第一篇:初一上学期追及问题及相关习题-根除版
追及问题及相关习题—根除版
【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。
【数量关系】 追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间
【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。
【总结题】甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。
(1)慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇?
(2)两车同时开出,相背而行多少小时后两车相距600公里?
(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里?
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
1、小明以每分钟50米的速度从学校步行回家。12分钟后小强从学校出发骑自
行车去追小明,结果距学校1000米追上小明。小强骑自行车每分钟行多少米?
2、在300米长的环形跑道上,甲乙二人同时同地同向跑步,甲每秒跑5米,乙每秒跑4.4米,两人起跑后的第一次相遇点在起跑线的前多少米?
3、猎人带猎狗追野兔,野兔先跑出80步,猎狗跑2步的时间等于野兔跑3步的时间,猎狗跑4步的距离等于野兔跑7步的距离,问猎狗需要多少步可以追上野兔?
4、一艘快艇和一艘轮船分别从A、B两地同向出发到C地去,快艇在后,每小时行42千米,轮船每小时行34千米,2.5小时后同时C地,A、B两地相距多少千米?甲厂有原料120吨,乙厂有原料96吨。甲厂每天用15吨,乙厂每天用9吨,多少天后两厂剩的原料一样多?
5、从学校到家,步行要6小时,骑自行车要3小时。已知骑自行车比步行每小时快18千米。学校到家的距离是多少千米?
6、A、B两地相距1200千米。甲从A地、乙从B地同时出发,相向而行。甲每分钟行50千米,乙每分钟行70千米。两人在C处第一次相遇。问AC之间距离是多少?如相遇后两人继续前进,分别到达A、B两地后立即返回,在D处第二次相遇。问CD之间距离是多少?
7、甲、乙两人在环形跑道上赛跑,跑道全长400米。如果甲的速度为16米/秒,乙的速度为12米/秒。两人同时同地同向而行,那么多少秒后第一次相遇?
8、姐姐从家上学校,每分钟走50米,妹妹从学校回家,每分钟走45米。如果妹妹比姐姐上动身5分钟,那么姐妹两人同时到达目的地。问从家到学校有多远?
9、甲、乙两人同时分别从两地骑车相向而行。甲每小时行20千米,乙每小时行18千米。两人相遇时距全程中点3千米。问全程长多少米?
10、两地相距900千米,甲走需15天,乙走需12天。现在甲先出发2天,乙去追甲。问要走多少千米才可追上?
11、甲、乙两人分别在相距240千米的A、B两地乘车出发,相向而行,5小时相遇。如果甲、乙两人乘原来的车分别在两城同时同向出发,慢车在前,快车在后,15小时后,甲、乙两人相遇。求各车的速度。
12、甲轮船以每小时平均16千米的速度由一码头出发,经过3小时,乙轮船也由同一码头按照同一方向出发,再经过12小时追上甲轮船。求乙轮船的速度。
13、甲有120元钱,乙有96元钱。甲每天用15元,乙每天用9元。多少天之后,两人剩下的钱数相等?
14、小王骑摩托车由甲城到乙城要5小时。小李骑自行车由乙城到甲城要10小时。两人同时从两城相向开出,相遇时小王距离乙城还有192千米。求两城距离
1、甲、乙两人骑车同时从学校去A地,甲、乙的速度分别为9千米/时和15千米/时,乙因事在途中停留了4个小时,结果比甲迟到1小时,求学校与A地相距多少米?
2、某部队执行任务,以每小时8千米的速度前进,通讯员在队尾接到命令后把命令传给排头,然后立即返回排尾,通讯员来回的速度均为12千米/小时,共用了14.4分钟,求队伍的长是多少?
3、某人从甲地去乙地,并用相同的速度返回,计划共用8小时,此人按计划去乙地后,马上返回,并且速度每小时增加了2千米,从乙地走出5千米后又返回乙地取物,不停留,当回到甲地时比原计划多用了12分钟,求甲乙两地间路程。
4、某班学生列队从学校到某地去参加劳动,以每小时4km的速度行进,走了1km的路时,一个学生奉命回学校取一件东西,他以每小时5km的速度跑步回学校,取了东西后立即以同样的速度跑步追赶队伍,结果在距某地1.5km的地方追上了队伍,求学校到某地的距离?
5、甲、乙两人同时由A地去B地,甲骑车,乙步行,甲的速度比乙的3倍还快2公里/小时,甲到B后停留45分钟,(乙没到B),然后返回A地,在途中遇到乙,这时候乙走了3小时,若A、B相距25.5公里,求两人的速度各是多少?
6、小刚从家里到学校,步行需要50分钟,若骑车只需要15分钟,现在,小刚从家里出发,先骑车,在离家9分钟时到达途中的祖母家,然后把车放下,再从祖母家步行去学校,假定小刚在祖母家花费了1分钟,问小刚一共用了多少时间才到学校?
7、一个骑车的人起初用18千米/小时的速度行路,在剩下的路程比已走过的路程少32千米后,开始用25千米/小时的速度走完全程,若走完全程的平均速度等于20千米/小时,问他一共走了多少千米?
8、汽车上坡时每小时行28千米,下坡时每小时行35千米,汽车从A地到B地时,下坡路比上坡路的2倍少14千米,按原路返回时,所需要的时间比去时多12分钟,求汽车从A到B时,行驶的上坡路和下坡路各是多少千米?
1、甲、乙两人练习赛跑,甲每秒跑7米,乙每秒跑6.5米,如果让乙先跑2秒钟,甲经过几秒钟可以追上乙?
2、甲、乙两地相距245千米,一列慢车由甲站开出,每小时行驶50千米;一列快车由乙站开出,每小时行驶70千米,两车同时同向而行,快车在慢车的后面,经过几小时快车可以追上慢车?
3、初一某班学生以5公里/小时的速度去A地,出发了4.2小时后,通讯员员骑摩托车用36分钟追赶上了学生队伍,问通讯员的速度?
4、甲、乙两人先后从A地步行去B地,甲以每分钟50米的速度先出发,8分钟后,乙以每分钟60米的速度出发,结果两人同时到达B地,求A、B两地的距离。
5、一架敌机侵犯我领空,我机起飞迎击,在两机相距50千米时,敌机扭转机头,以15千米/分的速度逃跑。我机以22千米/分的速度追击,当我机追至距敌机1千米时,向敌机开火,经过半分,敌机一头栽了下去,敌机从逃跑到被我机歼灭时只有几分时间?
