第一篇:2011版小学数学课程标准解读(全)
解读《义务教育小学数学课程标准》(2011年版)一
【新旧课标比较】与旧课标相比,新课标从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。具体变化如下:
一、总体框架结构的变化
2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化 2001年版:
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。2011年版:
数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6条”改“5条” 2001年版“三句话”:
人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:
人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
“6条”改“5条”:
在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术 2011年版:数学课程——课程内容——教学活动——学习评价——信息技术
四、理念中新增加了一些提法
要处理好四个关系
数学课程基本理念(两句话)
数学教学活动的本质要求
培养良好的数学学习习惯
注重启发式
正确看待教师的主导作用
处理好评价中的关系
注意信息技术与课程内容的整合五、“双基”变“四基”
2001年版: “双基”:基础知识、基本技能;
2011年版 “四基”:基础知识、基本技能、基本思想、基本活动经验。并把 “四基”与数学素养的培养进行整合:
掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。六、四个领域名称的变化
2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。2011年版:数与代数、图形与几何、统计与概率、综合与实践。
七、课程内容的变化
更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。
八、实施建议的变化
不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。
根据几年课程改革实验的经验和出现的问题,在深入调查、认真研讨和广泛征求意见的基础上,数学课程标准修改组形成了的《标准》(修改稿)。标准(修改稿修改的主要内容包括以下几个方面。1.体例与结构做了适当调整
本次修改,在保持原课程标准基本结构不变的基础上,经充分讨论,在结构上有两处调整。
一是前言内容做了较大的调整。在前言重点阐述了《标准》的指导思想、意义与功能。明确了《标准》应以《义务教育法》和全面推进素质教育,培养创新型人才为依据。明确了《标准》的意义和功能。在前言中指出,“《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,所规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。《标准》是教材编写、教学、评估和考试命题的依据。”
二是将课程目标中的关键术语的解释和所有比较完整的案例统一放在附录中,案例进行统一编号,便于查找和使用,同时减少了《标准》正文的篇幅。
2、修改和完善了数学课程的基本理念
《标准》提出的基本理念总体上反映了基础教育改革的方向,对个别表述的方式进行了修改。如将原来“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。
3、理清了《标准》的设计思路
《标准》中设计思路表述的不够清晰,修改稿对设计思路做了较大的修改。主要是对四个方面的课程内容“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”做了明确的阐述。将“空间与图形”改为“图形与几何”。确立了“数感”、“符号意识”等七个义务教育阶段数学教育的关键词,并给出较清晰的描述。
4、对学生培养目标做了修改
学生的培养目标在具体表述上做了修改,提出了“四基”:基础知识、基本技能、基本思想和基本活动经验;提出了“两能”:发现问题和提出问题的能力、分析问题和解决问题的能力。
5、具体内容做了适当的修改,表述方式更加合理
对于三个学段的具体内容进行了适当调整。对“数与代数”,“图形与几何”的内容也做了一定的调整,增加了一些论证的要求;对“统计与概率”的内容进行了梳理,增强了三个学段内容的层次性;
为了削弱形式化,明确指出,几何证明不限于“综合证明法”。为了减轻学生的负担,修改中适当减少的一些知识点。如“图形与几何”中减少10个左右的知识点;在“数与代数”中删去了“一元不等式组的应用”等。具体修改情况如下:
数与代数 第一学段
1、增加“能进行简单的四则混合运算(两步)第二学段
1、增加“结合现实情境感受大数的意义,并能进行估计”。
2、增加“了解公倍数和最小公倍数;了解公因数和最大公因数”。
3、删除“会口算百以内一位数乘、除两位数。
4、理解等式的性质,会用等式的性质解简单方程,改为“能解简单的方程(如3x+2=5,2x-x=3)。”图形与几何
1、内容的结构的调整:
《标准(实验稿)》的“空间与图形”分为四个部分: 第一、二学段为(1)图形的认识;(2)测量;(3)图形与变换;(4)图形与位置。《标准(修改稿)》的“图形与几何”,第一、二学段仍分为四部分,具体表示有所变动,(1)图形的认识;(2)测量;(3)图形的运动;(4)图形与位置。其中,第(1)部分大体整合了《标准(实验稿)》的第(1)、(4)部分的内容,以利于在探索、发现、确认、证明图形性质过程的过程中,体现两种推理(合情推理与演绎推理)相辅相成的关系;体现《标准(修改稿)》在总体目标中提出的增强学生“发现和提出问题,分析和解决问题”的能力的要求。第(2)部分除了《标准(实验稿)》第(2)部分的图形的轴对称、旋转、平移、相似外,还包括了图形的投影。这部分内容强调了图形的运动是研究图形性质的一种有效方法。第(3)部分包括两部分内容——坐标与图形的位置、坐标与图形的运动,比《标准(实验稿)》的第(3)部分内容有所增加,要求也更加具体、明确。
2、主要内容的修改 第一学段
(1)“能在方格纸上画出简单图形沿水平方向、垂直方向平移后的图形”放在第二学段
(2)“能在方格纸上画出简单图形的轴对称图形”放在第二学段。
(3)在东、南、西、北和东北、西北、东南、西南中,给定一个方向,辨认其余七个方向,并能用这些词语描绘物体所在的方向;会看简单的路线图。改为:给定东、南、西、北四个方向中的一个方向,能辨认其余三个方向,知道东北、西北、东南、西南四个方向,能用这些词语描绘物体所在的方向。第二学段
(1)删掉“两点确定一条直线和两条相交直线确定一个点”。
(2)增加“通过操作,了解圆的周长与直径的比为定值”。统计与概率 1.统计
与《标准》相比,《标准修改稿》对统计内容做了适当调整,使三个学段统计内容学习的层次性方面更加明确。主要变化如下:
