2018年小学六年级数学(数与代数)复习资料(西师版)

时间:2019-05-14 22:36:54下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《2018年小学六年级数学(数与代数)复习资料(西师版)》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《2018年小学六年级数学(数与代数)复习资料(西师版)》。

第一篇:2018年小学六年级数学(数与代数)复习资料(西师版)

每天拿出读一读、记一记,预祝大家考出理想成绩!

数与代数

一、数的意义:

1、整数:像—

3、—

2、—1、0、1、2、3……这样的数统称为整数。整数的个数是无限的。没有最小的整数,也没有最大的整数,自然数是整数的一部分。

2、自然数:用来表示物体个数的数。像1、2、3、4、5……叫做自然数。一个物体也没有用0表示。自然数的个数是无限的,最小的自然数是0,没有最大的自然数。

3、小数:把整数“1”平均分成10份、100份、1000份……这样的一分或几份的数是十分之几、百分之几、千分之几……可以用小数表示。

4、小数的分类:

(1)纯小数和带小数:整数部分是o的小数叫做纯小数,整数部分不是o的小数叫做带小数。

(2)有限小数和无限小数:小数部分的位数是有限的小数叫做有限小数;小数部分的位数是无限的小数叫做无限小数。

(3)循环小数:一个小数,从小数部分的某一位起一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。

(4)循环节:一个循环小数的小数部分,依次不断重复出现的数字叫做这个小数的循环节。

(5)纯循环小数和混循环小数:循环节从小数部分第一位开始的,叫做纯循环小数;循环节不是从第一位开始的,叫做混循环小数。

5、计数单位:个、十、百、千、以及十分之

一、百分之

一、千分之一?都是计数单位。

6、数位:各个计数单位所占的位置叫做数位。

7、十进制计数法:“十进制计数法”是世界各国最常用的一种计数方法。它的特点是每相邻的两个计数单位之间的进率都是“十”就是10个较低的计数单位可以进成一个较高的计数单位(既通常说的“逢十进一”),这种以“十”为基础进位的计数方法,叫做十进制计数法。

8、整数和小数数位顺序表:

9、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。(1)分数单位:把单位“1”平均分成若干份,表示这样的一份的数就是这个分数的分数单位。

(2)分数的分类:真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子等于分母的分数叫做假分数,假分数≧1

10、百分数:表示一个数是另一个数的百分之几的数叫做百分数,百分数也叫百分率或百分比。百分数的分数单位是1%。百分数的分母是100。

每天拿出读一读、记一记,预祝大家考出理想成绩!

11、分数和百分数的关系:分数既可以表示一个数(后面可加数量单位);也可以表示两个数的比(两数之间的关系)。而百分数只表示一个数占另一个数的百分比(两数之间的关系),不能表示具体的数。因此百分数不带单位。

12、正数和负数:像1/

3、+2、0.5、+4.5…这样的数叫做正数;像―1/

2、―5.5、―6…这样的数叫做负数。

(不能认为:一个数的前面加上“+”号这个数就是正数,也不能认为:一个数的前面加上“—”号这个数就是负数)。比如:“—a”这个数我们就不能判断是负数,因为a可能:是正数、是负数、0都有可能;所以我们无法判断。

自然数是等于或大于0的整数,也可以说是不小于0的整数,既是非负整数。0既不是正数也不是负数。

二、数的读法和写法。

1、读法:从高位到低位,一级一级的往下读,每一级末尾的0都不读出来,其他数位的连续的几个0都只读一个。

2、写法:从高位到低位,一级一级的往下写,哪一个数位上一个单位也没有,就在那个数为上写0。

(一)、小数的读法与写法:

读法:通常是整数部分按整数的读法去读,小数点读作“点”,小数部分按从左向右的顺序只读出数字。

写法:写小数时,整数部分按整数部分的写法去写,小数点写在个位的右下角,小数部分按从左向右的顺序

依次写出每一个数位上的数字。

(二)、分数的读法与写法:

读法:读分数时,先读分数的分母,再读“分之”最后读分子。读带分数时,要先读整数部分,再读“又”字,最后按分数部分的读法读分数部分。(分数线的读法:“分之”),写法:写分数时,要先写分数线,再写分母,最后写分子,写带分数时,要先写整数部分,再写分数部分,整数部分要对其分数线,二者要紧凑。

(三)、百分数的读法与写法:

读法:百分数的读法与分数相同。

写法:百分数通常不写成分数形式,而是在原来的分子后面加上百分号“%”来表示。写百分数时,先写分子,再写百分号。

(四)、数的大小比较:

1、整数的大小比较:比较两个整数的大小,首先要看它们的位数,如果位数不相同,那么位数多的那个数就大;如果位数相同,就先从高位比起,相同数位上的数大的那个数就大;每天拿出读一读、记一记,预祝大家考出理想成绩!