6、在一条公路干线上有相距18千米的A、B两个村庄,A地一辆汽车的速度是54千米/小时,B地一辆汽车的速度是36千米/小时,如果两车同时同向而行,求经过几个小时后两车相距45千米?
7、两运动员在田径场练习长跑,田径场周长为400米,已知甲每分钟跑50米,乙每分钟跑40米,两人同时从同一地点出发,同向而行,经过多少分钟,两人才能第一次相遇?
8、一列快车和一列慢车在1000千米的环形马路上同时同向开出,速度为120千米/小时和80千米/小时,问出发后多长时间快车追上慢车?这时候慢车已经跑了几圈?
9、一条环形跑道长400米,乙骑车每分钟走550米,甲每分钟跑250米,起跑点相同,若让甲先跑2分钟乙再出发,问几分钟后两人第二次相遇?
10、当时针在4点到5点之间,时针与分针何时重合(所指示方向相同)?何时成一直线(所指示方向相反)?何时成一直角?
一元一次方程应用题
1.列一元一次方程解应用题的一般步骤
(1)审题:弄清题意.(2)找出等量关系:找出能够表示本题含义的相等关系.(3)设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.(4)解方程:解所列的方程,求出未知数的值.(5)检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案. 2.和差倍分问题
增长量=原有量×增长率 现在量=原有量+增长量 3.等积变形问题
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变. ①圆柱体的体积公式 V=底面积×高=S·h=rh ②长方体的体积 V=长×宽×高=abc 4.数字问题
一般可设个位数字为a,十位数字为b,百位数字为c.
十位数可表示为10b+a,百位数可表示为100c+10b+a.
然后抓住数字间或新数、原数之间的关系找等量关系列方程. 5.市场经济问题
(1)商品利润=商品售价-商品成本价
(2)商品利润率=商品利润×100% 商品成本价(3)商品销售额=商品销售价×商品销售量
(4)商品的销售利润=(销售价-成本价)×销售量
(5)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.
6.行程问题:路程=速度×时间 时间=路程÷速度 速度=路程÷时间
(1)相遇问题: 快行距+慢行距=原距
(2)追及问题: 快行距-慢行距=原距
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度
抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 7.工程问题:工作量=工作效率×工作时间
完成某项任务的各工作量的和=总工作量=1 8.储蓄问题
利润=每个期数内的利息×100% 利息=本金×利率×期数
本金
1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?
2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍?
3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,. ≈3.14)
4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.
5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克?6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.
7.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.
(1)某户八月份用电84千瓦时,共交电费30.72元,求a.
(2)若该用户九月份的平均电费为0.36元,则九月份共用电多少千瓦?•应交电费是多少元?
8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.
(1)若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.
(2)若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案?
答案
1.解:设甲、乙一起做还需x小时才能完成工作.
1111×+(+)x=1 626411 解这个方程,得x=
511 =2小时12分 根据题意,得 答:甲、乙一起做还需2小时12分才能完成工作. 2.解:设x年后,兄的年龄是弟的年龄的2倍,则x年后兄的年龄是15+x,弟的年龄是9+x.
由题意,得2×(9+x)=15+x 18+2x=15+x,2x-x=15-18 ∴x=-3 答:3年前兄的年龄是弟的年龄的2倍.
(点拨:-3年的意义,并不是没有意义,而是指以今年为起点前的3年,是与3•年后具有相反意义的量)
3.解:设圆柱形水桶的高为x毫米,依题意,得
( ·2002)x=300×300×80 2 x≈229.3 答:圆柱形水桶的高约为229.3毫米.
4.解:设第一铁桥的长为x米,那么第二铁桥的长为(2x-50)米,•过完第一铁桥所需的时间为x分. 6002x50分. 600 过完第二铁桥所需的时间为 依题意,可列出方程
x52x50+= 60060600 解方程x+50=2x-50 得x=100 ∴2x-50=2×100-50=150 答:第一铁桥长100米,第二铁桥长150米. 5.解:设这种三色冰淇淋中咖啡色配料为2x克,那么红色和白色配料分别为3x克和5x克.
根据题意,得2x+3x+5x=50 解这个方程,得x=5 于是2x=10,3x=15,5x=25 答:这种三色冰淇淋中咖啡色、红色和白色配料分别是10克,15克和25克. 6.解:设这一天有x名工人加工甲种零件,则这天加工甲种零件有5x个,乙种零件有4(16-x)个.
根据题意,得16×5x+24×4(16-x)=1440 解得x=6 答:这一天有6名工人加工甲种零件. 7.解:(1)由题意,得
0.4a+(84-a)×0.40×70%=30.72 解得a=60(2)设九月份共用电x千瓦时,则 0.40×60+(x-60)×0.40×70%=0.36x 解得x=90 所以0.36×90=32.40(元)
答:九月份共用电90千瓦时,应交电费32.40元.
8.解:按购A,B两种,B,C两种,A,C两种电视机这三种方案分别计算,设购A种电视机x台,则B种电视机y台.
(1)①当选购A,B两种电视机时,B种电视机购(50-x)台,可得方程 1500x+2100(50-x)=90000 即5x+7(50-x)=300 2x=50 x=25 50-x=25 ②当选购A,C两种电视机时,C种电视机购(50-x)台,可得方程1500x+2500(50-x)=90000 3x+5(50-x)=1800 x=35 50-x=15 ③当购B,C两种电视机时,C种电视机为(50-y)台. 可得方程2100y+2500(50-y)=90000 21y+25(50-y)=900,4y=350,不合题意
由此可选择两种方案:一是购A,B两种电视机25台;二是购A种电视机35台,C种电视机15台.
(2)若选择(1)中的方案①,可获利 150×25+250×15=8750(元)
若选择(1)中的方案②,可获利 150×35+250×15=9000(元)
9000>8750 故为了获利最多,选择第二种方案.
