五年级数学思维训练经典试题:投飞镖

时间:2019-05-15 06:36:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《五年级数学思维训练经典试题:投飞镖》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《五年级数学思维训练经典试题:投飞镖》。

第一篇:五年级数学思维训练经典试题:投飞镖

编者小语:下面这道试题是根据题型的变化总结出来的,非常适合五年级的同学参考练习,希望对大家有所帮助!甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?解:甲得分:(152+16)2=84分 乙:152-84=68分 设甲中x次 10x-6(10-x)=84 10x-60+6x=84 16x=144 x=9 设乙中y次 10y-6(10-y)=68 16y=128 y=8 答:甲中9次,乙8次。

第二篇:投飞镖游戏规则

投飞镖游戏规则

一、投飞镖游戏方法:飞镖标盘上共有10环,中心点为10环,向外依次递减,参赛选手不分男女,该项目设为单人奖项,该项目按每个支部人员排队次序每人各投掷三镖为一次,到列投镖时只能投一次,投完后可再行排队等投,直到投飞镖奖金发完为止,该项游戏即结束。

二、奖励规则:每人每次投掷3镖,只要其中一镖投中中心6--10环内即为得奖,奖励红包人民币5元整(注:若一次投掷中有2镖或3镖都投中6---10环内者,以只能得一次奖)。

三、投镖游戏动作要求:

1.投镖时每位选手投掷3镖,选手必须在不借助其他任何设备的情况下用手投掷飞镖。

2.选手在投镖过程中双脚严禁同时离地,如双脚同时离地,则为犯规,此镖不计中奖。

3.选手在每轮投镖过程中,双脚不能以任何方式踩踏或超越投镖线,如踩踏投镖线,此镖不计得奖,不得重投。

四、其他

1、投镖时,其他选手和观众应保持适当距离,避免出现意外。

2、需要裁判3人,1个主裁判,2个副裁判分别收回、发放飞镖、发放投中者奖金及监督整理排队次序等工作。

第三篇:投飞镖比赛项目规则

投飞镖比赛项目规则

1、赛场设训练镖盘和比赛镖盘,在比赛镖盘上投掷一律计入比赛成绩,一次不能投完视为弃权,不得二次进行比赛。

2、每人连续投十支镖。在投镖过程中,双脚不能踩踏或超越投镖线,如踩踏或超越投镖线,此镖不计分数,不得重投。

3、在投镖动作开始后,投镖手所持飞镖镖翼与眉平行并超过肩部时即为投镖开始,在此时间以后飞镖无论以任何形式脱离投镖的手,既为投出,此镖不得重投。

4、飞镖被镖盘弹回、坠落地面时,此镖不得重投,不计分数。

5、比赛分男女两组,每组15人以上各取前六名,一等奖1名,二等奖2名,三等奖3名。最终根据裁判宣布环数进行累计,环数高者获胜。

6、有并列成绩无法排列1、2、3等奖项的,进入名次的选手进行下轮决赛,以决赛成绩重新排名,特殊情况由裁判组集体裁定。

第四篇:扬州五年级数学思维训练10

五年级数学思维训练

(十)班级

一、填空。

1、一个最简假分数,分子、分母的积是42,这个分数可能是()。一个最简假分数,分子、分母的和是12,这个分数可能是()。

2、把下列分数化成最简分数。

******7963、分子是12的最简假分数一共有()个,最小的是()。

4、分数单位是1的所有的最简真分数的和是()。85、一个最简分数的分子和分母的积是35,这个最简分数可能是()。

6、57的分母加上8,要要使分数的大小不变,分子应加上();的分母减去6,81

211,梨还剩下,()卖出的箱数多。54要使分数的大小不变,分子应减去()。

7、苹果和梨各有200箱,卖出一些后,苹果还剩下

8、有分母是9的真分数、假分数、带分数各一个,从小到大排列这三个分数,相邻两个分数只相差一个分数单位。这三个分数分别是()、()、()。

9、甲、乙两人参加冬季长跑比赛,30分钟后,甲跑了全程的跑得快。

10、把6张同样大小的纸重叠在一起,平均分成7分,每份是6张纸的纸的1113,乙跑了全程的,()1520,每份是一张。每份是()张纸。1。

211、下面的分数,()个最接近0,()最接近1,()个最接近

2***11071

53112、实验小学五(6)班同学的参加数学趣小组,参加书法兴趣小组的同学比全班同学的 86

多3人,这个班级有()人,参加书法兴趣小组的有()人。

13、下列分数是按一定规律排列的,请在括号里填上适当的数。1111、、()…………,这样写下去,就越来越接近()。2486

4999999(2)、、、()……,这样写下去,就越来越接近()。101001000(1)