2、小数的大小比较:先比较它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上数大的那个数就大;十分位上的数字相同,百分位上的数大那个数就大。…以此类推。

3、分数的大小比较:分母相同的分数,分子大的那个分数就大;(因为分母相同,分数单位就相等,分子大的就意味着含有的分数单位多。);分子相同的分数相比较,分母小的那个分数大。(分子相同含有的分数单位数相同,分母小的分数分数单位就大)分子、分母都不同的分数相比较,先通分,转化成同分母分数后,再比较大小。

4、正数和负数的大小比较:负数都比正数小。0大于一切负数,0小于一切正数。

5、两个负数相比较:如果a>b(a、b均为正数),则-a<-b。就是在不看负数符号的情况下:数大的那个数反而小。

三、数的性质:

1、分数的性质:分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。(注意:分数的分单位有变化,分子、分母都有变化)

2、约分和通分:把一个分数化成和原分数相等的,且分子分母都比原分数小的的分数叫做约分;把异分母分数分别化成和原分数相等的同分母分数,叫做通分。

3、最简分数:分子和分母只有公因数1的分数叫做最简分数。

4、小数的基本性质:小数的末尾添上或去掉0,小数的大小不变。(注意:小数的位数有变化,精确度有变化。)

5、小数点的位置移动引起小数的大小变化规律:小数点每向右移动一位、两位、三位,这个数就扩大到原来的10倍、100倍、1000倍???;小数点每向左移动一位、两位、三位,该数就缩小到原数的1/

10、1/100、1/1000???。

四、数的改写:

1、把多位数改写成以”万“或者以”亿”单位的数。

(1)直接改写:把多位数改写成以”万“或者以”亿”单位的数,先把原来的小数点向左移动4位或者8位,再在数后面加上“万”或“亿”字,中间用“=”连接。

(2)省略尾数改写成近似数:先用“四舍五入法”省略万位或者亿位后面的尾数,再在这个数的后面写上“万”字或者“亿”字。得出的是近似数,中间用“≈”连接。

2、求小数的近似数:根据要求,要把小数保留到哪一位,就把这一位后面的尾数按照“四舍五入法”省略,中间用“≈”。

3、小数、分数、百分数的互化:

小数化成分数方法:先看小数点后面有几位小数,就在1的后面添上几个0做分母,原来的小数去掉小数点后做分子。能约分的要约成最简分数。

分数化成小数方法:用分子除以分母。

每天拿出读一读、记一记,预祝大家考出理想成绩!

小数化成百分数的方法:把小数的小数点向右移动两位,(位数不足时用0补足)同时在后面添上“%”。

百分数化成小数的方法:把百分数的分子的小数点向左移动两位,同时去掉后面的“%”。

百分数化成分数的方法:先把百分数的改写成分母是100的分数,然后约成最简分数。

分数化成百分数的方法:先把分数化成小数,在把小数化成百分数。

4、判断一个分数能否化成有限小数的方法:一个最简分数,如果分母中除了含有质因数2和5以外,不含有其它质因数,这个分数就能化成有限小数;如果分母中含有了2和5以外的其他质因数,这个分数就不能化成有限小数。

五、数的整除:

1、整除:整数a除以整数b(b≠0),除得的商正好是整数且没有余数,我们就说数a能被数b整除。(也可以说b能整除a)。

2、因数和倍数:如果a×b=c(a、b、c都是非0整数)那么a、b就叫做c的因数,c就叫做a、b的倍数。

一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。

一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。

3、公因数和最大公因数:几个数的公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。

4、公倍数和最小公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的那个数叫做这几个数的最小公倍数。

5、求两个数的最大公因数的方法:一般采用列举法,就是把两个数的因数一一列举出来,然后找出两个数的公因数,其中最大的那个数就是这两个数最大公因数。也可以采用短除法。