第二篇:追及问题
追及问题:
(相向而行):追及路程/追及速度和=追及时间
(同向而行):追及路程/追及速度差=追及时间 追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
奥数第七讲 行程问题
(一)——追及问题
四年级奥数教案
第七讲 行程问题
(一)——追及问题
本讲学习的追及问题与相遇问题同属于行程问题中的一类,它是同向运动问题。追及问题的基本特点是:两个物体同向运动,慢走在前,快走在后面,它们之间的距离不断缩短,直到快者追上慢者。追及问题属于较复杂的行程问题。追及问题中的各数量关系是:路程差=速度差×追及时间;
速度差=路程差÷追及时间;追及时间=路程差÷速度差;解答追及问题可适当的选择画图法、假设法、比较法等思考方法解题。
在解决同向问题时,要注意以下几点:
1(1)要弄清题意,紧扣速度差、追及时间和路程差这三个量之间的基本关系;
(2)对复杂的同向运动问题,可以借助直观图来帮助理解题意,分析数量关系;
(3)要注意运动物体的出发点、出发时间、行走方向、善于扑捉速度、时间、路程对应关系。
(4)要善于联想、转化、使隐藏的数量关系明朗化,找准理解题目的突破口。
第一课时
教学内容:掌握简单的追及问题 教学目标:理解和掌握简单的追及问题 教学重点:掌握追及问题的基本公式 教学难点:利用公式求简单的追及问题 教学过程:
一、谈话导入。
今天我们来学习行程问题当中的追及问题,它属于同向运动中的一种,下面我们就通过一个例子来给大家讲叙怎样解决追及问题。
例子:兔子在狗前面150米,一步跳2米,狗更快,一步跳3米,狗追上兔子需要跳多少步? 我们知道,狗跳一步要比兔子跳一步远3—2=1(米),也就是狗跳一步可以追上兔子1米,现在狗与兔子相距150米,2 因此,只要算出150米中有几个1米,那么就知道狗跳了多少步追上兔子的。不难看出150÷1=15(步),这是狗跳的步数。
这里狗在前面跳,狗在后面追,它们一开始相差150米,这150米叫做“追及距离”;兔子每步跳2米,狗每步跳3米,它们每步相差1米,这个叫“速度差”;狗追上兔子所需的步数叫做“追及步数”有时是以秒、分钟、小时计算,则叫“追及时间”,像这种包含追及距离、速度差和追及时间(追及步数)三个量的应用题,叫做追及问题。
解决追及问题的基本关系式是: 路程差=速度差×追及时间; 速度差=路程差÷追及时间; 追及时间=路程差÷速度差
在解决追及问题中,我们要抓住一个不变量,即追赶者所用时间与被追赶者所用的时间是相等的,都等于追及时间。大家还要注意区别“追及距离”与“追赶者追上被追赶者所走的距离”这两个量之间的区别。就像刚才的例子,“追及距离”为150米,而狗追上兔一共走了3×150=450(米)
二、新授课:
1.明确公式中三个量的含义:
速度差:快车比慢车单位时间内多行的路程即快车每小时比慢车多行的或每分钟多行的路程。
追及时间:快车追上慢车相差的距离。
路程差:快车开始和慢车相差的路程。2.熟悉追及问题的三个基本公式: 路程差=速度差×追及时间; 速度差=路程差÷追及时间; 追及时间=路程差÷速度差
3.解题技巧:在理解行驶时间、地点、方向等关系的基础上画出线段图,分析题意思,寻找路程差及另外两个量之间的关系,最终找到解答方法。【例1】甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?
【思路分析】这道问题是典型的追及问题,求追及时间,根据追及问题的公式:
追及时间=路程差÷速度差
150÷(75-60)=10(分钟)
答:10分钟后乙追上甲。
【小结】提醒学生熟练掌握追及问题的三个公式。
【例2】 骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?
【思路分析】这道题目,是同时出发的同向而行的追及问题,要求其中某个速度,就必须先求出速度差,根据公式:速度差=路程差÷追及时间: 速度差:450÷3=150(千米)自行车的速度: 150-60=90(千米)
答:骑自行车的人每分钟行90千米。
【小结】这道题目在于灵活运用追及问题的三个基本公式求其中任意三个量。【例3】两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63 千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?
【思路分析】根据题意可知,第一辆汽车先行2小时后,第二辆汽车才出发,A B 第一辆先走2小时 第二辆 第一辆
画线段图分析:从图中可以看出第一辆行2小时的路程为两车的路程差,即54×2=108(千米),两车相差108米,第二辆车去追第一辆车,第二辆车去追第一辆车,第二辆车每小时比第一辆车每多行63-54=9(千米),即为速度差,用
追及时间=路程差÷速度差。
解:(1)两车路程差为:54×2=108(千米)
(2)第二辆车追上所用时间:108 ÷(63-54)=12(小时)答:第二辆车追上第一辆车所用的时间为12小时。【小结】这道追及问题是不同时的,要先算出追及路程。【及时练习】
1、哥哥和弟弟两人同时在一个学校上学,弟弟以每分钟80米的速度先去学校,3分钟后,哥哥骑车以每分钟200米的速度也向学校骑去,那么哥哥几分钟追上弟弟?
2、姐妹两人在同一小学上学,妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远?
三、课堂小结:
追及问题的基本公式:路程差=速度差×追及时间;
速度差=路程差÷追及时间; 追及时间=路程差÷速度差
四、作业:思维训练
五、课后反思:
第二课时
教学时间:
教学内容:环形跑道的追及问题
教学目标:掌握不同形式的追及问题的解题思路和基本规律 教学重点:通过图形分析追及问题
教学难点:找准解决环形路程的追及问题的突破口
教学过程:
一、复习:追及问题的三个基本公式。
二、新授课:
【例4】 一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇?
【分析与解】 当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。
解:①甲乙的速度差:300-250=50(米)②甲追上乙所用的时间:300÷50=8(分钟)答:经过8分钟两人相遇。
【及时练习】
两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?
【例5】在周长400米的圆的一条直径的两端,甲、乙两人分别以每分钟60米和50米的速度,同时同向出发,沿圆周行驶,问2小时内,甲追上乙多少次?
【分析与解】此题属于追及问题,首先明确路程差和速度差,开始甲、乙在圆径的两端,其路程差为圆周长的一半,400÷2=200(米),当甲追上乙后,如果再想追上乙必须比乙多行圆的一周的路程,即一周400米为路程差,根据不同的路程差,我们可以求出甲追上乙一次,所用的时间,在 7 总时间中去掉第一次的追及时间再看剩下的时间里包含几个“甲追上乙所用的时间”就可以求出2小时内甲追上乙的次数。解:2小时=120分 甲第一次追上乙所用的时间:
400÷2÷(60-50)=20(分)
A B 甲 乙
甲第二次开始每追乙一次所用的时间: 400÷(60-50)=40(分)甲从第二次开始追上乙多少次:(120-20)÷40=2次„„20秒 甲共追上乙多少次:2+1=3(次)答:甲共追上乙3次。
【小结】这类环形跑道的追及问题一定要明确路程差和速度差。
【及时练习】在周长为300米得圆形跑道一条直径的两端,甲、乙两人分别以每秒7米,每秒5米的骑车速度同时顺时针方向行驶,20分钟内甲追上乙几次?
【例6】在480米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分钟20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度?