14、五年级(3)班男生人数是女生人数的1男生人数的3倍,男生人数是女生的,女生人数是4,男生人数比女生多,女生人数比男生人数少。

15、一辆汽车行驶25千米用了15分钟。这辆汽车平均每分钟行()千米。行1千米

要用()分钟。

16、在一个正方体的六个面上两面涂上红色,四面涂上黄色,把正方体任意向上抛若干次。

红色一面向上的次数大约占总次数的,黄色向上的次数大约占总次数的。

17、在中,□能填的整数有()。

二、挑战自我。

1、一个分数,分子分母的和是105,约分后是

2、一个分数的分子减1,这个分数得

少?

3、一个最简真分数,分子与分母的和是17,分子与分母的最小公倍数是42,这个最简真分数是多少?

4、一个分数的分子不变,分母扩大5倍,分数的大小有什么变化?如果这个分数的分母不变,分子缩小7倍,这个分数的大小有什么变化?

5、3,原来的分数是多少? 411,如果分母减1,这个分数得,原来的分数是多54139的分子和分母同时加上一个什么数后约分得? 2010

三、综合提高。

3x

11、如果是一个真分数,那么x可能是哪些整数? 242、请你写出由2、3、5、7四个数可组成的所有真分数和假分数。

第五篇:数学思维训练

上楼下楼的过程中,也蕴藏着许多数学问题,今天我们就来学习楼梯中的数学,日常生活中与爬楼梯类似的问题还有锯木头的段数问题,敲钟遇到的时间问题等,都是比较特殊的问题。

1、爬楼梯遇到的层次问题,主要明白几楼与几层楼梯是不同的,从底楼起,楼数比楼梯层数多1。即:楼数=楼梯层数+1

楼梯层数=楼数-1

2、锯木头的段数问题,主要明白锯成木头的段数比锯木头的次数多1。

即:段数=次数+1

次数=段数-1

3、敲钟遇到的时间问题,主要明白敲的次数比钟声之间的间隔多1。即:次数=间隔数+1

间隔数=次数-1 解决这类应用题,先要考虑以上提到的这些差别,再选择恰当的解题方法。

1、聪聪住的这幢楼共有6层,每层楼梯20级,她家住在五楼,聪聪每次回家要走多少级台阶才能到自己住的那一层?

分析与解答:聪聪住在五楼,从底楼走到五楼其实走了5-1=4(层)楼梯。每层楼梯20级,要求从底楼走到五楼的台阶数,其实就是求4个20是多少。

(1)

聪聪从底楼到五楼要走几层楼梯?

(2)

聪聪从底楼到五楼要走几级楼梯?

答:聪聪每次回家要走

级台阶才能到自己住的那一层。试一试1:冬冬住在11楼,他他发现第8层到第9层有25级台阶,从底楼到冬冬家一共有多少级台阶?

2、小红家住六楼,她从底楼走到二楼用1分钟,那么她从底楼走到六楼要用多少分钟?

分析与解答:从底楼到六楼其实爬了6-1=5(层)楼梯,小红从底楼到二楼用了1分钟,即走一层楼梯要用1分钟,所以从底楼到六楼要用1×5=5(分)。

(1)

从底楼到六楼要爬几层楼梯?

(2)

从底楼到六楼要爬几分钟?

答:她从底楼走到六楼要用

分钟。

试一试2:许亮家住五楼,他从四楼到五楼需要30秒,他从底楼走到五楼要多少秒?

例3:把一根粗细均匀的木料锯成5段,每锯一次要用3分钟,一共要用多少分钟?

分析与解答:要把木料锯成5段,其实只需要锯5-1=4次,每锯一次要3分钟,要求一共用了多少分钟,就是求4个3分钟是多少?(1)

把木料锯成5段,要锯几次?

(2)

一共要锯多少分钟?

答:一共要用

分钟。

试一试3:把一根16米长的钢管锯成4段,每锯一次用6分钟,一共需要几分钟?

