255;D.256 1248分析:答案C,2-1 = 1;2-1 = 3;2-1 = 15;所以 21 =第三项

【287】-1,0,31, 80, 63,(), 5 A.35, B.24, C.26, D.37 分析:选B,0×7-1=-1;1×6-1=0 ;2×5-1=31;3×4-1=80;4×3-1=63;5×2-1=24;6×1-1=5;

【288】-1,0,31,80,63,(),5

A.35;B.24;C.26;D.37 分析:选D,每项除以3=>余数列2、0、1、2、0、1

【289】102,96,108,84,132,()A.36;B.64;C.70;D.72

分析:选A,两两相减得新数列:6,-12,24,-48,?;6/-12=-12/24=24/-48=-1/2,那么下一项应该是-48/96=-1/2;根据上面的规律;那么132-?=96 ;=>36

【290】1,32,81,64,25,(),1 A.5,B.6,C.10,D.12

1分析:选B,M的递减和M的N次方递减,6=6

【291】2,6,13,24,41,()A.68;B.54;C.47;D.58

分析:选A,2=1二次方+1 6=2二次方+2 13=3二次方+4 24=4二次方+8 41=5二次方+16 ?=6二次方+32

【292】 8, 12, 16,16,(),-64

分析:1×8=8;2×6=12;4×4=16;8×2=16;16×0=0;32×(-2)=-64;

【293】0,4,18,48,100,()A.140;B.160;C.180;D.200 分析:选C,思路一:二级等差。

思路二:0=1的2次方×0;4=2的2次方×1…180=6的2次方×5。

22222思路三:0=1×0;4=2×1;18=3×2 ;48=4×3 ;100=5×4;所以最后一个数为6×5=180

【294】3,4,6,12,36,()A.8;B.72;C.108;D.216 分析:选D,(第一项*第二项)/2=第三项,216=12×36/2

【295】2,2,3,6,15,()A、30;B、45;C、18;D、24 分析:选B,后项比前项=>1,1.5,2,2.5,3 前面两项相同的数,一般有三种可能,1)相比或相乘的变式。两数相比等于1,最适合构成另一个等比或等差关系2)相加,一般都是前N项之和等于后一项。3)平方或者立方关系其中平方,立方关系出现得比较多,也比较难。一般都要经两次变化。像常数乘或者加上一个平方或立方关系。或者平方,立方关系减去一个等差或等比关系。还要记住1,2这两个数的变式。这两个特别是1比较常用的。

【296】1,3,4,6,11,19,()2A.57; B.34; C.22;D.27 分析:选B,差是2,1,2,5,8,?;前3项相加是第四项,所以?=15;19+15=34

【297】13,14,16,21,(),76 A.23; B.35;C.27;D.22 分析:选B,相连两项相减:1,2,5,();再减一次:1,3,9,27;()=14;21+14=35

【298】3,8,24,48,120,()

A.168;B.169;C.144;D.143 ;

222222分析:选A,2-1=3;3-1=8;5-1=24;7-1=48;11-1=120;13-1=168;质数的平方-1

【299】21,27,36,51,72,()A.95;B.105;C.100;D.102 ;

分析:选B,21=3×7;27=3×9;36=3×12;51=3×17;72=3×24;7,9,12,17,24两两差为2,3,5,7,? 质数,所以?=11;3×(24+11)=105

【300】2,4,3,9,5,20,7,()A.27;B.17;C.40;D.44 ;

分析:选D,偶数项:4,9,20,44 9=4×2+1;20=9×2+2;44=20×2+4其中1,2,4成等比数列,奇数项:2,3,5,7连续质数列

【301】1,8,9,4,(),1/6 A,3;B,2;C,1;D,1/3 43210(-1)分析:选C,1=1;8=2;9=3;4=4;1=5 ;1/6=6

【302】63,26,7,0,-2,-9,()

3333333分析:4-1=63;3-1=26;2-1=7;1-1=0;-1-1=-2;-2-1=-9 ;-3-1=-28

【303】8,8,12,24,60,()A,240;B,180;C,120;D,80 分析:选B,8,8是一倍12,24两倍关系60,(180)三倍关系

【304】-1,0,31,80,63,(),5 A.35;B.24; C.26;D.37;