【分析与解】画出两种行驶方法的示意图: 同向行驶 乙 400米 背向行驶 甲 乙 甲 400米 400米
同向行驶,甲乙相遇,说明甲必须比乙多跑一圈,即400米才能与乙相遇,400米正好是两人的路程差,除以甲追赶乙所用的3分20秒,可知甲、乙的速度差。
背向行驶,甲、乙相遇,说明甲、乙必须合走一圈即400米,400米正好上两人的路程总和除以40秒相遇时间,可知甲、乙的速度和。
这样已知甲、乙的速度和及速度差,可将此题转化或和差关系的应用题,这样可求出甲、乙的速度分别是多少?
解:3分20秒=200秒
甲、乙的速度和:400÷40=10(米)甲、乙的速度差:400÷200=2(米)
甲的速度为每秒多少米?(10+2)÷2=6(米)乙的速度为每秒多少米?(10-2)÷2=4(米)答:甲的速度为每秒6米,乙的速度为每秒4米。
【小结】这类题目是相遇问题和追及问题的结合,以及和差问题的综合运用。【及时练习】甲、乙两地相距450米,A、B两人从两地同时相向而行,经过5分钟相遇,已知A每分钟比B 每分钟慢6米,求A、B两车的速度各是多少米?
三、课后练习:
反向而行 同向而行
1、一圆形跑道周长300米,甲、乙两人分别从A、B两端同时出发,若反向而行1分钟相遇,若同向而行5分钟,甲可追上乙,求甲、乙两人的速度。
2、甲、乙两人在环形跑道上练长跑,两人从同一地点同时同向出发,已知甲每秒跑6米,乙每秒跑4米,经过20分钟两人共同相遇6次,问这个跑道多长?
3、甲、乙两人环绕周长400米的跑道跑,如果他们从同一地点背向而行,经过2分钟相遇,如果从同一地点同向而行,经过20分钟甲追上乙,求甲、乙两人每分钟的速度各是多少?
四、课后反思:
第三课时
教学时间:
教学内容:追及问题
教学目标:掌握复杂的追及问题 教学重点: 教学难点: 教学过程:
一、新授课:
【例7】 一支队伍长350米,以每秒2米的速度前进,一个人以每秒3米的速度从队尾赶到队头,然后再返回队尾,一共要用多少分钟? 分析 要求一共要多少分钟,必须先求出从队尾赶到队头要多少分钟,再求出从队头到队尾要用多少分钟,把这两个时间相加即可。
【分析与解】
解:①赶上队头所需要时间:350÷(3-2)=350(秒)②返回队尾所需时间:350÷(3+2)=70(秒)③一共用多少分钟?350+70=420(秒)=7(分)
答:一共要用7分钟。
【及时练习】一支队伍长450米,以每秒3米的速度前进,一个通讯员骑车以匀速从队尾赶到队头用了50秒。如果他再返回队尾,还需要多少秒? 【例8】 某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为0.5米。李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用多少秒?
【分析与解】 要求一共要用多少分钟,首先必须求出队伍的长度。解:①这支路队伍长度:(202÷2-1)×0.5=50(米)②赶上队头所需要时间:50÷(5-3)=25(秒)③返回队尾所需时间:50÷(5+3)=6.25(秒)④一共用的时间:25+6.25=31.25(秒)答:一共要用31.25秒。【及时练习】
有966名解放军官兵排成6路纵队参加抗洪抢险。队伍行进速度是每秒3米,前后两排的间隔距离是1.2米。现有一通讯员从队头赶往队尾用了16秒钟。如果他再从队尾赶到队头送信还需要多少时间?
【例9】 甲、乙、丙三人从A地出发到B地。乙比丙晚出发10分钟,40分钟后追上丙;甲比乙晚出发20分钟,100分钟追上乙;甲出发多少分钟后追上丙?
设丙的速度为1米/分钟.(1)当乙追上丙时,丙共行了1×(40+10)=50米,由此可知乙行50米用了40分钟,乙的速度为50÷40=1.25(米/分钟);(2)当甲追乙时,乙已先出发走了20分钟,这时甲乙的距离差为1.25×20=25(米),甲乙的速度差为25÷100=0.25(米);甲的速度为1.25+0.25=1.5(米);(3)当甲追丙时,丙已经先出发走了10+20=30分钟,这时甲丙的距离1×(10+20)=30米,速度差为1.5-1=0.5(米/分钟),追及时间为30÷0.5=60(分钟)。
【及时练习】
小明、小峰和小光三人都从甲地到乙地,早上6时小明、小峰两人一起从甲地出发,小明每小时走5千米,小峰每小时走4千米,小光上午8时从甲地出发,傍晚6时,小光、小明同时到达乙地。小光什么时候追上小峰?
三、课后练习
1、甲乙两人在周长400米的环形跑道上竞走,已知乙的速度是平均每分钟80米,甲的速度是乙的1.25倍,甲在乙前100米,问多少分钟后,甲可以追上乙?
2、一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员.问:甲乙两地相距多少千米?
3、自行车队出发12分钟后,通讯员骑摩托车去追他们,在距离出发点9千米处追上了自行车队。然后,通讯员立刻返回出发点,随后又返回去追上了自行车队,再追上时恰好离出发点18千米,试求自行车队和摩托车的速度。
四、课后反思:
第四课时
教学内容:追击问题的练习题
教学目标:掌握各种类型的追击问题相遇问题 教学重点:会熟练解决基本的追击问题 教学难点:会解决复杂的追击问题
【例10】两艘渡船从南岸开往北岸,第一艘以每小时30千米的速度先开,第二艘渡船晚12分钟,速度为每小时40千米,结果两船同时到达,求南北两岸相距多少千米?
第一艘
【分析与解】根据题意画图:
第二艘 南岸 北岸 12分钟
要求南北岸的距离可用第一艘的速度乘以第一艘船所用的时间,或是用第二艘船的速度乘以第二艘船所用的时间。这两种时间等于追及时间,所以归为追及问题。
第五课时
教学内容:追击问题的练习题
教学目标:掌握各种类型的追击问题相遇问题 教学重点:会熟练解决基本的追击问题 教学难点:会解决复杂的追击问题 教学过程:
1、甲、乙两地相距54千米,A、B两人同时从两地相向而行,A每小时行4千米,B每小时行5千米,两人经过几小时相遇?
2、甲、乙两人同时从学校向相反方向行驶,甲每分钟行52千米,乙每分钟行50千米,经过7分钟后他们相距多少米?他们各自离学校有多少米?
3、甲、乙两地相距480米,客车和货车同时从两地相向而行,经过5小时相遇,客车的速度是每小时50千米,求货车的速度是每小时多少千米?