例4:时钟3点钟敲3下,6秒钟敲完;6点钟敲6下,几秒钟敲完? 分析与解答:时钟敲3下,中间有2个间隔,2个间隔用了6秒,由此可知每个间隔用了

6÷2=3秒;时钟敲6下,中间有6-1=5个间隔,所用时间就是5个3秒。

(1)

敲3下钟声之间有几个间隔?

(2)

每个间隔用多少秒?

(3)

敲6下钟声之间有几个间隔?

(4)

敲6下钟声用了多少时间?

答:

秒钟敲完。

试一试4:时钟12秒钟敲了7下,敲11下需要几秒?

例5:六一儿童节同学们参加队列表演,有32人参加,每4人一行,前后两行间隔2米,这个队列全长多少米? 解:(1)可以站几行?

(2)有多少个间隔?

(3)队列有多长?

答:这个队列全长

米。

试一试5:学校组织同学去看电影,三(2)班40个同学排成两路纵队,前后相邻两个同学之间的距离是1米。三(2)班的队伍长多少米?

例6:某工厂厂庆,在一条长40米的大路两侧插彩旗,从起点到终点共插了22面,相邻两面彩旗之间的距离相等,相邻两面彩旗之间相距多少米?

解:(1)每侧有多少面彩旗?

(2)每侧有多少个间隔?

(3)相邻两面彩旗之间相距多少米?

答:相邻两面彩旗之间相距

米。

试一试6:在学校一条长24米的走廊两边摆菊花,从起点到终点共摆了18盆,相邻两盆之间的距离相等,相邻两盆之间相距多少米? 练习:

1、乐乐家住四楼,每次回家要走72级台阶,如果每层台阶一样多,每个楼层有多少个台阶?

2、王阿姨到一幢十层大楼的第八层办事,不巧停电,电梯停开,她从一楼走到四楼用了48秒,用同样的速度走到8楼,需要多少秒?

3、把一根钢管锯成小段,一共花了25分钟,已知每锯开一段需要5分钟,这根钢管锯成了几段?

4、时钟4点钟敲4下,9秒钟敲完,8点钟敲8下,几秒钟敲完?

5、同学们在两幢楼房间栽树,每隔5米栽一棵,一共栽了8棵,这两幢楼房相隔多少米?

6、李强用同样的速度在公园的林荫道上散步,他从第1棵树走到第10棵树用了9分钟,当他走了20分钟,他应该走到第几棵树?(相邻两棵树之间的距离相等)如果路的一边从头到尾种了50棵树,他从头到尾共需要走多少分钟?

7*、云和小亮两人比赛爬楼梯,小云跑到3楼时,小亮恰好跑到2楼,照这样计算,小云跑到9楼时,小亮跑到几楼?

试一试5:猴山上有大猴子22只,小猴子的只数是大猴子的4倍,中猴子有43只,三种猴子一共有多少只?

例6:强强去外婆家,如果他来回都步行要用90分钟。如果他去时步行,回来时乘车一共用了58分。他回来时乘车要用多少分钟? 分析与解答:根据来回都步行要用90分钟可以求出他去时步行用的时间,又知道他去时步行,回来时乘车一共用了58分,可以求出他回来时乘车要用多少分钟。(1)他去时步行用了多少时间?

(2)回来时乘车用多少分钟?

综合算式:

答:他回来时乘车要用

分钟。

试一试6:邮递员叔叔去某地送信,来回都骑车要用48分钟,如果他去时骑车,回来时步行,一共要用95分钟。他回来时步行要用多少分钟? 练习:

1、在学雷锋活动,三年级同学做好事73件,五年级同学做好事的件数是三年级的3倍。两个年级共做好事多少件?

2、爸爸今年30岁,是小明年龄的5倍,爸爸今年比小明大多少岁?

3、花圃里有48盆鸡冠花,是郁金香的4倍,郁金香的盆数比月季花少18盆,花圃里有多少盆月季花?

4、书架上摆数三层图书,第一层有32本,第二层有28本,第二层和第三层的总本数是第一层的2倍,第三层有多少本图书?

5、学校体育器材室足球84只,是排球只数的2倍,篮球有56只,三种球一共有多少只?

6、李老师上班时坐车,下班时步行,在路上共用50分钟,如果往返都步行要用80分钟。如果往返都坐车,只需多少分钟?

7、爸爸共买回56个鸡蛋,过了几天后,吃掉的鸡蛋是还剩的6倍,还剩多少个鸡蛋?