(1)第一学段与《标准》相比,最大的变化是鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(这些内容放在了第二学段)。这种变化主要原因有三:第一,更加突出了学生对数据分析的体验,鼓励学生用自己的方式去分析数据;第二,早期经验的多样化可以为以后学习“正规”的统计图表和统计量奠定比较牢固的基础;第三,使得统计内容在第一、二学段的要求层次更加明确。
在收集数据方法方面,考虑到学生年龄特征,要求学生了解测量、调查等的简单方法,不要求学生从报刊、杂志、电视等媒体中获取数据信息。
(2)第二学段与《标准》相比,在统计量方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在了第三学段)。这种变化主要原因有二:第一,平均数是一个非常重要的刻画数据平均水平的统计量,需要学生重点体会;第二,考虑到学生的年龄特征,其他刻画数据平均水平的统计量不宜集中学习。
另外,删去“体会数据可能产生的误导”这一要求。
(3)加强体会数据的随机性
实际上,体会数据的随机性是《标准修改稿》的一个重要特点,也是一个重要变化。在以前的学习中,学生主要是依靠概率来体会随机思想的,《标准修改稿》希望通过数据使学生体会随机思想。这种变化从“数据分析观念”核心词的表述,以及案例
21、案例
43、案例73中也可以看到。
(4)增加了一些案例,特别是对案例在数学上、教学上做了比较详细的阐述,希望对教师有所启发。2.概率
与《标准》相比,《标准修改稿》的主要变化如下:
(1)第一学段、第二学段的要求降低。
在第一学段,去掉了《标准》对此内容的要求;第二学段,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述。
(2)明确指出所涉及的随机现象都基于简单随机事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的。在第三学段,学生通过列出简单随机现象所有可能的结果、以及指定事件发生的所有可能结果,来了解随机现象发生的概率。
(3)增加了一些案例,特别是对案例在数学上、教学上做了比较详细的阐述,希望对教师有所启发。
综合与实践
在标准的修改中,根据课程实验积累的经验,进一步理清了思路,主要变化为:
一、把三个学段的名称作了统一,统称为“综合与实践”,进一步明确了“综合与实践”的目的和内涵:
“综合与实践”是一类以问题为载体,学生主动参与的学习活动,是帮助学
生积累数学活动经验、培养学生应用意识与创新意识的重要途径。针对问题情境,学生综合所学的知识和生活经验,独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间、数学与其他学科之间的联系,加深对所学数学内容的理解。
二、提出了明确的要求:
“综合与实践”应当保证每学期至少一次。它可以在课堂上完成,也可以在课外完成,还可以课内外相结合。
三、对三个学段的差异作了进一步的明确,一方面突出了创新的核心是“发现和提出问题、分析和解决问题”,另一方面突出了不同学段的特点。第一学段:
内容安排应强调问题情境相对简单、生动有趣、学生容易参与,可以把操作活动作为主要形式。教师在组织教学活动时要力求使学生明白解决问题的目标和步骤,引导学生多动手、多思考、多提问题,争取更多的学生获得成功的体验,鼓励学生之间的合作交流。具体目标
1.经历实际操作的过程,在解决问题的过程中了解所学内容之间的关联,加深对学习内容的理解。
2.获得一些初步的数学实践活动经验,感受数学在日常生活中的作用,知道能够运用所学的知识和方法解决简单问题。第二学段:
学生将在教师的指导下,经历有目的、有设计、有步骤的综合与实践活动,进一步获得数学活动的经验。通过应用和反思,加深对所学知识的理解;通过探索,引发学习的兴趣和培养思考的习惯;通过交流,发展理解他人、团结互助的合作精神。
教师应通过问题设计、求解过程的引导,鼓励学生多动手、多思考;发现问题、提出问题;克服困难、积极进取;主动与同伴合作、积极与他人交流。具体目标
1.通过应用和反思,加深对于所用知识和方法的理解,了解所学过知识之间的联系。
2.初步获得在给定目标下,设计解决问题方案的经验。
3.结合实际背景,初步体验发现问题、提出问题和解决问题的过程。
【结合教学实际提出学习新课标过程中存在的问题】
1、新课标将于2012年9月开始实行,而教材跟不上新课标的理念,造成老师教学不便,如:新课标将平移中的“能在方格纸上画出简单图形沿水平方向、垂直方向平移后的图形”改为放在第二学段,而现在所用的人教版在二年级就有这个教学要求了。
2、新课标中把旧课标里的理解等式的性质,会用等式的性质解简单方程,改为“能解简单的方程(如3x+2=5,2x-x=3)。”是否理解为“只要求会解简单方程就可以,什么方法都可以”?
3、《数学课程标准》的基本理念中明确指出“评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。” 数学课堂教学中教师的评价性语言,能激发学生的学习兴趣,调动学
生的积极思维,培育良好的情感。但在我们的实际教学中,却存在着很大的问题:评价重诊断性,轻激励性,淡过程性。
4、伴随着新课程改革的新理念和新思想,我们的课堂教学发生了翻天覆地的变化。
以往的“师问生答”变成了“畅所欲言”,“纹丝不动”变成了“自由活动”。“师说生听”变成了“自主探索”,学生的个性得到了张扬,教学气氛异常活跃。然而在这些花样繁多、热闹非凡的很多课堂教学中,我们的学生却没有得到真正有效的发展,课堂教学的有效性不高。
2011年版小学数学课程标准解读
二
2011年版小学数学课程标准充分体现了德育为先,能力为重,创新方法,力求减负等特点。与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。具体变化如下:
一、总体框架结构的变化
2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化
2001年版:数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。2011年版:数学是研究数量关系和空间形式的科学。数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念的变化
“三句”变“两句”、“6条”改“5条” 2001年版“三句话”:人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。2011年版“两句话”:人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。“6条”改“5条”:在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术 2011年版:数学课程——课程内容——教学活动——学习评价——信息技术
四、课程理念中新增加了一些提法
要处理好四个关系;数学课程基本理念(两句话);数学教学活动的本质要求;培养良好的数学学习习惯;注重启发式;正确看待教师的主导作用;处理好评价中的几个关系;注意信息技术与课程内容的整合。
五、“双基”变“四基”
2001年版的“双基”:基础知识、基本技能。2011年版的“四基”:基础知识、基本技能、基本思想、基本活动经验。并把“四基”与数学素养的培养进行整合:掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。