4、小明和小红两人从相距2280米的两地相向而行,小明每分钟行60米,小红每分钟行80米,小明出发3分钟后小红才出发,小红出发几小时后与小明相遇?相遇时两人各行了多少米?
5、一列火车于下午4时30分从甲站开出,每小时行120千米,经过1小时后,另一辆火车以同样的速度从乙站开出,晚上9时30分两车相遇,问甲、乙两站铁路长多少千米?
6、A、B两地相距360千米,客车和货车从A、B两地相向而行,客车先行1小时,货车才开出,客车每小时行60千米,货车每小时行40千米,客车开出后几小时与货车相遇?相遇地点离B地多远?
7、甲、乙两车从A、B两地同时相向而行,甲车每小时行40千米,乙车每小时行35千米,两车在距中点15千米处相遇,求AB两地相距是多少?
8、甲、乙两人同时从两地骑车相向而行,甲每小时行18千米,乙每小时行15千米,两人相遇距离中点3千米,起两地距离多少千米?
9、AB两地相900千米,甲、乙两人同时从A到B,甲每分钟行70米,乙每分钟行50米,当甲到达B后立即返回与乙在途中相遇,两人从出发到相遇共经过多少分钟?
10、学生甲和乙同时住一楼,有一次他们同时从家到相距540米的学校上学,甲每分钟行60米,乙每分钟行48米,甲到达学校后发现忘带文具盒,立即返回家去取,在途中遇到乙,那么从开始上学到两人相遇共用几分钟?
11、甲、乙两人从相距1800米的两地同时相向而行,甲每分钟行80米,乙每分钟行70米,乙带了一只小狗与他们同时行驶,狗以每分钟220米的速度向甲跑去,狗遇到甲时已行了多少米?狗遇到甲后立刻回头向乙跑去,这样狗在甲、乙两人之间来回奔跑,直到两人相遇为止,这只狗一共跑了多少米?
12、一辆客车与一辆货车同时从A、B两地相对开出,经过6小时相遇,相遇后两车都以原速继续前进,又经过4小时客车到达B地,这时货车离A地还有188千米,A、B两地相距多少千米?
13、小玲和小明家相距600米,这天两人同时从家出发向对方家走去,小玲走完全程需要12分钟,小明走完全程需要20分钟,相遇时两人各走了多少米?
14、A、B两地相距460千米,甲列车同时从A地开出2小时后,乙列车从B地开出,经过4小时与甲列车相遇,已知甲列车比乙列车每小时多行10千米,问甲列车平均每小时行多少千米?
15、甲、乙两人在相距90米的路上来回跑步,甲的速度是每秒钟3米,乙的速度是每秒种2米,如果他们同时分别从支炉两端出发,跑了10分钟,那么在这段时间内共相遇几次?
第三篇:追及问题
追及问题
1、姐妹两人分别从相距200米的甲乙两地同时同向出发,妹妹每分钟走45米,姐姐每分钟走65米,妹妹在前,姐姐在后,多少分钟后姐姐追上妹妹?
2、姐妹两人分别从相距200米的甲乙两地同时同向出发,妹妹在前,姐姐在后,10分钟后姐姐追上妹妹;如果姐妹俩从甲乙两地同时相向而行,2分钟就能相遇,求姐妹俩的速度。
3、丽丽和东东去相距18千米的游乐场,丽丽的速度是每小时4千米,出发2小时后,东东才出发,以每小时12千米的速度去追丽丽,当东东追上丽丽时,他们离游乐场还有多远?
4、早上小明去上学,他出门5分钟后,爸爸发现小明忘记带语文书,于是骑自行车去追,小明每分钟行60米,爸爸骑自行车每分钟行120米,爸爸几分钟后能追上小明?这时他们离家有多远?
5、兄弟俩绕周长400米的环形跑道跑步,他们同
时一处同向出发,已知弟弟每分钟跑100米,哥哥的速度是弟弟的2倍,他们再次相遇需要多少时间?
6、一辆汽车从甲城开往乙城,2小时后因事故停
了1小时,以后司机将速度加快10千米,又经过了4小时准时到达乙城,甲乙两城相距多少千米?
7、上午7时,有一列货车以每小时55千米的速度
从甲城开往乙城,上午9时又有一列客车以每小时80千米的速度从甲城开往乙城,为了行驶安全,列车间的距离不应该小于10千米,问货车最晚应该在什么时刻停车让客车通过?
8、姐妹俩同时从家去学校,姐姐每分钟行150米,妹妹每分钟行100米,姐姐行至3千米处又回家取东西,又立即返回学校,因此比妹妹迟了10分钟到达学校,家到学校有多远?
第四篇:行程问题之追及问题
第八讲:行程问题之追及问题
教学目标:
1、理解追及问题中速度、时间、路程这三个数量间的相依关系。
2、能根据问题的画出符合题意的线段图来分析数量关系。
3、在培养学生逻辑思维能力的同时注重培养学生的自我探究和创造精神。
教学重点:追及问题中数量关系的理解和解题思路的分析。
教学难点:理解追及问题中速度差、追及时间和追及路程之间的关系。需要课时:2课时 教学内容:
解题关键:追及问题是两物体速度不同向同一方向运动,两物体同时运动,一个在前,一个在后,前后相隔的路程若把它叫做“追及的路程”,那么,在后的追上前一个的时间叫“追及时间”。
基本关系式:
追及路程÷速度差=追及时间(同向追及)速度差×追及时间=追及路程
例1:A、B两地相距28千米,甲乙两车同时分别从A、B两地同一方向开出,甲车每小时行32千米,乙车每小时行25千米,乙车在前,甲车在后,几小时后甲车能追上乙车?
分析:根据题意可知要追及的路程是28千米,每行1小时,甲车可追上 32-25=7 千米,即速度差。看28千里面有几个7千米,就要几小时追上。也就是 : 追及的路程÷速度差=追及时间
解: 28÷(32-25)=28÷7 =4(小时)
例2 :两辆汽车都从甲地开往乙地,第一辆车以每小时30千米的速度从甲地开出,第二辆车晚开12分钟,以每小时40千米的速度从甲地开出,结果两车同时到达乙地。求甲乙两地的路程?