学 会 倒 着 想

例1:一条毛毛虫由幼虫长到成虫,每天长一倍,16天能长到16厘米。问长到4厘米时要用多少天?

分析与解答:由题中条件可知:每天毛毛虫的长度都是前一天的2倍,倒着想,就是前一天的长度是后一天的一半。我们就从第16天长到16厘米一天一天往前推算:

(1)第15天长到多少厘米?

(2)第14天长到多少厘米?

答:长到4厘米时要用

天。

试一试1:一条小青虫由幼虫长到成虫,每天长一倍,20天能长到20厘米。问长到5厘米时要用多少天? 例2:一个数减16加上240,再除以7得40,求这个数是多少? 分析与解答:我们先理清题中的顺序:如下:

用倒着想的方法思考,就是从原来运算的逆运算一步一步地推想。最后是除以7得40,如果不除以7,那应该是40×7=280;如果不加上240,那应该是280-240=40;如果不减去16,那应该是16+40=56。

答:这个数是。

试一试2:一个数如果加上5,乘5,减去5,再除以5,结果还是5。这个数是多少?

例3:小丽在做一道加法计算题时,由于粗心,把个位上的4看作7,十位上的8看作2,结果和是306。正确的答案应该是多少? 分析与解答:要求正确的答案,就要知道两个正确的加数。看错的加数是27,因此得到错误的和是306。我们倒着想,根据逆运算可以得到一个没有看错的加数是306-27=279。题中已知一个正确的加数是84,所以,正确的和应该是:

(1)

(2)

答:正确的答案应该是。

试一试3:小明在做一道加法计算题时,将个位上的5看作9,把十位上的8看作3,结果所得的和是123,正确的答案应该是多少? 例4:一根铁丝剪去一半,再减去余下的一半,还剩14分米,这根铁丝原来长多少分米?

分析与解答:根据题意,画出线段图:

从上面的线段图可以看出,剩下的14分米和余下的一半同样多。那么,原来铁丝长的一半就是14×2=28分米。所以这根铁丝原来长就是:

答:这根铁丝原来长

米。

试一试4:小华用压岁钱的一半买了一只新书包,又用余下的一半买了几本文艺书,还剩15元,小华的压岁钱一共有多少元? 例5:小红、小丽、小华三人分苹果,小红得的比总数的一半多1个,小丽得的比剩下的一半多1个,小华得10个。原来有多少个苹果? 分析与解答:根据题意,画线段图:

为什么小华得10个,这是因为小丽得到剩下的一半多1个,如果小丽只得了剩下的一半,那么小华应该得到10+1=11个,也就是剩下的另一半,这样也就说明了小丽得到了同样多的11个,我们由此可以算出小红取去后剩下的苹果数是11×2=22个。同样,如果小红得的是总数的一半,那么剩下的应该是22+1=23个。显然,总数的另一半也就是23个,那么苹果总数应该是23×2=46个。(1)如果小丽只得剩下的一半,那么小华该得多少个?

(2)小红取了后,还剩多少个苹果?

(3)如果小红只得总数的一半,应剩多少个?

(4)原来有多少个苹果?

答:原来有

个苹果。

试一试5:小明看一本故事书,第一天看了这本书的一半又10页,第二天看了余下的一半又10页,还剩下15页没看。这本故事书一共有多少页?

例6:三只笼子里共养24只兔子,如果从第一只笼子里取出4只放到第二只笼里,再从第二只笼里取出3只放到第三只笼里,那么三只笼里的兔子就一样多。原来三只笼里各养了多少只兔子?

分析与解答:根据题意可知,第一只、第三只笼子里的兔子只发生了一次变化,而第二只笼里的兔子只数发生了两次变化;三只笼里的兔子不管怎样移动,兔子的总只数是不变的,我们从变化的结果“三只笼里的兔子就一样多”可知,最后每只笼子的兔子都是24÷3=8只。再对照条件,把各笼里的兔子还原,就得到了原来各养了多少只。(1)三只笼子最后各有多少只兔子?

(2)第一只笼子原来有多少只兔子?

(3)第二只笼子原来有多少只兔子?

(4)第三只笼子原来有多少只兔子?

答:第一只笼子原来有

只兔子;第二只笼子原来有

只兔子;第三只笼子原来有 只兔子。

试一试6:小青、小白、小华都喜爱画片,如果小青给小白11张画片,小白给小华20张画片,小华给小青5张画片后,他们三人的画片张数就同样多。已知他们三人共有画片150张,他们三人原来各有多少张画片? 练习:

1、有种水草每天能长一倍,8天能长满一池塘。长满半池塘要几天?