六、四个领域名称的变化
2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。2011年版:数与代数、图形与几何、统计与概率、综合与实践。
七、课程内容的变化更加注意内容的系统性和逻辑性。强化“德育为先”教材中将《九章算术》列为教学内容,如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。财时容量得到了有效控制,并降低了一些知识点的学习要示,从“认识”和“理解”调整为“了解”。
实施建议的变化
实施建议的变化不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。教学设计的最根本的出发点和重心要放在学生的发展上 ——“为了学生的发展而教”。突出体现知识的基础性、普及性和发展性,使数学教育面向全体学生,实现:“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得以不同的发展”。教之道在于“渡”,学之道在于“悟”。作为数学教师,必须立足于学生的“就近发展区”来设计数学课堂教学活动。
二、教学情境设计上:要 “关注学生的认知、走进学生的生活、着力与学生的共情点”。1、创设数学情境要从学生的认知基础出发:无论是新知识的接受还是纳入,都取决于学生已有的数学认知结构。因此,在数学课堂教学中教师所提出的问题,所创设的教学情境,都应该确保学生原有的认知结构与新知识相互作用。使学生在“既陌生,又似曾相识”心理驱使下,愉快地进入学习状态。
2、创设数学情境要走进学生身边的生活:数学来源于生活,而又高于现实生活,是生活中关于数与形经验的提炼与结晶。教师要紧密联系学生的生活环境,从学生的生活经验出发,创设生动的教学情境,让学生在生活中学习数学,应用数学,数学教学才能焕发生命活力。把教材内容与“数学现实”有机的结合起来,符合中学生的认知特点,消除了学生对数学知识的陌生感,不仅有利于理解问题情境中的数学问题,而且更有利于使学生体验到生活中数学无处不再,同时增强了数学的应用意识,唤起学生的学习兴趣。情境创设绝不是简单的文本重现,而是教师与学生对文本的新认识、新创造。
3、创设数学情境要充分挖掘共情点:一是要激发学生的学习内在需要,把学生引入到身临其境的环境中去,自然的生发学习的需求;二是要引导学生体验学习过程,让学生在经历和体验中学习数学,而不是直接获得结论;三是要帮助学生建立有效的解决问题,沟通知识点的联系,沟通数学与生活的联系的方法,科学的思考问题,寻找解题途径;四是要促进情感与态度的发展,避免传统数学教学中的只重知识技能不重学生人文精神的滋养。
三、数学课堂“问题引领”上:要“设台阶、展过程、示学法、预生成”。新课标要求:“不同的人在数学上得到不同的发展”,因此,教师提问时应有意识地将问题分层次在全体学生中平稳分布,教室内不应该出现“被遗忘的角落”,要鼓励所有的学生认真思考,使不同层次的学生都有回答问题的愿望。
1、提问要有思考的价值,能启发学生思考、达到巩固知识、调控教学情境的目的。
2、课堂提问根据学生已有的知识水平和思维特点,提问的内容由易到难,由浅入深,由形象到抽象,层层递进,这样才能使教师的引导启发作用得到最大限度的发挥,才能使学生的思维由“未知区”向“最近发展区”最后向“已知区”转化。
3、课堂提问要把学生引入问题情境,激发学生去“生成”。“凡事豫则立,不豫则废。”(《礼记。中庸》)我们倡导生成的课堂教学并不是不要预设,不仅要而且还要合理地改进预设。因为“预设”和“生成”是相辅相成的、两者缺一不可。如果我们只钟情于“预设”,往往会把学生引入狭窄的小胡同。叶澜说:“一个真正把人的发展放在关注中心的教学设计,会使师生教学过程创造性的发挥提供时空余地。” 这就说明我们需要预设,更需要多关注学生数学学习状态的预设。例如教学案例:某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式?延伸提问(1)假设每台冰箱售价为a元,商场每天销售这种冰箱的利润是y元,请写出y与a之间的函数表达式?(2)激发学生自己提问如:若将b个50元,如何求y与b的关系?;最大利润时,售价为多少?;以生活中的时间编制一道类似的习题?这样既调动了学生学习数学的积极性和主动性 , 增强了学生参与数学活动的意识 , 又培养了学生的学习方法与能力。同时也向学生渗透了实践 —— 认识 —— 再实践 —— 再认识的辩证观点。这样一来不仅极大地激发了学生学习的兴趣 , 而且培养了学生类比、归纳的能力。
四、合作探究设计上:要明确“探究活动的预案、探究的方法、探究的参与度”。合
作探究活动应:启发式设计和分层活动的预案,为每一个学生提供充分的数学活动的条件和空间。合作探究问题着力点:教材的重点、难点和知识生长点处;学习中既有联系又有区别处;学生单独解决有困难或因观察思考问题角度不同有异议处等。如“已知等边三角形ABC,能否找一点P,使△PAB、△PBC、△PAC均是等腰三角形?你能找出几个这样的点?”上述问题不易理解、答案较多,单独解决可能不全面,学生可通过讨论得到结论。合作学习要有目的的安排座位,把能力强的和能力差的,会表达的和不善表达的,性格活泼的和性格内向的进行有机组合,让学生之间互相影响、共同进步。使学生间有直接交流合作的机会,真正实现共同学习、共同提高,提高课堂的参与度。教学的过程是“教”与“学”的双向活动过程,教学实践是一个“摸索”与“磨合”的征程,所有教学设计前提条件是:一定要适合学情,只有“教与学”的双方和谐一致了,才会有学生个性化的精彩表现;才会涌现出真正创造性“思维火花”。
2011年版义务教育小学数学课程标准解读
三
2011年版小学数学课程标准充分体现了德育为先,能力为重,创新方法,力求减负等特点。与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。新修订课标主要呈现以下九大变化: 1.基本理念“三句”变“两句”,“6条”改“5条”原来的“三句话”● 人人学有价值的数学● 人人都能获得必需的数学● 不同的人在数学上得到不同的发展现在的“两句话”● 人人都能获得良好的数学教育● 不同的人在数学上得到不同的发展(修订后与过去的提法相比:有更深的意义和更广的内涵,落脚点是数学教育而不是数学内容,有更强的时代精神和要求(公平的、优质的、均衡的、和谐的教育。)“6条”改“5条”在结构上由原来的6条改为5条,将原《标准》第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。● 原课标: 数学课程——数学——数学学习——数学教学——评价——信息技术● 修改后:数学课程——课程内容——教学活动——学习评价——信息技术 2.理念中新增加的提法● 要处理好四个关系● 有效的教学活动是什么● 数学课程基本理念(两句话)● 数学教学活动的本质要求● 培养良好的数学学习习惯● 注重启发式● 正确看待教师的主导作用● 处理好评价中的关系● 注意信息技术与课程内容的整合 3.关于数学观的修改原课标:● 数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。● 数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。● 数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其他科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面有着独特的作用;数学是人类的一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分。课标修改稿:● 数学是研究数量关系和空间形式的科学。● 数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具 „„● 数学是人类文化的重要组成部分,数学素养是现