分析:从题意可知两车从同一地出发,第二辆车晚开12分钟,也就是第一
辆车出发12分钟(0.2小时)后,第二辆车才出发,那么,追及的路程是第一辆12分钟所行的路程,即30×0.2 =6(千米)。两车同时到达乙地,也就是第二辆车刚好追上第一辆车,追及的时间就是第二辆车从甲地到乙地行驶的时间。即6÷(40-30)=0.6(小时),已知速度和时间,甲乙两地的距离可求。
解:30×0.2= 6(千米)6 ÷(40 -30)=0.6(小时)40×0.6=24(千米)练习:
1、甲以每小时4千米的速度步行去学校,乙比甲晚4小时骑自行车从同一地点出发去追甲,乙每小时行12千米,乙多少小时可追上甲?
2、甲、乙两人从A地去B地,甲的速度是每小时6千米,乙的速度是每小时4千米。乙先走了8千米。甲出发后多少小时可以追上乙?
3、猎犬发现野兔在前方2千米处。已知野兔的速度是每小时18千米,猎犬同时以每小时22千米的速度追野兔。问:猎犬多少分钟后可以捉到野兔?
4、学校到家,步行要1小时,骑自行车要30分钟。已知骑自行车比步行每分钟快18米,学校到家的距离是多少米?
作业
1、两地相距900千米。甲走需要15天,乙走需要12天。甲先出发2天,乙去追甲,要走多少千米才能追上?
2、A、B两地相距40千米。甲、乙两人,同时分别由两地出发,相向而行,8小时后相遇。如果两人同时由A相B,5小时后甲在乙前5千米。甲、乙两人每小时各行多少千米?
3、甲每小时行4千米,乙每小时行3千米。甲出发时,乙已先走9千米。甲追乙3个小时后,改以每小时5千米的速度追乙,再经几个小时甲追上乙?
4、一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员.问:甲乙两地相距多少千米?
第五篇:奥数追及问题
奥数第七讲 行程问题
(一)——追及问题
第七讲
行程问题
(一)——追及问题
本讲学习的追及问题与相遇问题同属于行程问题中的一类,它是同向运动问题。追及问题的基本特点是:两个物体同向运动,慢走在前,快走在后面,它们之间的距离不断缩短,直到快者追上慢者。追及问题属于较复杂的行程问题。追及问题中的各数量关系是:路程差=速度差×追及时间;
速度差=路程差÷追及时间;追及时间=路程差÷速度差;解答追及问题可适当的选择画图法、假设法、比较法等思考方法解题。
在解决同向问题时,要注意以下几点:
(1)要弄清题意,紧扣速度差、追及时间和路程差这三个量之间的基本关系;(2)对复杂的同向运动问题,可以借助直观图来帮助理解题意,分析数量关系;
(3)要注意运动物体的出发点、出发时间、行走方向、善于扑捉速度、时间、路程对应关系。
(4)要善于联想、转化、使隐藏的数量关系明朗化,找准理解题目的突破口。第一课时
教学内容:掌握简单的追及问题
教学目标:理解和掌握简单的追及问题 教学重点:掌握追及问题的基本公式 教学难点:利用公式求简单的追及问题 教学过程:
一、谈话导入。
今天我们来学习行程问题当中的追及问题,它属于同向运动中的一种,下面我们就通过一个例子来给大家讲叙怎样解决追及问题。例子:兔子在狗前面150米,一步跳2米,狗更快,一步跳3米,狗追上兔子需要跳多少步?
我们知道,狗跳一步要比兔子跳一步远3—2=1(米),也就是狗跳一步可以追上兔子1米,现在狗与兔子相距150米,因此,只要算出150米中有几个1米,那么就知道狗跳了多少步追上兔子的。不难看出150÷1=150(步),这是狗跳的步数。
这里兔在前面跳,狗在后面追,它们一开始相差150米,这150米叫做“追及距离”;兔子每步跳2米,狗每步跳3米,它们每步相差1米,这个叫“速度差”;狗追上兔子所需的步数叫做“追及步数”有时是以秒、分钟、小时计算,则叫“追及时间”,像这种包含追及距离、速度差和追及时间(追及步数)三个量的应用题,叫做追及问题。
解决追及问题的基本关系式是:
路程差=速度差×追及时间;
速度差=路程差÷追及时间;
追及时间=路程差÷速度差 在解决追及问题中,我们要抓住一个不变量,即追赶者所用时间与被追赶者所用的时间是相等的,都等于追及时间。大家还要注意区别“追及距离”与“追赶者追上被追赶者所走的距离”这两个量之间的区别。就像刚才的例子,“追及距离”为150米,而狗追上兔一共走了3×150=450(米)
二、新授课:
1.明确公式中三个量的含义:
速度差:快车比慢车单位时间内多行的路程即快车每小时比慢车多行的或每分钟多行的路程。追及时间:快车追上慢车相差的距离。
路程差:快车开始和慢车相差的路程。2.熟悉追及问题的三个基本公式:
路程差=速度差×追及时间;
速度差=路程差÷追及时间;
追及时间=路程差÷速度差
3.解题技巧:在理解行驶时间、地点、方向等关系的基础上画出线段图,分析题意思,寻找路程差及另外两个量之间的关系,最终找到解答方法。
【例1】甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?
【思路分析】这道问题是典型的追及问题,求追及时间,根据追及问题的公式:
追及时间=路程差÷速度差
150÷(75-60)=10(分钟)
答:10分钟后乙追上甲。
【小结】提醒学生熟练掌握追及问题的三个公式。
【例2】 骑车人与行人同一条街同方向前进,行人在骑自行车人前面450米处,行人每分钟步行60米,两人同时出发,3分钟后骑自行车的人追上行人,骑自行车的人每分钟行多少米?
【思路分析】这道题目,是同时出发的同向而行的追及问题,要求其中某个速度,就必须先求出速度差,根据公式:速度差=路程差÷追及时间:
速度差:450÷3=150(千米)自行车的速度: 150+60=210(千米)
答:骑自行车的人每分钟行210千米。
【小结】这道题目在于灵活运用追及问题的三个基本公式求其中任意三个量。
【例3】两辆汽车从A地到B地,第一辆汽车每小时行54千米,第二辆汽车每小时行63 千米,第一辆汽车先行2小时后,第二辆汽车才出发,问第二辆汽车出发后几小时追上第一辆汽车?
【思路分析】根据题意可知,第一辆汽车先行2小时后,第二辆汽车才出发,画线段图分析:从图中可以看出第一辆行2小时的路程为两车的路程差,即54×2=108(千米),两车相差108米,第二辆车去追第一辆车,第二辆车去追第一辆车,第二辆车每小时比第一辆车每多行63-54=9(千米),即为速度差,用 追及时间=路程差÷速度差。解:(1)两车路程差为:54×2=108(千米)
(2)第二辆车追上所用时间:108 ÷(63-54)=12(小时)答:第二辆车追上第一辆车所用的时间为12小时。
【小结】这道追及问题是不同时的,要先算出追及路程。【及时练习】
1、哥哥和弟弟两人同时在一个学校上学,弟弟以每分钟80米的速度先去学校,3分钟后,哥哥骑车以每分钟200米的速度也向学校骑去,那么哥哥几分钟追上弟弟?