765432分析:选B,-1 = 01 31= 21 63 = 41 5 = 6 – 1

【305】3,8,11,20,71,()A.168;B.233;C.91;D.304 分析:选B,每项除以第一项=>余数列2、2、2、2、2、2、2

【306】88,24,56,40,48,(),46 A.38;B.40;C.42;D.44 分析:选D,前项减后项=>64、-32、16、-

8、4、-2=>前项除以后项=>-

2、-

2、-

2、-

2、-2

【307】4,2,2,3,6,()A.10;B.15;C.8;D.6;

分析:选B,后项/前项为:0.5,1,1.5,2,?=2.5

所以6×2.5=15 1【308】49/800,47/400,9/40,()A.13/200;B.41/100;C.51/100;D.43/100 分析:选D,思路一:49/800,47/400,9/40, 43/100=>49/800、94/800、180/800、344/800=>分子 49、94、180、344

49×2-4=94;94×2-8=180;180×2-16=344;其中4、8、16等比。

思路二:分子49,47,45,43;分母800,400,200,100

【309】36,12,30,36,51,()

A.69 ;B.70; C.71; D.72 分析:选A,36/2=30-12;12/2=36-30;30/2=51-36;36/3=X-51; X=69

【310】5,8,-4,9,(),30,18,21 A.14;B.17;C.20;D.26 分析:选B,5+21=26;8+18=26;-4+30=26;9+17=26

【311】6,4,8,9,12,9,(),26,30 A.12;B.16;C.18;D.22 分析:选B,6+30=36;4+26=30;8+x=?;9+9=18;12 所以x=24,公差为6

【312】6, 3, 3, 4.5, 9,()A.12.5;B.16.5;C.18.5;D.22.5 分析:选D,6,3,3,4.5,9,(22.5)=>后一项除以前一项=>1/2、1、2/3、2、5/2(等差)

【313】3.3,5.7,13.5,()A.7.7;B.4.2;C.11.4;D.6.8 分析:选A,都为奇数

【314】5,17,21,25,()A.34;B.32;C.31;D.30; 分析:选C,都是奇数

【315】400,(),2倍的根号5,4次根号20 A.100;B.4; C.20;D.10 分析:选C,前项的正平方根=后一项

【316】1/2,1,1/2,1/2,()A.1/4;B.6/1; C.2/1;D.2 分析:选A,前两项乘积 得到 第三项

【317】 65,35,17,(),1 A.9;B.8;C.0;D.3;

分析:选D,65 = 8×8 + 1;35 = 6×6 – 1;17 = 4×4 + 1;3= 2×2 – 1;1= 0×0 + 1

【318】 60,50,41,32,23,()A.14;B.13;C.11; D.15; 分析:选B,首尾和为 73。

【319】16,8,8,12,24,60,()A、64;B、120;C、121;D、180 分析:选D。后数与前数比是1/2,1,3/2,2,5/2,---答案是180

【320】3,1,5,1,11,1,21,1,()A、0;B、1、C、4;D、35 分析:选D。偶数列都是1,奇数列是3、5、11、21、(),相邻两数的差是2、6、10、14是个二级等差数列,故选D,35。

【321】0,1,3,8,22,64,()A、174;B、183;C、185;D、190 答:选D,0×3+1=1;1×3+0=3;3×3-1=8;8×3-2=22;22×3-2=64;64×3-2=190;其中1、0、-

1、-

2、-

2、-2头尾相加=>-

3、-

2、-1等差

【322】0,1,0,5,8,17,()A、19;B、24;C、26;D、34; 答:选B,0 =(-1)1 5 =(2)+ 1.....24 =(5)-1

【323】0,0,1,4,()A、5;B、7;C、9;D、10 分析:选D。二级等差数列

【324】18,9,4,2,(),1/6 A、1;B、1/2;C、1/3;D、1/5 分析:选C。两个一组看。2倍关系。所以答案 是 1/3。

【325】6,4,8,9,12,9,(),26,30 A、16;B、18;C、20;D、25 分析:选A。头尾相加=>36、30、24、18、12等差

【326】 1,2,8,28,()A.72;B.100;C.64;D.56

答:选B,1×2+2×3=8;2×2+8×3=28;8×2+28×3=100

【327】1, 1, 2, 2, 3, 4, 3, 5,()A.6;B.4;C.5;D.7;

答:选A,1, 1, 2;2, 3, 4;3, 5 6=>分三组=>每组第一、第二、第三分别组成数列=>1,2,3;1,3,5;2,4,6

【328】0,1/9,2/27,1/27,()A.4/27;B.7/9;C.5/18;D.4/243;