短除法求最大公因数的方法:把两个数写在 的横线上,先用着这两个数的公有质因数做除数,如果两个数的商是互质数,除数就是这两个数的所得的商就是这两个数的最大公因数。如果两个数的商不互质,就按照上面的方法继续除,直到两个数的商最后是互质数为止,然后把所有的除数连乘起来,所得的积就是这两个数的最大公因数。

6、求两个数的最小公倍数的方法:一般也采用列举法,把两个数的倍数数根据需要按从小到大的顺序列举一部分,然后找出两个数的公有的倍数,其中最小的那个公倍数就是这两个数的最小公倍数。也可以采用短除法。

短除法求最小公倍数的方法:把两个数写在 的横线上,先用着这两个数的公有质因数做除数,所 得的商写在横线下的相对应的位置,如果两个数的商是互质数,就把除数和最后的两个商连乘起来,所得的积就是这两个数的最小公倍数;如果两个数的商不互质,就按照上面的方法继续除,直到两个数的商最后是互质数为止,然后把所有的除数和最后所得商连乘起来,所得的积就是这两个数的最小公倍数。

7、求两个数的最大公因数和最小公倍数的特殊方法: 每天拿出读一读、记一记,预祝大家考出理想成绩!

如果两个数中,较大数是较小数的倍数,较小数就是较大数的因数,则较大数是这两个数的最小公倍数;较小数是这两个数的最大公因数。

如果两个数是互质数,则它们的最大公因数是1,最小公倍数是这两个数的乘积。

8、奇数和偶数、在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数,最小的偶数是0,最小的奇数是1。9、2、5、3的倍数的特征。

(1)2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。

(2)5的倍数的特征:个位上是0或5的数都是5的倍数。

(3)3的倍数特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。

10、质数和合数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。质数有且只有两个因数,合数至少有三个因数。1既不是质数也不数合数。

11、质因数与分解质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。把一个合数用质数相乘的形式表示出来,就是分解质因数。

12、分解质因数的方法:把一个合数分解质因数,通常用短除法,分解质因数时,先用这个合数的质因数(通常用最小的开始)去除,得出的商如果是质数,就把除数和商写成相乘的形式;得出的商如果是合数,就照上面的方法继续下去,直到得出商是质数为止,然后把各个除数和最后的商写成连乘的形式。

13、大于0的自然数的分类方法:(1)根据是否是2的倍数,自然数可分为:奇数和偶数。(2)根据所含因数的个数,自然数可分为:

1、质数、合数。

六、数的运算:

1、加法的意义:把两个数(或几个数)合并成一个数的运算。

2、减法的意义:已知两个数的和与其中的一个加数,求另一个加数的运算。

3、乘法的意义:(1)一个数乘整数,就是求几个相同加数和的简便运算。

(2)一个数乘小数,可以看作是求这个数的十分之几、百分之几…是多少?

(3)一个数乘分数,就是求这个数的几分之几是多少。

4、除法的意义:已知这两个数的积和其中的一个因数,求另一个因数的运算。

5、计算方法:

6、加法的计算方法。

每天拿出读一读、记一记,预祝大家考出理想成绩!

(1)整数和小数:相同数位对齐,从低位加起,哪一位上的数相加满十,要向前一位进1。(2)分数:同分母分数相加,分母不变只把分子相加。异分母分数相加,先通分,再按照同分母分数加法法则进行计算。

7、减法的计算方法:

(1)整数和小数:相同数位对齐,从低位减起,哪一位上的数不够减,从前一位退1,在本位上加10后再减。

(2)分数:同分母分数相减,分母不变,只把分子相减。(分子之差做分子)异分母分数相减,先通分,再按照同分母分数减法法则进行计算。

8、乘法的计算方法:

⑴整数乘法的计算方法:相同数位对齐,从末尾乘起,用第二个因数的每一位上的数去乘第一个因数,用哪一位的数去乘,乘得的积的末尾就要和那一位对齐,最后把每次乘得的积的相加。

⑵小数乘法的计算方法:计算小数乘法,末尾对齐,先按照整数乘法的计算方法算出积,再看因数中一共有几位小数,就从积的末尾起向左数出几位,点上小数点。

⑶分数乘法的计算方法:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母(能约分的要先约分)。

⑷除法的计算方法:整数除法的计算方法:从被除数的高位除起,除的时候,除数有几位数就先看被除数的前几位,如果前几位不够除,再多看一位,除到被除数的哪一位,就把商写在哪一位的上面,每次除得余数必须比除数小。