2、姐妹两人在同一小学上学,妹妹以每分钟50米的速度从家走向学校,姐姐比妹妹晚10分钟出发,为了不迟到,她以每分钟150米的速度从家跑步上学,结果两人却同时到达学校,求家到学校的距离有多远?
三、课堂小结:
追及问题的基本公式:路程差=速度差×追及时间;
速度差=路程差÷追及时间;
追及时间=路程差÷速度差
第二课时 教学时间:
教学内容:环形跑道的追及问题
教学目标:掌握不同形式的追及问题的解题思路和基本规律 教学重点:通过图形分析追及问题
教学难点:找准解决环形路程的追及问题的突破口 教学过程:
一、复习:追及问题的三个基本公式。
二、新授课:
【例4】 一条环形跑道长400米,甲骑自行车平均每分钟骑300米,乙跑步,平均每分钟跑250米,两人同时同地同向出发,经过多少分钟两人相遇? 【分析与解】 当甲、乙同时同地出发后,距离渐渐拉大再缩小,最终甲又追上乙,这时甲比乙要多跑1圈,即甲乙的距离差为400米,而甲乙两人的速度已经知道,用环形跑道长除以速度差就是要求的时间。
解:①甲乙的速度差:300-250=50(米)②甲追上乙所用的时间:400÷50=8(分钟)答:经过8分钟两人相遇。
【及时练习】两名运动员在湖周围环形道上练习长跑,甲每分钟跑250米,乙每分钟跑200米,两人同时同地同向出发,经过45分钟甲追上乙,如果两人同时同地反向出发,经过多少分钟两人相遇?
【例5】在周长400米的圆的一条直径的两端,甲、乙两人分别以每分钟60米和50米的速度,同时同向出发,沿圆周行驶,问2小时内,甲追上乙多少次?
【分析与解】此题属于追及问题,首先明确路程差和速度差,开始甲、乙在圆径的两端,其路程差为圆周长的一半,400÷2=200(米),当甲追上乙后,如果再想追上乙必须比乙多行圆的一周的路程,即一周400米为路程差,根据不同的路程差,我们可以求出甲追上乙一次,所用的时间,在总时间中去掉第一次的追及时间再看剩下的时间里包含几个“甲追上乙所用的时间”就可以求出2小时内甲追上乙的次数。解:2小时=120分
甲第一次追上乙所用的时间:
400÷2÷(60-50)=20(分)
甲第二次开始每追乙一次所用的时间:
400÷(60-50)=40(分)
甲从第二次开始追上乙多少次:
(120-20)÷40=2次„„20秒
甲共追上乙多少次:2+1=3(次)
答:甲共追上乙3次。
【小结】这类环形跑道的追及问题一定要明确路程差和速度差。
【及时练习】在周长为300米得圆形跑道一条直径的两端,甲、乙两人分别以每秒7米,每秒5米的骑车速度同时顺时针方向行驶,20分钟内甲追上乙几次?
【例6】在480米的环形跑道上,甲、乙两人同时同地起跑,如果同向而行3分钟20秒相遇,如果背向而行40秒相遇,已知甲比乙快,求甲、乙的速度?
同向行驶,甲乙相遇,说明甲必须比乙多跑一圈,即400米才能与乙相遇,400米正好是两人的路程差,除以甲追赶乙所用的3分20秒,可知甲、乙的速度差。
背向行驶,甲、乙相遇,说明甲、乙必须合走一圈即400米,400米正好上两人的路程总和除以40秒相遇时间,可知甲、乙的速度和。
这样已知甲、乙的速度和及速度差,可将此题转化或和差关系的应用题,这样可求出甲、乙的速度分别是多少?
解:3分20秒=200秒
甲、乙的速度和:400÷40=10(米)甲、乙的速度差:400÷200=2(米)
甲的速度为每秒多少米?(10+2)÷2=6(米)乙的速度为每秒多少米?(10-2)÷2=4(米)答:甲的速度为每秒6米,乙的速度为每秒4米。
【小结】这类题目是相遇问题和追及问题的结合,以及和差问题的综合运用。
【及时练习】甲、乙两地相距450米,A、B两人从两地同时相向而行,经过5分钟相遇,已知A每分钟比B 每分钟慢6米,求A、B两车的速度各是多少米?
三、课后练习: 反向而行 同向而行
1、一圆形跑道周长300米,甲、乙两人分别从A、B两端同时出发,若反向而行1分钟相遇,若同向而行5分钟,甲可追上乙,求甲、乙两人的速度。
2、甲、乙两人在环形跑道上练长跑,两人从同一地点同时同向出发,已知甲每秒跑6米,乙每秒跑4米,经过20分钟两人共同相遇6次,问这个跑道多长?
3、甲、乙两人环绕周长400米的跑道跑,如果他们从同一地点背向而行,经过2分钟相遇,如果从同一地点同向而行,经过20分钟甲追上乙,求甲、乙两人每分钟的速度各是多少?
四、课后反思: 第三课时 教学时间:
教学内容:追及问题
教学目标:掌握复杂的追及问题 教学重点: 教学难点: 教学过程:
一、新授课:
【例7】 一支队伍长350米,以每秒2米的速度前进,一个人以每秒3米的速度从队尾赶到队头,然后再返回队尾,一共要用多少分钟?分析 要求一共要多少分钟,必须先求出从队尾赶到队头要多少分钟,再求出从队头到队尾要用多少分钟,把这两个时间相加即可。【分析与解】
解:①赶上队头所需要时间:350÷(3-2)=350(秒)②返回队尾所需时间:350÷(3+2)=70(秒)③一共用多少分钟?350+70=420(秒)=7(分)答:一共要用7分钟。
【及时练习】一支队伍长450米,以每秒3米的速度前进,一个通讯员骑车以匀速从队尾赶到队头用了50秒。如果他再返回队尾,还需要多少秒?