代社会每一个公民应该具备的基本素养。● 要发挥数学在培养人的理性思维和创新能力方面的不可替代的作用树立正确的数学教学观:教学活动是师生积极参与、交往互动、共同发展的过程。有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。数学教学中最需要考虑的是什么?数学教学活动应激发学生兴趣,调动学生积极性,引发学生的数学思考,鼓励学生的创造性思维;要注重培养学生良好的数学学习习惯,使学生掌握恰当的数学学习方法。4.“双基”变“四基”“双基”:基础知识、基本技能;“四基”:基础知识、基本技能、基本思想、基本活动经验“四基”与数学素养:● 掌握数学基础知识● 训练数学基本技能● 领悟数学基本思想● 积累数学基本活动经验《国家数学课程标准》制定组组长、东北师大校长史宁中教授提出了“数学教学的四基”,引起了数学教育界的广泛关注。以前强调的双基是指基础知识、基本技能,双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张‘练中学’,相信‘熟能生巧’,追求基础知识的记忆和掌握、基本技能的操演和熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标。现在提出的四基不但包括了基础知识、基本技能、还增加了基本思想、基本活动经验。史宁中教授指出:“‘基本思想’主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。”关于基本思想方法,陈老师为我们分析了数学思想方法的四大育人功能:一是有利于完善学生的数学认知结构;二是可以提升学生的元认知水平;三是可以发展学生的思维能力;四是有利于培养学生解决问题的能力。陈老师结合小学数学现有的课标教材重点给我们介绍了小学阶段涉及到的数学思想方法,比如分类、转化、归纳、数形结合、数学建模、猜想、符号化、方程与函数、极限等数学思想方法。他系统地为我们解读了这些数学思想方法的意义、在小学数学教学中的作用和价值以及应用时的注意事项,陈老师的分析让我认识到在教学中关注数学思想方法的重要性,在教学中渗透数学思想方法的必要性。“双基”变“四基”,为数学教师提出了更高的要求,要求数学教师必须为儿童的学习和个人发展提供了最基本的数学基础、数学准备和发展方向,促进儿童的健康成长,使人人获得良好的数学素养,不同的人在数学得到不同的发展。“双基”变“四基”,任重而道远。常用的小学数学思想方法:对应思想方法、假设思想方法、比较思想方法、符号化思想方法、类比思想方法、转化思想方法、分类思想方法、集合思想方法、数形结合思想方法、统计思想方法、极限思想方法、代换思想方法、可逆思想方法、化归思维方法、变中抓不变的思想方法、数学模型思想方法、整体思想方法等等。5.关于设计思路的修改● 学段划分保持不变;● 对课程目标动词及水平要求的设计基本保持不变,增加了目标动词的同义词;● 对四个学习领域的名称作适当调整;● 对学习内容中的若干关键词作适当调整对其意义作更明确的阐释。6.四个领域名称的变化原课标:数与代数、空间与图形、统计与概率、实践与综合应用修改后:数与代数、图形与几何、统计与概率、综合与实践 7.主要的关键词的变化● 原课标:数感、符号感、空间观念、统计观念、应用意识、推理能力● 修改后:数感、符号意识、运算能力、模型思想、空间观念、几何直观、推理能力、数据分析观念最近一次修改又加上了:应用意识、创新意识。符号感为何改为符号意识?● 符号感(Symbol Sense)● 原课标:“符号感”主要表现在:能从具体情境中抽象出数量关系和变化规律,并用符号来表示;理解符号所代表的数量关系和变化规律;会进行符号间的转换;能选择适当的程序和方法解决用符号所表达的问题。”● 修改稿:“符号意识”主要是指能够理解
并且运用符号表示数、数量关系和变化规律;知道使用符号可以进行一般性的运算和推理。建立符号意识有助于学生理解符号的使用是数学表达和进行数学思考的重要形式。”● 符号感与数感都用“感”,“感”的表述过多。符号感主要的不是潜意识、直觉。符号感最重要的内涵是运用符号进行数学思考和表达,进行数学活动。“意识”有两个意思:第一,用符号可以进行运算,可以进行推理;第二,用符号进行的运算和推理得到的结果具有一般性。所以这是一个“意识”问题,而不是“感”的问题。数学的本质是概念和符号,并通过概念和符号进行运算和推理。所以只能用“意识”。8.关于课程目标的修改在总体目标中突出了“培养学生创新精神和实践能力”的改革方向和目标价值取向。课程目标提法上的一些变化:——明确了使学生获得数学的基础知识、基本技能、基本思想、基本活动经验(数学“四基)。——提出了培养学生发现问题、提出问题、分析问题和解决问题能力。——目标具体从“知识技能”“数学思考”“问题解决”“情感态度”四个方面阐述。——学段目标的表述方式有所改变 9.关于内容标准的修改结构上的变化: 数与代数的变化:(在内容结构上没有变化。)第一学段:①增加“能进行简单的整数四则混合运算(两步)”②使一些目标的表述更加准确。例如将“能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断”,修改为“能运用数及数的运算解决生活中的简单问题,并能对结果的实际意义作出解释”。第二学段:①增加的内容:● 增加“经历与他人交流各自算法的过程,并能表达自己的想法”。● 增加“了解公倍数和最小公倍数;了解公因数和最大公因数”。● 增加“在具体情境中,了解常见的数量关系:总价=单价×数量、路程=速度×时间,并能解决简单的实际问题”。● 增加“结合简单的实际情境,了解等量关系,并能用字母表示”。②调整的内容:● 将“理解等式的性质”,改为“了解等式的性质”● 将“会用等式的性质解简单的方程(如3x+2=5,2x-x=3)”,改为“能解简单的方程(如3x+2=5,2x-x=3)”。③使一些目标的表述更加准确和完整。例如将“会用方程表示简单情境中的等量关系”,改为“能用方程表示简单情境中的等量关系,了解方程的作用”。图形与几何的变化:第一学段①删除的内容● 删除“能在方格纸上画出一个简单图形沿水平方向、竖直方向平移后的图形”,并将相关要求放在第二学段。● 删除“能在方格纸上画出简单图形的轴对称图形”,并将相关要求放在第二学段。● 删除“会看简单的路线图”,相关要求放入第二学段。● 删除“体会并认识千米、公顷”,相关要求放入第二学段。②降低要求对于“东北、西北、东南、西南”四个方向,不要求给定一个方向辨认其余方向,降低要求为知道这些方向。③使一些目标的表述更加准确和完整。例如将“辨认从正面、侧面、上面观察到的简单物体的形状”改为“能根据具体事物、照片或直观图辨认从不同角度观察到的简单物体的形状”。第二学段:①删掉“了解两点确定一条直线和两条相交直线确定一个点”。②增加“知道扇形”。③使一些目标的表述更加准确和完整。例如将“探索并掌握圆的周长公式”改为“通过操作,了解圆的周长与直径的比为定值,掌握圆的周长公式”。统计内容主要变化如下:● 第一学段与《标准》相比,最大的变化是鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(这些内容放在了第二学段)。● 第二学段与《标准》相比,在统计量方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在了第三学段)。● 加强体会数据的随机性。在以前的学习中,学生主要是依靠概率来体会随机思想的,《标准