⑸小数除法的计算方法:除数是整数的小数除法,要按照整数除法的计算方法去除,商的小数点要和被除数的小数点对齐。如果除到被除数的末尾仍有余数,就在余数的末尾添上0继续除。除数是小数的除法:先移动除数的小数点,使它变为整数,除数的小数点向右移动几位,被除数的小数点也要向右移动相同位数(位数不够时,在被除数的末尾用0补足),然后按除数是整数的小数除法的计算方法进行计算。

⑹分数除法的计算方法:甲数除以乙数(0除外)等于甲数乘乙数的倒数。

倒数:乘积为1的两个数互为倒数。

七、四则运算的验算方法:

1、加法的验算方法(1)用加法验算:调换两个加数的位置再加一遍。

(2)用减法验算:和—一个加数=另一个加数。

2、减法的验算方法:(1)用加法验算:差+减数=被减数。

(2)用减法验算:被减数—差=减数。

3、乘法的验算方法:(1)用乘法验算:调换两个因数的位置再称一遍。

(2)用除法验算:积÷一个因数=另一个因数。每天拿出读一读、记一记,预祝大家考出理想成绩!

4、除法的验算方法:(1)用乘法验算:如果没有余数,商×除数=被除数,如果有余数,商×除数+余数=被除数。

(2)用除法验算:被除数÷商=除数 或(被除数-余数)÷商=除数

八、0与1在四则运算中特性:

a+0=a a×0=0 0÷a=0 a-0=a a×1=a

a-a=0 a÷1=a 1÷a=1/a(在上面算式中a作除数时a≠0)

九、运算定律:

1、加法的交换律:a+b=b+a

2、加法的结合律:a+b+c=a+(b+c)

3、乘法的交换律:a×b=b×a

4、乘法的结合律:a×b×c=a×(b×c)

5、乘法的分配率:(a+b)×c = a×c+b×c

十、运算性质:

1、减法的运算性质:a-(b+c)=a-b-c a-(b-c)=a-b+c

2、除法的运算性质(除数不为0):a ÷(b×c)=a÷b ÷c

a÷(b÷c)=a÷b×c(a+b)÷c=a÷c+b÷c(a-b)÷c=a÷c-b÷c

十一、运算顺序:

1、加法和减法叫做一级运算,乘法和除法叫做第二级运算。

2、在一个没有括号的算式里,如果只含有同一级运算,要从左往右依次计算;如果含有两级运算,要先算第二级运算,后算第一级运算。

3、在一个有括号的算式里,要先算小括号里面的,再算中括号里面的。

十二、解决问题:

1、复合应用题:用两步或两步以上计算来解答的应用题。分析此问题,一般采用分析法或综合法。

分析法:从要求问题入手,逐步找出解答问题所需要的信息,求得问题的解决。

综合法:从已知条件入手,利用已知条件看能解决什么问题,从而求得问题的解决。

2、解决问题的一般步骤:首先理解题意,找出已知条件何所求问题;其次。分析数量关系,确定先 算什么,再算什么,最后算什么;再次,确定每一步该怎样算,列出算式,算出得数;最后进行检验,写出答案。

3、几种常见的数量关系: 每天拿出读一读、记一记,预祝大家考出理想成绩!

(1)路程=速度×时间(2)总价=单价×数量(3)工作总量=工效×时间

(4)总产量=单产量×数量(5)收入--支出=结余(6)利息=本金×利息×时间

十三、式与方程:

1、用字母表示数的意义:用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。

2、用字母代表数的作用:

(1)用字母代表任何数。(2)用字母表示常见的数量关系。(3)用字母表示运算定律。(4)用字母表示计算公式。

3、(1)数字与字母、字母与字母相乘时,乘号可以简写成“?”或者省略不写。数与数相乘,乘号不能省略。

4、等式与方程:表示相等关系的式子叫做等式。含有未知数的等式叫做方程。

方程的解:使方程左右两边相等的未知数的值叫做方程的解。

解方程:求方程中未知数的过程叫做解方程。

5、等式的性质:(1)等式两边都加上或减去同一个数,左右两边仍然相等。

(2)等式两边都乘上(或除以)同一个不为零的数,左右两边仍然相等。

(3)根据等式的性质可以解方程。

6、列方程解应用题的步骤:(1)找出未知数并用X表示。

(2)找出应用题中数量间的相等关系,并更具等量关系列出方程。

(3)解方程,求未知数的值。

(4)检验写答语。

十四、常见的计量单位及其进率:

(一)意义:(1)物体的多少、长短、大小、轻重、快慢等。这些可以测定的客观事物的特征叫做量。(2)把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。

(二)常用的计量单位及其进率。

(1)货币单位及其进率:1元=10角 1角=10分

(2)长度单位及其进率: 1千米=1000米 1米=10分米=100厘米

1分米=10厘米 1厘米=10毫米 每天拿出读一读、记一记,预祝大家考出理想成绩!