答:选D,原数列可化为0/3,1/9,2/27,3/81;分子是0,1,2,3的等差数列;分母是3,9,27,81的等比数列;所以后项为4/243

【329】1,3,2,4,5,16,()。A、28;B、75;C、78;D、80 答:选B,1(第一项)×3(第二项)-1=2(第三项);3×2-2=4;2×4-3=5……5×16-5=75

【330】1,2,4,9,23,64,()A、87;B、87;C、92;D、186 答:选D,1(第一项)×3-1=2(第二项); 2×3-2=4....64×3-6=186

【331】2,2,6,14,34,()A、82;B、50;C、48;D、62 答:选A,2+2×2=6;2+6×2=14;6+14×2=34;14+34×2=82

222

2【332】 3/7,5/8,5/9,8/11,7/11,()A、11/14;B、10/13;C、15/17;D、11/12 答:选A,奇数项3/7,5/9,7/11.分子3,5,7等差;分母7,9,11等差。偶数项5/8,8/11,11/14,分子分母分别等差

【333】 2,6,20,50,102,()A、142;B、162;C、182;D、200 答:选C,思路一:三级等差。即前后项作差两次后,形成等差数列。也就是说,作差三次后所的数相等。

2222思路二:2(第一项)+3-5=6(第二项);6+4-2=20 20+5+5=50;50+6+16=102。其中-5,-2,5,16,可推出下一数为31(二级等差)所以,102+7+31=182

【334】 2,5,28,(),3126 A、65;B、197;C、257;D、352 答:选C,1的1次方加1(第一项),2的2次方加1等5,3的3次方加1等28,4的4次方加1等257,5的5次方加1等3126,【335】7,5,3,10,1,(),()

A.15、-4; B.20、-2; C.15、-1; D.20、0 答:选D,奇数项7,3,1,0=>作差=>4,2,1等比;偶数项5,10,20等比

【336】81,23,(),127

A.103;B.114;C.104;D.57 答:选C,第一项+第二项=第三项。81+23=104,23+104=127

【337】1,3,6,12,()A.20;B.24;C.18;D.32;

答:选B,3(第二项)/1(第一项)=3,6/1=6,12/1=12,24/1=24;3,6,12,24是以2为等比的数列

【338】7,10,16,22,()A.28;B.32;C.34;D.45;

答:选A,10=7×1+3;16=7×2+2;22=7×3+1;28=7×4+0

【339】11,22,33,45,(),71 A.50;B.53;C.57;D.61 答:选C,10+1=11;20+2=22;30+3=33;40+5=45;50+7=57;60+11=71;加的是质数!

【340】1,2,2,3,4,6,()

A.7;B.8;C.9;D.10 答:选C,1+2-1=2;2+2-1=3;2+3-1=4;3+4-1=6;4+6-1=9;

【341】3,4,6,12,36,()

A.8;B.72;C.108;D.216;

答:选D,前两项相乘除以2得出后一项,选D

【342】5,17,21,25,()

A.30;B.31;C.32;D.34 答:选B,思路一:5=>5+0=5 ,17=>1+7=>8,21=>2+1=>3,25=>2+5=7,?=>? 得到新数列5,8,3,27,?。三个为一组(5,8,3),(3,7,?)。第一组:8=5+3。第二组:7=?+3。?=>7。规律是:重新组合数列,3个为一组,每一组的中间项=前项+后项。再还原数字原有的项4=>3+1=>31。

思路二:都是奇数。

【343】12,16,112,120,()分析:答案:130。

把各项拆开=>分成5组(1,2),(1,6),(1,12),(1,20),(1,30)=>每组第一项1,1,1,1,1等差;第二项2,6,12,20,30二级等差。

【344】13,115,135,()

分析:答案:163。把各项拆开=>分成4组(1,3),(1,15),(1,35),(1,63)=>每组第一项1,1,1,1,1等差;第二项3,15,35,63,分别为奇数列1,3,5,7,9两两相乘所得。

【345】-12,34,178,21516,()分析:答案:33132。-12,34,178,21516,(33132)=>-12,034,178,21516,(33132),首位数:-1,0,1,2,3等差,末位数:2,4,8,16,32等比,中间的数:3,7,15,31,第一项×2+1=第二项。

【346】15, 80, 624, 2400,()A.14640;B.14641;C.1449;D.4098;