(修改稿)》希望通过数据分析使学生体会随机思想。概率内容主要变化如下:● 第一学段、第二学段的要求降低。在第一学段,去掉了《标准》对此内容的要求。第二学段,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述。● 明确指出所涉及的随机现象都基于简单随机事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的。第一学段:①鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,删除“象形统计图、一格代表一个单位的条形统计图”、“平均数”的内容,相关要求放在了第二学段。②删除“知道可以从报刊、杂志、电视等媒体中获取数据信息”。③删除“不确定现象”部分,相关要求放在了第二学段。第二学段:①删除“中位数”、“众数”的内容,相关要求放在了第三学段。②删除“体会数据可能产生的误导”。③降低了“可能性”部分的要求,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述,定量描述放入第三学段。加强体会数据的随机性● 这是修改后的一个重要变化。原来,学生主要是依靠概率来体会随机思想的,现在希望学生通过数据来体会随机思想。● 这种变化从“数据分析观念”核心词的表述也可以看出。综合与实践的变化:● 统一了三个学段的名称,进一步明确了其目地和内涵。●“综合与实践”是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。
第二篇:学习材料:小学数学课程标准(2011版)解读
《义务教育数学课程标准》(2011年版)解读——小学数学
浙江省教育厅教研室
斯苗儿
与2001年版相比,数学课程标准从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。具体变化如下:
一、总体框架结构的变化
2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化 2001年版:
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。
2011年版:
数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6条”改“5条”
2001年版“三句话”:
人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:
人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
“6条”改“5条”:
在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
2001年版: 数学课程——数学——数学学习——数学教学活动——评价——现代信息技术
2011年版:数学课程——课程内容——教学活动——学习评价——信息技术
四、.理念中新增加了一些提法
要处理好四个关系
数学课程基本理念(两句话)
数学教学活动的本质要求
培养良好的数学学习习惯
注重启发式
正确看待教师的主导作用
处理好评价中的关系
注意信息技术与课程内容的整合五、“双基”变“四基”
2001年版: “双基”:基础知识、基本技能;
2011年版 “四基”:基础知识、基本技能、基本思想、基本活动经验。并把 “四基”与数学素养的培养进行整合:
掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。六、四个领域名称的变化
2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。
2011年版:数与代数、图形与几何、统计与概率、综合与实践。
七、课程内容的变化
更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。
八、实施建议的变化
不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。
2011年《义务教育数学课程标准》最重要的变化
1.“双基”变“四基”。
“双基”:基础知识、基本技能;
“四基”:基础知识、基本技能、基本思想、基本活动经验 “四基”与数学素养: 掌握数学基础知识 训练数学基本技能 领悟数学基本思想 积累数学基本活动经验
《国家数学课程标准》制定组组长、东北师大校长史宁中教授提出了“数学教学的四基”,引起了数学教育界的广泛关注。以前强调的双基是指基础知识、基本技能,双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张„练中学‟,相信„熟能生巧‟,追求基础知识的记忆和掌握、基本技能的操演和熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标。现在提出的四基不但包括了基础知识、基本技能、还增加了基本思想、基本活动经验。
2.史宁中教授指出:“„基本思想‟主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想。”关于基本思想方法,陈老师为我们分析了数学思想方法的四大育人功能:一是有利于完善学生的数学认知结构;二是可以提升学生的元认知水平;三是可以发展学生的思维能力;四是有利于培养学生解决问题的能力。陈老师结合小学数学现有的课标教材重点给我们介绍了小学阶段涉及到的数学思想方法,比如分类、转化、归纳、数形结合、数学建模、猜想、符号化、方程与函数、极限等数学思想方法。他系统地为我们解读了这些数学思想方法的意义、在小学数学教学中的作用和价值以及应用时的注意事项,陈老师的分析让我认识到在教学中关注数学思想方法的重要性,在教学中渗透数学思想方法的必要性。
3.“双基”变“四基”,为数学教师提出了更高的要求,要求数学教师必须为儿童的学习和个人发展提供了最基本的数学基础、数学准备和发展方向,促进儿童的健康成长,使人人获得良好的数学素养,不同的人在数学得到不同的发展。“双基”变“四基”,任重而道远
第三篇:2011年版小学数学课程标准解读
2011年版小学数学课程标准解读
(张丹教授发言原稿)
2011年12月28日教育部正式发布义务教育课程标准(2011年版),并于2012年秋季开始执行。数学课程标准(2011年版)发布后全国的数学教师掀起一股学课标、研课标、论课标的热潮,在学习中老师们还存在不少困惑,亟需课程标准修订组的专家为我们答疑解惑。