(3)面积单位及其进率:

1平方千米=1000000平方米 1平方千米=100公顷

1公顷=10000平方米 1平方米=100平方分米

1平方分米=100平方厘米 1平方厘米=1000平方毫米

质量单位及其进率: 1吨=1000千克 1千克=1000克

时间单位及其进率:(1)1年有12个月平年有365天,闰年有366天。

(2)1、3、5、7、8、10、12月是大月,每月31天;4、6、9、11月是小月,每月有30天;二月既不是大约也不是小月,平年二月28天,闰年二月有29天。(3)按四个季度分,1、2、3月份属第一季度,4、5、6月份是第二季度,7、8、9月份是第三季度,10、11、12是第四季度。

(4)每个月分上、中、下三旬,上旬、中旬各有10天,下旬的天数大月11天,小月有10天。闰年二月下旬9天,平年8天

(5)1星期=7日 1日=24小时 1小时=60分 1分=60秒 1世纪=100年

(6)平年闰年判断的方法:公历年份能被4整除,整百,整千年份能整除400的是闰年,反之是平年。

(三)计量单位的改写:

1、名数的意义:计量的结果,要用数表示,并且还要带上单位的名称,通常把他们合起来叫做名数。只带一个名称的叫单名数;带两个或两个以上单位名称的叫复名数。如:2千克50克,8平方米20平方分米5平方厘米。

2、名数的改写:把高级单位的名数改写成低级单位的名数用进率去乘,把低级单位的名数改写成高级单位名数用进率去除。当进率是10、100、1000、…,是也可以把小数点向右(左)移动一位,两位、三位、…。位数不足时,用0补足。

十五、比和比例:

(1)比和比例的意义、各部分名称、基本性质。(2)比和分数、除法的关系

(3)求比值和化简比

意义 方法 结果 求比值:前项除以后项所得的商 根据比值的意义,用前项除以后项 一个商(整数、小数或分数)化简比:把两个数的比化成最简单的整数比 比的前项和后项都乘或除以一个相同的数(0除外);也可以根据求比值的方法,用前项除以后项。其结果还是一个比。

第二篇:六年级数学数与代数习题精选

数与代数习题精选

一、填空(每空1分,共20分)

1.二亿六千零五万七千写作(),改写成用“万”作单位的数是()万,改写成用“亿”作单位的数是()亿,2.0.667,0.76,和68%这三个数中最大的数是(),最小的数是()。

3.能同时被2、3、5整除的最大的三位数是()。

4.某班男生和女生人数的比是4:5,则男生占全班人数的(),女生占全班人数的()。

5.()÷()=()÷60=2:5=()%=()折

b

6.如果a=c(c 0),那么()一定时,()和()成正比例;()一定时,()和()成反比例。

7.4去掉()个分数单位,它就变为最小的合数。

二、判断(对的在括号里打,错的打),(每题2分,共10分)

1.时间一定,路程和速度成正比例。()

2.比的前项乘2,比的后项除以2,比值不变。()

3.小华比小明高5,小明就比小华矮5。()

4.甲数能被乙数整除,乙数一定是甲乙两数的最大公因数。()

5.新培育的某种种子的发芽率是120%。()

三、选择题(将正确答案的序号填入括号内),(每题2分,共10分)

1.一台电冰箱的原价是2400元,现在按七折出售,求现价多少元?列式是(),A.2400÷70%B.2400×70%C.2400×(1-70%)

2.甲数和乙数都不等于0,如果甲数的5等于乙数的3,那么()

A.甲数>乙数B.甲数<乙数C.甲数=乙数

3.一批玉米种子,发芽粒数与没有发芽粒数的比是4:1,这批种子的发芽率是()

A.60 %B.75%C.25%D.80%

4.某班男生人数比女生人数多3,则男生人数占全班人数的()