44444分析:选A,15=2-1;80=3-1;624=5-1; 2400=7-1;?=11-1;质数的4次方-1

【347】5/3,10/8,(),13/12 A.12/10;B.23/11; C.17/14; D.17/15 分析:选D。5/3,10/8,(17/15),13/12=>5/3,10/8,(17/15),26/24,分子分母分别为二级等差。

【348】2,8,24,64,()

A.128;B.160;C.198;D.216;

分析:选b。2=1×2;8=2×4;24=4×6;64=8×8;?=16×10;左端1,2,4,8,16等比;右端2,4,6,8,10等差。

【349】 2,15,7,40,77,()

A.96;B.126;C.138;D.156;

222答:选C,15-2=13=4-3;40-7=33=6-3;138-70=61=8-3

【350】 8,10,14,18,()

A.26;B.24;C.32;D.20 答:选A,8=2×4,10=2×5 14=2×7 18=2×9 26=2×13。其中4,5,7,9,13,作差1,2,2,4=>第一项×第二项=第三项

【351】13,14,16,21,(),76

A.23;B.35;C.27;D.22 答:选B,后项减前项=>1,2,5,14,41=>作差=>1,3,9,27等比

【352】1,2,3,6,12,()A.20;B.24;C.18;D.36 答:选B,分3组=>(1,2),(3,6),(12,?)偶数项都是奇数项的2倍,所以是24

【353】20/9,4/3,7/9,4/9,1/4,()A.1/6;B.1/9;C.5/36;D.1/144; 答:选C,20/9,4/3,7/9,4/9,1/4(5/36)=>80/36,48/36,28/36,16/36,9/36,5/36,其中80,48,28,16,9,5三级等差。

【354】4,8/9,16/27,(),36/125,216/49 A.32/45;B.64/25;C.28/75;D.32/15

323232答:选B,偶数项:2/3,4/5(64/25),6/7 规律:分子——2,4,6的立方,分母——3,5,7的平方

【355】13579,1358,136,14,1,()A.1;B.2;C.-3;D.-7 答:选b 第一项13579它隐去了1(2)3(4)5(6)7(8)9括号里边的;第二个又是1358先补了第一项被隐去的8;第三个又是136再补了第一项中右至左的第二个括号的6;第三个又是14;接下来答案就是12

【356】5,6,19,17,(),-55

A、15;B、344;C、343;D、170 答:选B,第一项的平方—第二项=第三项

【357】1,5,10,15,()A、20;B、25;C、30;D、35 分析:答案C,30。思路一:最小公倍数。

思路二:以1为乘数,与后面的每一项相乘,再加上1与被乘的数中间的数.即:1×5+0=5,1×10+5=15,1×15+5+10=30

【358】129,107,73,17,-73,()

A.-55;B.89;C.-219;D.-81;

答:选c,前后两项的差分别为:22、34、56、90,且差的后项为前两项之和,所有下一个差为146,所以答案为-73-146=219

【359】20,22,25,30,37,()A.39;B.45;C.48;D.51;

答:选c,后项--前项为连续质数列。

【360】2,1,2/3,1/2,()

A.3/4;B.1/4;C.2/5;D.5/6 答:选C,变形:2/1,2/2,2/3,2/4,2/5

【361】7,9,-1,5,()

A.3;B.-3;C.2;D.-1 答:选B,思路一:(前一项-后一项)/2思路二:7+9=16 9+(-1)=8;(-1)+5=4;5+(-3)=2其中2,4,8,16等比

【362】5,6,6/5,1/5,()

A.6;B.1/6;C.1/30;D.6/25 答:选B,第二项/第一项=第三项

【363】1,1/2,1/2,1/4,()A.1/4;B.1/8;C.1/16;D.3/4 答:选B,第一项*第二项=第三项 【364】1/2,1,1/2,2,()A.1/4;B.1/6;C.1/2;D.2 答:选a。第一项/第二项=第三项

【365】16,96,12,10,(),15 A、12;B、25;C、49;D、75 答:选D。75。通过前面3个数字的规律,推出后面3个数字的规律。前面12×16/2=96,因此下面15×10/2=75

【366】41,28,27,83,(),65 A、81;B、75;C、49;D、36 答:选D。36。(41-27)×2=28,(83-65)×2=36

【367】-1,1,7,17, 31,(),71

A.41;B.37;C.49;D.50 答:选c。后项-前项=>差是2,6,10,14,?。?=1831+18=49

【368】-1,0,1,2,9,()