张丹,教师教育数理学院学术委员会主任,北京教育学院数学系教授,教师教育数理学院院长。她是国家义务教育数学课程标准和高中数学课程标准的核心组成员,也是课程标准修订核心组成员,是新世纪小学数学教材副主编。自己独立编著或与他人合作著有《小学数学教学策略》、《新课程数学教学研究与资源丛书“统计与概率”》、《数学课程设计》、《新课程理念与初中数学课程改革》等七部,及各种论文三十余篇
(下面是张丹教授在某教师进修学校讲课的发言原稿,供大家共同学习。)各位老师:
晚上好。非常荣幸能和老师们共同就新课程标准进行讨论,也是自己的一些学习体会,不一定正确,供大家参考。
课程标准从基本理念、课程目标、核心概念、课程内容、实施建议等方面进行了修订。今天主要介绍课程目标、核心概念和课程内容的变化。
首先看课程目标。《标准》与《实验稿》一样,明确了学生在义务教育阶段的发展应该是多方面的。
进一步,《标准》在《实验稿》基础上,明确提出了获得必需的基础知识、基本技能、基本思想、基本活动经验;在分析和解决问题的基础上,明确提出了增强发现和提出问题、分析和解决问题的能力,这些无疑是巨大进步。
同时,《标准》还对一些目标进行了完善,比如对于学习习惯,明确提出了应该培养的学习习惯是:认真勤奋、独立思考、合作交流、反思质疑。
将双基拓展为四基,首先体现了对于数学课程价值的全面认识,学生通过数学学习不仅仅获得必需的知识和技能,还要在学习过程中积累经验、获得数学发展和处理问题的思想。同时,新增加的双基,特别是基本活动经验更加强调学生的主体体验,体现了以学生为本的基本理念。
提出基本思想、基本活动经验的最重要的原因,是要切实发展学生的实践能力和创新精神,特别是创新精神。实际上,一个人要具有创新精神,可能需要三个基本要素:创新意识、创新能力和创新机遇。其中,创新意识和创新能力的形成,不仅仅需要必要的知识和技能的积累,更需要思想方法、活动经验的积累。也就是说,要创新,需要具备知识技能、需要掌握思想方法、需要积累有关经验,几方面缺一不可。
正如史宁中教授所说:“创新能力依赖于三方面:知识的掌握、思维的训练、经验的积累,三方面同等重要。”
对于数学活动经验的内涵,目前学者们的观点并不统一。这里介绍几个。
张奠宙指出:“数学经验,依赖所从事的数学活动具有不同的形式。大体上可以有以下不同的类型:直接数学活动经验(直接联系日常生活经验的数学活动所获得的经验)、间接数学活动经验(创设实际情景构建数学模型所获得的数学经验)、专门设计的数学活动经验(由纯粹的数学活动所获得的经验)、意境联结性数学活动经验(通过实际情景意境的沟通,借助想象体验数学概念和数学思想的本质)。”
徐斌艳教授认为:我们还可以将基本活动经验进一步细化,它包括基本的数学操作经验;基本的数学思维活动经验;发现问题、提出问题、分析问题、解决问题的经验。
孔凡哲教授认为:““基本活动经验”是指“在数学目标的指引下,通过对具体事物进行实际操作、考察和思考,从感性向理性飞跃时所形成的认识。”
本人认为,无论大家的观点如何,有几点是共同的: 第一,基本活动经验建立在生活经验基础上。第二,是在特定数学活动中积累的。第三,其核心是如何思考的经验。
第四,最终帮助学生建立自己的数学现实和数学学习的直觉,学会运用数学的思维方式进行思考。这里就有几个关键词:学生现实、数学活动、思考和反思。特别要设计好的数学活动。这里列举两个例子。
第一,数数活动。比如“数数”的活动,仔细思考,在这个活动中,学生可以对自然数的基数意义和序数意义有所体会,可以体会一一对应的原则。不仅仅是对于数的认识,学生在数数过程中还为
数的比较大小,加法(往后数)、减法(往前数)、乘法(几个几个的往后数),除法(几个几个的往前数),甚至是数排列的规律等奠定了丰富的经验。
第二,发去北师大五年级图形面积的第一节课。
在这个活动中,学生将在比较图形面积的活动中积累比较方法的经验:数面积单位、通过平移旋转轴对称过后的两个图形的面积是相等的、图形的割补、图形的拼接等。
所以,对于一线老师,我觉得有三件事情是值得做的: 第一,积累好的案例。
第二,认真地研究学生。学生在面对一个问题时他们是如何思考的,其中是否存在着经验。第三,探索经验形成的途径。一般说来,要经历:“经历、内化、概括、迁移”的过程。首先,需要经历,无论是生活中的经历、还是学习活动中的经历,对于学生基本经验的积累是必须的。但仅仅是经历是不够的,还需要学生在活动中充分调动数学思维,将活动所得不断内化和概括,最终迁移到其他的活动和学习中。由此可见,数学活动经验既是数学学习的产物,也是学生进一步认识和实践的基础。
这里反思和迁移是重要的。比如,我在国外教材中看到过这样的问题:”今天你学习的方法在以前哪里用过?今后可能用到什么地方“。这样的问题就是在帮助学生实现迁移。
下面,谈谈基本思想。
在课程标准解读中,提出了三个基本思想:抽象、推理、模型。
人们通过抽象,从客观世界中得到数学的概念和法则,建立了数学学科; 通过推理,进一步得到更多的结论,促进数学内部的发展;通过建模,把数学应用到客观世界中,沟通了数学与外部世界的桥梁。
比如,由数量抽象到数,由数量关系抽象到方程、函数(如正反比例)等;通过推理计算可以求解方程;有了方程等模型,就可以把数学应用到客观世界中。
笔者认为基本思想这一层面是数学思想的最高层面。
处于下一层次的还有与具体内容紧密结合的具体思想,如数形结合思想、化归思想、分类思想、方程思想、函数思想等。
在数学思想之下统领的还有一些具体的方法。
对于教师,我认为首先要对数学基本思想要熟悉,心里有这根弦。作为研究,可以研究与具体内容紧密结合的具体思想,如数形结合思想、函数思想等。
限于篇幅和时间,这里不好列举大的案例。感兴趣的老师,我最近要在东北师范大学出版社出版一本对于课程标准的解读,上面有比较丰富的一线老师们的案例。
下面说说发现和提出问题、分析和解决问题。这里关键和要鼓励学生发现和提出问题,比如有的地方进行的”单元情境+提出问题“的试验。
对于一个单元,设计一个大的情境,鼓励学生根据大情境从不同角度提出问题,然后根据情况选择其中一些问题进行讨论,在分析和解决问题中学习新的内容。
下面说说发现和提出问题、分析和解决问题。这里关键和要鼓励学生发现和提出问题,比如有的地方进行的”单元情境+提出问题“的试验。
对于一个单元,设计一个大的情境,鼓励学生根据大情境从不同角度提出问题,然后根据情况选择其中一些问题进行讨论,在分析和解决问题中学习新的内容。
有的老师在学生学习之后,鼓励学生提出一些新的可以研究的问题,这也很好。比如,在一次小数的认识学习后,我就鼓励身边的小组学生提出想要进一步思考的问题。
学生纷纷提出了“小数点的作用是什么”“小数为什么要叫‘小’数”“不是十进分数的分数能否化成小数”“小数和自然数一样也是无限大的吗”等。
有的老师在学生学习之后,鼓励学生提出一些新的可以研究的问题,这也很好。比如,在一次小数的认识学习后,我就鼓励身边的小组学生提出想要进一步思考的问题。
学生纷纷提出了“小数点的作用是什么”“小数为什么要叫‘小’数”“不是十进分数的分数能否化成小数”“小数和自然数一样也是无限大的吗”等。
并且他们对于“小数和自然数一样也是无限大的吗”这一问题进行了讨论,下面是片段: 生1:我觉得是无限大的。
师:说说你的理由?能举个例子吗?