4343

A.3B.4C.7D.7

5.两根同样长的绳子,第一根用去全长的4,第二根用去4米,剩下的绳子相比较()

A.第一根长B.第二根长C.两根同样长D.无法确定哪根长

四、计算题

1.直接写出得数(每小题1分,共10分)

4.2÷0.2=1÷0.6=5-0.25+0.75=4.5×10=2270÷18=

75111213×(2+13)=9×6=(): 7=72÷5=o.4-0.3=

2.脱式计算,能简算的要简算。(每小题3分,共12分)

1.05×(3.8-0.8)÷6.3(20.1-21×7)÷5.1 531

(7-8)÷567.6÷5.4÷1.9×5.4

3.解方程(每小题3分,共12分)

1.20.4

x

93x-6=8.2575=x14x+7.1=12.5-2x2x1=

4.列式计算(每小题2分,共6分)

比某数的20%少0.4的数是7.2,求这个数。(用方程解)

0.9与0.2的差加上1除1.25的商,和是多少?

五、应用题(每题6分,共30分)

1.李师傅加工一批零件,原计划每小时加工30个,6小时可以完成,实际每小时比原来计划多加工20%,实际加工这批零件比原计划提前几小时?

2.客车和货车同时从甲、乙两地的中间向相反方向行驶,5小时后,客车到达甲地,货车离乙地还有60千米,已知货车与客车的速度的比是5:7,求甲、乙两地相距多少千米?

3.在比例尺是1:4000000的地图上,量得甲、乙两地相距20厘米,两列火车同时从甲乙两地相对开出,甲车每小时行55千米,乙车每小时行45千米,几小时相遇?

4.李华乘汽车从A地到B地,需要2天,他第一天走了全程的2又72千米,第二天

走的路程是第一天的3,A、B两地相距多少千米?

5.风华服装厂,接到生产一批衬衫的任务,前5天生产600件,完成了任务的40%,照这样计算,完成这项任务一共需要度少天?(用不同的方法解答)

第三篇:六年级数学__数与代数__习题精选

数与代数习题精选

一、填空(每空1分,共20分)

1.二亿六千零五万七千写作(),改写成用“万”作单位的数是()万,改写成用“亿”作单位的数是()亿,2.0.667,0.76,和68%这三个数中最大的数是(),最小的数是()。3.能同时被2、3、5整除的最大的三位数是()。

4.某班男生和女生人数的比是4:5,则男生占全班人数的(),女生占全班人数的()。

5.()÷()=()÷60=2:5=()%=()折

b

6.如果a=c(c 0),那么()一定时,()和()成正比例;()一

定时,()和()成反比例。

17.4去掉()个分数单位,它就变为最小的合数。

二、判断(对的在括号里打,错的打),(每题2分,共10分)1.时间一定,路程和速度成正比例。()

2.比的前项乘2,比的后项除以2,比值不变。()

3.小华比小明高5,小明就比小华矮5。()

4.甲数能被乙数整除,乙数一定是甲乙两数的最大公因数。()5.新培育的某种种子的发芽率是120%。()

三、选择题(将正确答案的序号填入括号内),(每题2分,共10分)1.一台电冰箱的原价是2400元,现在按七折出售,求现价多少元?列式是(),A.2400÷70%B.2400×70%C.2400×(1-70%)

2.甲数和乙数都不等于0,如果甲数的5等于乙数的3,那么()

A.甲数>乙数B.甲数<乙数C.甲数=乙数

3.一批玉米种子,发芽粒数与没有发芽粒数的比是4:1,这批种子的发芽率是

()

A.60 %B.75%C.25%D.80%

4.某班男生人数比女生人数多3,则男生人数占全班人数的()

343A.3B.4C.7D.7

5.两根同样长的绳子,第一根用去全长的4,第二根用去4米,剩下的绳子相

比较()

A.第一根长B.第二根长C.两根同样长D.无法确定哪根长

四、计算题1.直接写出得数(每小题1分,共10分)

4.2÷0.2=1÷0.6=5-0.25+0.75=4.5×10=2270÷18=

75111

13×(2+13)=9×6=(): 7=72÷5=o.42-0.32

2.脱式计算,能简算的要简算。(每小题3分,共12分)

1.05×(3.8-0.8)÷6.3(20.1-21×7)÷5.1531

(7-8)÷567.6÷5.4÷1.9×5.43.解方程(每小题3分,共12分)

4.李华乘汽车从A地到B地,需要2天,他第一天走了全程的2又72千米,1.20.4x14

1x4x+7.1=12.5-2x2x1=93x-6=8.2575=

4.列式计算(每小题2分,共6分)

比某数的20%少0.4的数是7.2,求这个数。(用方程解)

0.9与0.2的差加上1除1.25的商,和是多少?