2、一个数的5倍加上6减去10再除以9,得4。这个数是多少?

3、小马虎在做一道减法题时,把减数十位上的8错看成5,个位上的7错看成1,结果求出的错误的差是236。正确的差是多少?

4、某人乘火车从甲地到乙地,行了全程的一半时开始睡觉,当他醒来时发现火车又行了睡时剩下路程的一半,这时离乙地还有100千米。甲乙两地相距多少千米?

5、妈妈从副食店买回一些鸡蛋。第一天吃了全部的一半又一个,第二天吃了余下的一半又2个,第三天吃了3个,恰好吃完。妈妈买回多少个鸡蛋?

6、有甲、乙、丙、丁四篮苹果,如果从甲篮拿出10个给乙篮,从乙篮拿出12个给丙篮,从丙篮拿出20个给丁篮,从丁篮拿出14个甲篮后,四篮苹果的个数相等,已知四篮共有苹果120个。原来四篮各有多少个苹果?

加减法应用题

用数学方法解决人们生活和工作中的实际问题就产生了通常所说的“应用题”。

应用题由已知的“条件”和未知的“问题”两部分构成,而且给出的已知条件应能保证求出未知的问题。

这一讲主要介绍利用加、减法解答的简单应用题。

例1 小玲家养了46 只鸭子,24 只鸡,养的鸡和鹅的总只数比养的鸭多5 只。小玲家养了多少只鹅? 解:将已知条件表示为下图:

表示为算式是:24+?=46+5。由此可求得养鹅(46+5)-24=27(只)。答:养鹅27 只。

若例1 中鸡和鹅的总数比鸭少5 只(其它不变),则已知条件可表示为下图,表示为算式是:24+?+5=46。由此可求得养鹅46-5-24=17(只)。例2 一个筐里装着52 个苹果,另一个筐里装着一些梨。如果从梨筐里取走18 个梨,那么梨就比苹果少12 个。原来梨筐里有多少个梨? 分析:根据已知条件,将各种数量关系表示为下图。

有几种思考方法:

(1)根据取走18 个梨后,梨比苹果少12 个,先求出梨筐里现有梨52-12=40(个),再求出原有梨(52-12)+18=58(个)。

(2)根据取走18 个梨后梨比苹果少12 个,我们设想“少取12 个”梨,则现有的梨和苹果一样多,都是52 个。这样就可先求出原有梨比苹果多18-12=6(个),再求出原有梨52+(18-12)=58(个)。

(3)根据取走18 个梨后梨比苹果少12 个,我们设想不取走梨,只在苹果筐里加入18 个苹果,这时有苹果52+18=70(个)。

这样一来,现有苹果就比原来的梨多了12 个(见下图)。由此可求出原有梨(52+18)-12=58(个)。

由上面三种不同角度的分析,得到如下三种解法。解法 1:(52-12)+18=58(个)。解法 2:52+(18-12)=58(个)。解法 3:(52+18)-12=58(个)。答:原来梨筐中有58 个梨。

例3 某校三年级一班为欢迎“手拉手”小朋友们的到来,买了若干糖果。已知水果糖比小白兔软糖多15 块,巧克力糖比水果糖多28 块。又知巧克力糖的块数恰好是小白兔软糖块数的2 倍。三年级一班共买了多少块糖果?

分析与解:只要求出某一种糖的块数,就可以根据已知条件得到其它两种糖的块数,总共买多少就可求出。先求出哪一种糖的块数最简便呢?我们先把已知条件表示为下图。

由上图可求出,小白兔软糖块数=15+28=43(块),水果糖块数=43+15=58(块),巧克力糖块数=43×2=86(块)。糖果总数=43+58+86=187(块)。答:共买了187 块糖果。

例4 一口枯井深230 厘米,一只蜗牛要从井底爬到井口处。它每天白天向上爬110 厘米,而夜晚却要向下滑70 厘米。这只蜗牛哪一个白天才能爬出井口?