生2:比如说,10000.1比10000大;再多就是100000,100000.1比100000大;再多就是„„一直可以再多,谁也不知道到底有多大。
生3:我觉得自然数有多大,小数就有多大。因为,自然数的基础上可以再加一个小数,自然数是无限大的,小数就是无限大的。
生4:我补充,1亿加上0.1就比1亿大了。
生1:小数是在自然数上“附加”的,所以如果自然数是无限多,小数就应该无限大。(大家都表示同意)
这里特别有两句话,提醒老师们注意:
第一,启发学生思考的最好的办法是教师与学生一起思考。
教师要能暴露自己的思考路径,教学中为什么要提出这些问题供大家思考,遇到情境可以从哪些方面提出问题,遇到这些问题后应该从哪些角度来分析,解决了这个问题又可以提出哪些新的问题。
第二,要鼓励学生”从头到尾“的思考问题。这句话是史宁中教授的,我觉得很形象。
比如,小学中也有很多例子,比如圆的周长与直径的关系,教师一上来就让学生去测量,然后用周长去除以直径。学生就没有“从头思考”,为什么要用周长去除以直径?
这时候,教师可以引导学生思考:圆的周长的大小与什么有关,学生能可以到与直径或半径有关,因为直径等于2个半径,所以可以只研究周长与直径的关系。
那么有什么关系呢?教师可以鼓励学生类比正方形,正方形的周长等于边长的4倍,那么圆的周长是否也和直径存在着倍数关系呢,不妨测量以后相除看一看。
这个例子,我昨天在家里和我的儿子试了试,他是完全可以接受的。进一步,我又鼓励他思考,接着要想什么。
他说,要想为什么我测了以后不是3倍多,为什么数学家就能得到这么准确的值。还可以问,为什么是3倍多而不是2倍多。多么可爱的孩子。
时间的关系,下面我们进入到核心概念的讨论。
《标准》指出:“在数学课程中,应当注重发展学生的数感、符号意识、空间观念、几何直观、数据分析观念、运算能力、推理能力和模型思想。
核心概念反应了一类课程内容的核心,是学生数学学习的目标,也是数学教学中的关键。
与《实验稿》相比,在这10个核心概念中,有一些是新增加的:运算能力、模型思想、几何直观、创新意识;
有一些是名称或内涵发生较大变化的:数感、符号意识、数据分析观念;
有一些是保持了原有名称,基本保持了原有内涵:空间观念、推理能力、应用意识。进一步,这10个核心概念可以分成三层。
第一层,主要体现在某一内容领域的核心概念。数感、符号意识、运算能力主要体现在数与代数领域,空间观念主要体现在图形与几何领域,数据分析观念主要体现在统计与概率领域;
第二层,体现在不同内容领域的核心概念,包括几何直观、推理能力和模型思想;
第三层,超越课程内容,整个小学数学课程都应特别注重培养学生的应用意识和创新意识。1.数感
《标准》去掉了原来《实验稿》中对于数感描述中与运算有关的某些内容,将其独立为另一个核心概念:运算能力。
《标准》将数感定义为一种感悟,这既包括了感知、又包括了领悟,既有感性又有理性的思维。《标准》将这种对数的感悟归纳为三个方面:数与数量、数量关系、运算结果的估计。数与数量,实际上就是建立起抽象的数和现实中的数量之间的关系。
这既包括从数量到数的抽象过程中,对于数量之间共性的感悟;也包括在实际背景中提到一个数时,能将其与现实背景中的数量联系起来,并判断其是否合理。
比如,曾经有一个例子,一位学生看见某一博物馆的介绍资料中提到“7000平方米森林中生活着两只东北虎”时,发现了其不合理处,原来应该是“7000平方千米森林中生活着两只东北虎”。
数量之间的关系包括数的大小关系及其所对应的数量之间的多少关系,也包括变化的量之间的函数关系等。
比如,学生在观察两个变量之间对应的数据时,能够对于它们之间可能存在的关系进行初步的判断。
数量之间的关系包括数的大小关系及其所对应的数量之间的多少关系,也包括变化的量之间的函数关系等。
比如,学生在观察两个变量之间对应的数据时,能够对于它们之间可能存在的关系进行初步的判断。
有关估算,我下面还要谈到,这里不赘述了。
由上面对于数感的理解不难看出,发展学生的数感,需要创设情境建立起抽象的数和现实中的数量之间的关系;需要学生对于单位数量(比如1平方米)有比较准确的把握;需要能从多种角度来表示一个数,比如,0.25就是1/4;还需要对数之间的大小关系有所感悟,比如0.49比1/2小但很接近,1.3介于1和1.5之间。
2.运算能力
如前所述,运算能力是《标准》新增加的核心概念。
《标准》指出:“运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题”。
从上面的表述中不难看出,运算能力首先是会算和算正确;而会算不是死记硬背,要理解运算的道理,还要寻求合理简洁的运算途径解决问题等。
3.符号意识
首先,《标准》将“符号感”更名为“符号意识”,更加强调学生主动理解和运用符号的心理倾向。
符号意识主要是指能够理解并且运用符号表示数、数量关系和变化规律。这一条强调了符号表示的作用。
知道使用符号可以进行运算和推理,得到的结论具有一般性。这一条,强调了“符号”的一般性特征。
因为用数进行的所有运算都是个案,而数学要研究一般问题,一般问题需要通过符号来表示、运算和推理。因此一方面符号可以像数一样进行运算和推理,另外通过符号运算和推理得到的结论是具有一般性的。
4.空间观念
除了将《实验稿》中最后一条独立为另一个核心概念“几何直观”外,《标准》对于“空间观念”的阐述基本保持了原来的说法。
5.几何直观
几何直观是《标准》中新增的核心概念,主要是指“利用图形描述和分析问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路,预测结果。几何直观可以帮助学生直观地理解数学,在整个数学学习过程中都发挥着重要作用”。
6.数据分析观念
《标准》将“统计观念”更名为“数据分析观念”,点明了统计的核心是数据分析。
进一步,“数据分析观念”更加突出了统计与概率独特的思维方法:体会数据中蕴涵着信息;根据问题的背景选择合适的方法;通过数据分析体验随机性。
7.推理能力
《标准》和《实验稿》一样,强调了“获得数学猜想——证明猜想”的全过程,以及在这个过程中的合情推理和演绎推理。
需要特别指出的是,推理能力的发展应贯穿于整个数学学习过程中。在解决问题的过程中,两种推理功能不同,相辅相成:合情推理用于探索思路,发现结论;演绎推理用于证明结论。
8.模型思想