五、应用题(每题6分,共30分)

1.李师傅加工一批零件,原计划每小时加工30个,6小时可以完成,实际每小时比原来计划多加工20%,实际加工这批零件比原计划提前几小时?

2.客车和货车同时从甲、乙两地的中间向相反方向行驶,5小时后,客车到达甲地,货车离乙地还有60千米,已知货车与客车的速度的比是5:7,求甲、乙两地相距多少千米?

3.在比例尺是1:4000000的地图上,量得甲、乙两地相距20厘米,两列火车同时从甲乙两地相对开出,甲车每小时行55千米,乙车每小时行45千米,几小时相遇?

第二天走的路程是第一天的3,A、B两地相距多少千米?

5.风华服装厂,接到生产一批衬衫的任务,前5天生产600件,完成了任务的40%,照这样计算,完成这项任务一共需要度少天?(用不同的方法解答)

一根皮带带动两个轮子,大轮直径30厘米,小轮直径10厘米;小轮每分钟转300转,大轮每分钟转几转?

11、学校把购进的图书的60%按2∶3∶4分配给四、五、六三个年级。已知六年级分得56本,学校共购进图书多少本?

12、小明居住的院内有4家,上月付水费39.2元,其中张叔叔家有2人,王奶奶家有4人,李阿姨家有3人,小明家有5人,若按人口计算,他们四家各应付水费多少元?

13、某生产队由15个队员收割一块双季稻,8小时能割完,但割了3小时以后,由于天气突然发生变化,增加了10个社员进行抢收,问还需多少小时才能割完这块双季稻?

第四篇:小学数学《数与代数》学习体会[最终版]

小学数学《数与代数》的学习体会

听了专家的讲解,在数学新《课标》中提倡让学生在生活情境中感受数学,我觉得说得非常好,尤其是课堂教学中最为明显,例如在教学《克和千克》、《认识时间》《分数的初步认识》、《数字与密码》等,都能够依托现实生活情境,帮助学生体现和理解常见的量。

以前在教学《克和千克》时,我注重依托现实生活情境,从学生熟悉的生活情境引入学习(买回的各种商品及生活中常见的与克和千克有关的情境),揭示本节课的学习内容,这样的引入能较好的激发学生兴趣,同时给孩子发现数学问题的机会,也让学生感受到“克和千克”与日常生活的密切联系。

在教学《认识时间》时,我将认识时间与学生在学校的作息时间相结合,这样就能够调动学生已有的、熟悉的生活经验,帮助他们认识钟表,理解常见的时间单位。并让学生动手动脑,达到事半功倍的效果。

在教学《分数的初步认识》时,尤其学生对分月饼的实际生活体验比较深,学生在分的过程中体验感受到分数无处不在,在分的过程中发现问题,解决问题,达到教学相长。

专家的这个提法我觉得也非常好,那就是“实践是最好的老师,只有学生们亲身经历了才会印象更深。”

因此 除了依托现实的生活情境,我们还可以依托现实的活动情境,帮助学生理解常见的量,建立正确的质量观念、时间观念等。

例如:《时间单位的认识》 对于学生来说是很抽象的概念,没有可视可触的形状与颜色,看不见、摸不着,让他们来掌握抽象的时间概念难度很大。所以发展孩子的时间感必须与日常生活的具体事件联系起来,使之有可以感知的具体内容。在《认识时间》教学中,我让学生体验 1 分钟能干什么?如:拍球能拍多少下?跳绳能跳多少下?写字能写多少个?数数能数到多少等等,使学生体会、感受、理解 1 分钟有多长,帮助学生建立时间观念。