【例8】 某校202名学生排成两路纵队,以每秒3米的速度去春游,前后相邻两个人之间的距离为0.5米。李老师从队尾骑自行车以每秒5米的速度到队头,然后又返回到队尾,一共要用多少秒?【分析与解】 要求一共要用多少分钟,首先必须求出队伍的长度。解:①这支路队伍长度:(202÷2-1)×0.5=50(米)②赶上队头所需要时间:50÷(5-3)=25(秒)③返回队尾所需时间:50÷(5+3)=6.25(秒)④一共用的时间:25+6.25=31.25(秒)答:一共要用31.25秒。
【及时练习】有966名解放军官兵排成6路纵队参加抗洪抢险。队伍行进速度是每秒3米,前后两排的间隔距离是1.2米。现有一通讯员从队头赶往队尾用了16秒钟。如果他再从队尾赶到队头送信还需要多少时间?【例9】 甲、乙、丙三人从A地出发到B地。乙比丙晚出发10分钟,40分钟后追上丙;甲比乙晚出发20分钟,100分钟追上乙;甲出发多少分钟后追上丙?
设丙的速度为1米/分钟.(1)当乙追上丙时,丙共行了1×(40+10)=50米,由此可知乙行50米用了40分钟,乙的速度为50÷40=1.25(米/分钟);(2)当甲追乙时,乙已先出发走了20分钟,这时甲乙的距离差为1.25×20=25(米),甲乙的速度差为25÷100=0.25(米);甲的速度为1.25+0.25=1.5(米);(3)当甲追丙时,丙已经先出发走了10+20=30分钟,这时甲丙的距离1×(10+20)=30米,速度差为1.5-1=0.5(米/分钟),追及时间为30÷0.5=60(分钟)。
【及时练习】小明、小峰和小光三人都从甲地到乙地,早上6时小明、小峰两人一起从甲地出发,小明每小时走5千米,小峰每小时走4千米,小光上午8时从甲地出发,傍晚6时,小光、小明同时到达乙地。小光什么时候追上小峰?
三、课后练习
1、甲乙两人在周长400米的环形跑道上竞走,已知乙的速度是平均每分钟80米,甲的速度是乙的1.25倍,甲在乙前100米,问多少分钟后,甲可以追上乙?
2、一队自行车运动员以每小时24千米的速度骑车从甲地到乙地,两小时后一辆摩托车以每小时56千米的速度也从甲地到乙地,在甲地到乙地距离的二分之一处追上了自行车运动员.问:甲乙两地相距多少千米?
3、自行车队出发12分钟后,通讯员骑摩托车去追他们,在距离出发点9千米处追上了自行车队。然后,通讯员立刻返回出发点,随后又返回去追上了自行车队,再追上时恰好离出发点18千米,试求自行车队和摩托车的速度。
四、课后反思:
第四课时
教学内容:追击问题的练习题
教学目标:掌握各种类型的追击问题相遇问题 教学重点:会熟练解决基本的追击问题 教学难点:会解决复杂的追击问题
【例10】两艘渡船从南岸开往北岸,第一艘以每小时30千米的速度先开,第二艘渡船晚12分钟,速度为每小时40千米,结果两船同时到达,求南北两岸相距多少千米? 第一艘
【分析与解】根据题意画图:
要求南北岸的距离可用第一艘的速度乘以第一艘船所用的时间,或是用第二艘船的速度乘以第二艘船所用的时间。这两种时间等于追及时间,所以归为追及问题。第五课时
教学内容:追击问题的练习题
教学目标:掌握各种类型的追击问题相遇问题 教学重点:会熟练解决基本的追击问题 教学难点:会解决复杂的追击问题 教学过程:
1、甲、乙两地相距54千米,A、B两人同时从两地相向而行,A每小时行4千米,B每小时行5千米,两人经过几小时相遇?
2、甲、乙两人同时从学校向相反方向行驶,甲每分钟行52千米,乙每分钟行50千米,经过7分钟后他们相距多少米?他们各自离学校有多少米?
3、甲、乙两地相距480米,客车和货车同时从两地相向而行,经过5小时相遇,客车的速度是每小时50千米,求货车的速度是每小时多少千米?
4、小明和小红两人从相距2280米的两地相向而行,小明每分钟行60米,小红每分钟行80米,小明出发3分钟后小红才出发,小红出发几小时后与小明相遇?相遇时两人各行了多少米?
5、一列火车于下午4时30分从甲站开出,每小时行120千米,经过1小时后,另一辆火车以同样的速度从乙站开出,晚上9时30分两车相遇,问甲、乙两站铁路长多少千米?
6、A、B两地相距360千米,客车和货车从A、B两地相向而行,客车先行1小时,货车才开出,客车每小时行60千米,货车每小时行40千米,客车开出后几小时与货车相遇?相遇地点离B地多远?
7、甲、乙两车从A、B两地同时相向而行,甲车每小时行40千米,乙车每小时行35千米,两车在距中点15千米处相遇,求AB两地相距是多少?
8、甲、乙两人同时从两地骑车相向而行,甲每小时行18千米,乙每小时行15千米,两人相遇距离中点3千米,起两地距离多少千米?
9、AB两地相900千米,甲、乙两人同时从A到B,甲每分钟行70米,乙每分钟行50米,当甲到达B后立即返回与乙在途中相遇,两人从出发到相遇共经过多少分钟?
10、学生甲和乙同时住一楼,有一次他们同时从家到相距540米的学校上学,甲每分钟行60米,乙每分钟行48米,甲到达学校后发现忘带文具盒,立即返回家去取,在途中遇到乙,那么从开始上学到两人相遇共用几分钟?
11、甲、乙两人从相距1800米的两地同时相向而行,甲每分钟行80米,乙每分钟行70米,乙带了一只小狗与他们同时行驶,狗以每分钟220米的速度向甲跑去,狗遇到甲时已行了多少米?狗遇到甲后立刻回头向乙跑去,这样狗在甲、乙两人之间来回奔跑,直到两人相遇为止,这只狗一共跑了多少米?
12、一辆客车与一辆货车同时从A、B两地相对开出,经过6小时相遇,相遇后两车都以原速继续前进,又经过4小时客车到达B地,这时货车离A地还有188千米,A、B两地相距多少千米?
13、小玲和小明家相距600米,这天两人同时从家出发向对方家走去,小玲走完全程需要12分钟,小明走完全程需要20分钟,相遇时两人各走了多少米?
14、A、B两地相距460千米,甲列车同时从A地开出2小时后,乙列车从B地开出,经过4小时与甲列车相遇,已知甲列车比乙列车每小时多行10千米,问甲列车平均每小时行多少千米?
15、甲、乙两人在相距90米的路上来回跑步,甲的速度是每秒钟3米,乙的速度是每秒种2米,如果他们同时分别从支炉两端出发,跑了10分钟,那么在这段时间内共相遇几次?