A.11;B.82;C.729;D.730;

答:选D。前面那个数的立方+1所以9的立方+1==730

【369】 1, 3, 3, 6,5,12,()

A.7;B.12;C.9;D.8;

答:选a。奇数项规律:1 3 5 7等差;偶数项3,6,12等比。

【370】 2, 3, 13,175,()A、255;B、2556;C、30651;D、36666 答:选C,30651。前面项的两倍+后面项的平方=第三项

【371】 1/2,1/6, 1/12, 1/30,()

A.1/42;B.1/40;C.11/42;D.1/50;

答:选A。分子为2、6、12、30,分别是2的平方-2=2,3的平方-3=6,4的平方-4=14,6的平方-6=30,下一项应该为7的平方-7=42,所以答案因为A(1/42).【372】23,59,(),715 A、64;B、81;C、37;D、36 分析:答案C,37。拆开:(2,3)(5,9)(3,7)(7,15)=〉3=2×2—1;9=5×2—1;7=3×2+1;15=7×2+1

【373】 15,27,59,(),103 A、80;B.81;C.82;D.83 答:选B.15-5-1=9 ;27-2-7=18;59-5-9=45; XY-X-Y=?;103-1-3=99;成为新数列9,18,45,?,99 后4个都除9,得新数列2,5,()11为等差

()为8 时是等差数列

得出?=8×9=72 所以答案为B,是81

【374】2,12,36,80,150,()A、156;B、252;C、369;C、476 分析:答案B,252。2=1×2;12 =3×4;36 =6×6;80 =10×8;150=15×10;?=21×12,其中1,3,6,10,15二级等差,2,4,6,8,10等差。

【375】2,3,2,6,3,8,6,()A、8;B、9;C、4;D、16

下载公务员考试翻译推理练习题(二)word格式文档
下载公务员考试翻译推理练习题(二).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    2014年云南省公务员招聘考试练习题精选二

    航帆网祝大家考试成功! 1.经济周期的四个阶段依次是( ) A.繁荣、萧条、衰退、复苏 B.繁荣、衰退、萧条、复苏 C.繁荣、复苏、衰退、萧条 D.衰退、萧条、复苏、繁荣 2.张某与保......

    图形推理练习题

    1. 从所给的四个选项中,选择最合适的一个填入问号处,使之呈现一定的规律性。 2. 3. 4. 5. 1.答案: C 解析: 题干中封闭面的都是通过点或线相连接,并且不共线,选项中只有C项的各......

    公务员考试材料数字推理解析

    公务员考试材料数字推理解析.txt有没有人像我一样在听到某些歌的时候会忽然想到自己的往事_______如果我能回到从前,我会选择不认识你。不是我后悔,是我不能面对没有你的结局......

    教师考试练习题二

    一 判断题 (1分*30=30分) 1.1949年中华人民共和国的成立标志着社会主义制度的建立。 2. 党的思想工作是其他一切工作的生命线。 3. 中国革命建设的出发点是从中国实际出发。 4.......

    2014年江苏公务员数字推理练习题(5篇范例)

    江苏中公教育:http://js.offcn.com/ 【1】48,65,80,103,120,149,168,( ) A.202 B.203 C.221 D.233 【2】2,14,84,420,1680,( ) A.2400 B.3360 C.4210 D.5040 【3】14, 4, 3,-2, A.-3 B.4 C.......

    2013年公务员考试公共基础知识刑法常识练习题(二)

    职业培训教育网 2013年公务员考试公共基础知识刑法常识练习题(二) 公共基础知识刑法常识练习题: 41.行政机关采取行政强制措施,必须有法律、的法规的明确授权,并严格依照法律规定......

    公务员考试判断推理—类比推理(5篇材料)

    公务员考试专项突破:类比推理典型例题训练和解析1.生病∶吃药a. 上课∶请假 b. 经商∶结婚c. 桌子∶风扇 d. 游泳∶更衣【解析】 本题选d。题干是一种因果顺承关系,只有d项符......

    数学广角推理练习题

    数学广角《推理》习题 基础习题 1、填空。 (1)我们班上不是男孩子,就是。 (2) 光头强车子的轮胎坏了,坏的不是前轮,就是( ) (3)数学乐园里有旋转木马、过山车,熊二不敢玩过山车,他......