“ 克和千克”的学习对于学生来说有一定困难,学生虽然在生活中接触过质量问题,感知过轻和重,也曾经在商品标识上看见过千克、克,但多数学生都不知道它们是质量单位,不知道它们之间的进率,对于 1 克 或 1 千克 到底有多重,更是知之甚少。并且人们对质量的感受力并不强,同一物品掂与提、左手与右手、每人的承受力等,感受结果不同。同时物体的体积与物体的质量不一定是统一的,这些都给学生认识质量单位造成了困难。我在教学《克和千克》一课中,就为学生准备了大量的可操作的物品,为学生留出探究的空间,使学生能够通过掂一掂、称一称等活动,在感受 1 千克 和 1 克 的过程中,认识克和千克,同时帮助学生 建立正确的质量观念。

因此, 《数与代数》结合贯穿教学之中,需要根据具体情况,与生活实际相结合,才能让小孩子更好、更快的接受,从而达到知道的融合与提升。

第五篇:初中数学数与代数心得

学习《初中数学数与代数》的心得

通过学习《初中数学数与代数》的课程,我对这部分内容有了更深入的体会。

1、初中代数的三大部分内容“数与式”、“方程与不等式”、“函数”是紧密相联系的。“数与式”是“方程与不等式”及“函数”的基础,一次式对应着一元一次方程、二元一次方程及一次函数,二次式对应着一元二次方程和二次函数,分式对应着分式方程和反比例函数。而“方程”与“函数”又是紧密相连,一元一次方程对应着一次函数,分式方程对应着反比例函数,一元二次方程对应着二次函数。认识到了这点,在实际教学特别是初三中考的复习就可以有的放矢了,在教学中应该抓住这三者的联系进行,使学生对这部分知识有个系统性的认识。而要很好地实现这三者的联系教学,我觉得可以以变式练习的形式进行,比如利润问题的解决,当利润已知时,往往是用一元二次方程解决,而当利润未知时,往往要建立二次函数来解决,那么在这种题型中,就可以以改变条件的方式进行变式练习。

2、对学生的运算能力应该要十分重视。很多学生的运算能力较差,有些还依靠计算器,所以运算能力下降。而在实际教学中,有很多学生又会发出这样的感慨:“我知道做这道题,可是算到后面就总是错”这就是运算能力的问题,所以我们要重视运算能力的提高。首先要让学生对运算规则认识清楚,其次在实际教学中要加强学生的训练,不要让他们养成依赖思想。

下载2018年小学六年级数学(数与代数)复习资料(西师版)word格式文档
下载2018年小学六年级数学(数与代数)复习资料(西师版).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    六年级数学下册 数与代数教材分析 苏教版

    数与代数 六年级第二学期是小学阶段最后一个学期,教材从促进学生的发展,为学生进入第三学段的学习打好基础出发,把六年级(下册)的教学内容分成两部分编排。在前七个单元里教学新......

    六年级数学毕业总复习数与代数(一)

    六年级数学毕业总复习数与代数(一) 班级姓名 1、一个多位数的百万位和百位上都是9,十万们和十位上都是5,其他数位上都是0,这个数写作,四舍五入到万位约是。 2、一个九位数,最高位是......

    六年级数学毕业总复习数与代数(二)

    六年级数学毕业总复习数与代数(二) 班级姓名 一、判断(对的打“√”,错的打“×”) 1、所有的小数都小于整数。2、比 3、1271不能化成有限小数。4、1米的与7米的同样长。 159975......

    新苏教版小学六年级下册数学《数与代数》教学设计

    第一部分:数与代数数的认识第一课时:整数、小数的认识整理与复习教学内容:苏教版六下P68~70“整理与反思”、“练习与实践”第1~9题教学目标:1.学生回顾整理整数与小数的相关知......

    数与代数六年级下册复习教案

    数与代数 数的认识(第一课时总课时) 教学内容 数的意义、单位、读写、分类、基本性质(分数、小数)、互化、大小的比较、数的改写(近似值)、怎样判断一个分数能否化为有限小数。 教......

    《数与代数》心得

    通过学习《数感的理解与实例分析》,我在此来 简单谈谈自己的一些学习心得 我认为,数感是学生的学习内容,也是学生应该具备的一种基本数学素养。学生不仅要认识数,学会计算,更......

    《数与代数》学习心得

    学习《数与代数》的几点体会 楼区东升小学刘霞 数学新课程标准明确指出,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实行“人人学有价......

    《数与代数》教案

    1 教学内容: 教材P68-70“整理与反思”、“练习与实践”第1-9题 教学目标: 1.学生回顾整理整数与小数的相关知识,加深理解整数与小数的意义,沟通各种数之间的关系,进一步弄清相关......