分析与解:因蜗牛最后一个白天要向上爬110 厘米,井深230 厘米减去这110 厘米后(等于120 厘米),就是蜗牛前几天一共要向上爬的路程。因为蜗牛白天向上爬110 厘米,而夜晚又向下滑70 厘米,所以它每天向上爬110-70=40(厘米)。

由于120÷40=3,所以,120 厘米是蜗牛前3 天一共爬的。故第4 个白天蜗牛才能爬到井口。

若将例4 中枯井深改为240 厘米,其它数字不变,这只蜗牛在哪个白天才能爬出井口?(第5 个白天)练习: 1.甲、乙、丙三人原各有桃子若干个。甲给乙2 个,乙给丙3 个,丙又给甲5 个后,三人都有桃子9 个。甲、乙、丙三人原来各有桃子多少个?

2.三座桥,第一座长287 米,第二座比第一座长85 米,第三座比第一座与第二座的总长短142 米。第三座桥长多少米?

3.(1)幼儿园小班有巧克力糖40 块,还有一些奶糖。分给小朋友奶糖24块后,奶糖就比巧克力糖少了10 块。原有奶糖多少块?(2)幼儿园中班有巧克力糖48 块,还有一些奶糖。分给小朋友奶糖26块后,奶糖就只比巧克力糖多18 块。原有奶糖多少块? 4.一桶柴油连桶称重120 千克,用去一半柴油后,连桶称还重65 千克。这桶里有多少千克柴油?空桶重多少?

5.一只蜗牛从一个枯水井底面向井口处爬,白天向上爬110 厘米,而夜晚向下滑40 厘米,第5 天白天结束时,蜗牛到达井口处。这个枯水井有多深?若第5 天白天爬到井口处,这口井至少有多少厘米深?(厘米以下的长度不计)6.在一条直线上,A 点在B 点的左边20 毫米处,C 点在D 点左边50 毫米处,D 点在B 点右边40 毫米处。写出这四点从左到右的次序。

7.(1)五个不同的数的和为172,这些数中最小的数为32,最大的数可以是多少?

(2)六个不同的数的和为356,这些数中,最大的是68,最小的数可以是多少?

下载五年级数学思维训练经典试题:投飞镖word格式文档
下载五年级数学思维训练经典试题:投飞镖.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    小学五年级数学下册综合能力提升思维训练试题

    小学五年级下册数学综合能力提升训练题1一、填空题1、3.05m=()cm10.8m2=()dm26050cm3=()dm32800mL=()L=()dm32、写出12的所有因数和50以内的所有倍数因数:()倍数:()3、从0、5、6、7四个数中......

    小学五年级数学思维训练教学总结

    数学教学过程的基本目标是促进学生的发展,按照新课标的基本理念,它不只是让学生获得必要的数学 知识,技能还应当包括在启迪思维、解决问题,情感与态度等方面的发展,那么思维训练......

    二年级数学思维训练)

    二年级数学思维训练题(1) 1.小明今年6岁,小强今年4岁,2年后,小明比小强大几岁? 2.同学们排队做操,小明前面有4个人,后面有4个人,这一队一共有多少人? 3.有一本书,小华第一天看了2页,以后每......

    三年级数学思维训练

    三年级数学思维训练1、有48个学生参加三项体育比赛,但参加的每项活动的人数不一样,而人数都有一个数字 “6”,参加三项体育比赛的各有几人? 2、龙龙和亮亮去公园玩,想买门票,但钱......

    数学思维训练计划

    六年级第一学期思维训练课计划 指导思想:数学思维训练是一种学科思维训练,是结合日常的数学教学活动,以数学知识与技能为载体,根据数学思维发展的规律和一般思维训练的原理,针对......

    六年级数学思维题训练强化练习试题

    ★欢欢和欣欣都爱好集邮,他们各有邮票若干张,欢欢拿出1/6给欣欣后,欣欣拿出1/5给欢欢,这时她们各有240张.原来她们各有邮票多少张?★一条5/6千米的路,第一天修了这条路的1/2,......

    苏教版五年级下册思维训练

    苏教版五年级下册思维训练一、方程问题(1)一、学一学例题1:在下面两个□里填入相同的数,使等式成立。24×□-□×15=18[思路点拨]算式中的□都用x代替,求出x的值,就是方框中应填的......

    数学思维拓展训练(十一)

    数学思维拓展训练(十一) (2006年5月) 姓名全卷120分,每空10分 ⑴ 47.25×12.4+811×3.1= ⑵ 有分别相同的5个○和8个□,请你联系学过的知识,至少用3种说法表明两种图形的倍数关系。......