《标准》首先说明了模型思想的价值,即建立了数学与外部世界的联系。
小学阶段有两个典型的模型“路程=速度×时间”、“总价=单价×数量”,有了这些模型,就可以建立方程等去阐述现实世界中的“故事”,就可以帮助我们去解决问题。
《标准》还进一步阐述了建立和求解模型的过程,这一过程的步骤可用如下框图来体现:
限于时间关系,需要进入到第二阶段,讨论了,第一阶段先讲这些,抱歉。
讲空间与图形改为图形与几何,首先点明了这部分内容的研究对象——图形,既包括立体图形也包括平面图形。
同时,《标准》分为了“图形的认识”、“测量”、“图形的运动”、“图形与位置”等四个线索,实际上是从不同角度刻画图形,包括图形的形状、大小、运动和位置。
同时,这四个线索也体现了研究几何的几种方法:综合推理、度量、变换和坐标。在运用多种方法研究的过程中形成了概念、性质等体系,也就是“几何”的内容。
简单说,图形是几何的研究对象。再回答一个,删减的内容:
对于数与代数,《标准》在这部分的基本结构没有变化,只是在一些局部做了调整或修改。主要包括:
1.明确了在第一学段“能结合具体情境比较两个一位小数的大小,能比较两个同分母分数的大小”,在第二学段“了解自然数”。实际上,目前在小学教材中也包括了这些内容。
2.某些表述更加清晰、准确。比如将“会比较小数、分数和百分数的大小”改为“能比较小数的大小和分数的大小”。
3.增加了“知道用算盘可以表示多位数”。只要求知道算盘上是如何表示多位数的,感受算盘作为我国重大发明的意义。
插一个问题,算法多样化并没有弱化,在课程标准中,仍谈提出了”经历和他们交流各自方法的过程“,就是鼓励算法多样化。
对于图形与几何,《标准》在这部分的基本结构没有变化,只是在一些局部做了调整或修改。主要包括:
1.在第二学段,去掉了“了解两点确定一条直线和两条相交直线确定一个点”,放入了第三学段。2.进一步明确了“观察物体”的要求。
《标准》对于统计内容做了较多调整,使三个学段内容学习的层次性更加明确。
将第一学段的统计图、平均数的学习移到了第二学段,将第二学段的中位数、众数移到了第三学段。这样做有三个原因,一是使三个学段的层次更加清晰;二是明确统计内容的学习重要的是数据处理过程的经历、数据分析观念的培养,而不仅仅是统计知识的学习。因此,在第一学段鼓励学生用自己的方式(文字、图画、表格等)呈现整理数据的结果,虽然从知识上看减少了,但从要求和标准上提供的案例来看,对于数据分析观念的体会并未减少。
另外,去掉“初步体会数据可能产生误导”的要求,在小学阶段还是强调从正面体会数据分析的作用。
对于统计内容回归传统,这种认识是不正确的。实际上,《标准》更加解释了统计的本质:数据分析,强调通过数据分析做出决策,这点和《实验稿》是相同的。
只是知识上稍有调整,思想和观念上没有降低。今年九月份,起始一年级开始使用新教材。
对于中位数、众数等,一定要注意数据分析观念的内涵之一:尽可能多地从数据中提取有用的数据,并且能够根据问题的背景选择合适的方法。
因此,统计学对结果的判断标准是“好坏”,从这个意义上说,统计学不仅是一门科学,也是一门艺术”。因此,教学中教师应把握这个判断原则,防止简单地给出“对错”判断。下面举一个值得商榷的案例。
教师在课上要求学生根据两个同学的平时练习的数据,选择一位学生作为代表参加比赛。这两个同学,甲同学成绩不稳定,但有一个最好的成绩;而乙同学,虽然最好成绩不如甲,但成绩比较稳定,并且平均成绩高。
经过引导,教师要求学生应该选择乙同学作为选手。
这个案例反应出教师希望给出一个明确的“对错”判断。实际上,选择甲、乙都有道理。如果是射击比赛,需要计算每一轮射击成绩的总和,可能选择乙作为选手;如果是跳远比赛,需要选择成绩最好的一次作为最终成绩,那么就可能选择甲作为选手。那么,什么样的问题是适当的呢?下面也给出一例。
课标解读转播1(717045573)20:56:24 北京—张丹(331867541)20:56:02 11名男同学100米跑的成绩如下:
13秒2 17秒 13秒5 15秒8 12秒 17秒1 16秒7 15秒6 17秒 16秒6 16秒7。
学生能计算出这组数据的平均数是:15秒6;这组数据的中位数是:16秒6。在此基础上让学生利用数据分析如下问题:
(1)如果选择参加一项比赛,希望有一半的男同学可以参加,选择哪个成绩作为标准?(2)如果希望确定一个较高的标准,选择哪个成绩作为标准?(3)如果需要确定一个标准,你如何确定?为什么?
分析第一个问题,希望有一半男同学能够参加比赛,选择中位数作为标准;第二个问题可以用平均数作为标准;第三个问题学生首先自己确定标准,根据标准进行合理的选择。
其实,我认为《标准》和《实验稿》的精神是一致的,在关注变化的同时,我们要关注什么是没有变化的,实际上就是对于数学教育价值的深刻认识和对于学生发展的真正关怀。
总之,我们需要培养一个真正健康的任,真正有自己想法的人。要培养人的创新能力,必须注重过程,启发思考,总结经验,学会反思。要鼓励学生不断思考:为什么要思考它,思考的东西是什么,思考的核心是什么,思考的主线是什么,能启发哪些新的问题。
当然,课程改革任重道远,需要我们共同努力,共同面对可能遇到的艰苦。其实,当我们认认真真走过十年、甚至更多年后,当面对曾经的努力和困惑,会有一种坦然和幸福。心向往之!
第四篇:数学课程标准解读心得体会
数学课程标准解读心得体会
数学课程标准解读心得体会1
听了史宁中教授关于20xx年版《义务教育数学课程标准》的解读,受益匪浅,对一些之前不是特别明白的地方,也更加清晰了。
凡有利于学生发展,有利于促进学生形成良好的情感与价值观的数学内容就是有价值的数学。而数学内容的价值并不完全在教材中静态地呈现,它需要教师去思考、去捕捉、去开发,然后通过教学活动动态地渗透。因此,教师对教学的把握显得很重要。
教师不仅是教材的使用者,更应成为教材的重组者、开发者,要能最大限度地开发并体现教材的价值。例如,教材上介绍的求比值的方法是“前项除以后项”,化简比的方法依据的是“比的基本性质”。教材中也安排了同时求比值和化简比的练习,但并没有将两者方法进行沟通。事实上,熟悉这一教学内容的教师都清楚,只需用一种方法(即用前项除以后项)便可分别求比值和化简比,细心的学生通过练习也能体察到这一点,但道理何在?
通过思考,我们可以发现这一教学内容具有以下几点价值:
⑴它沟通了分数、除法、比知识间的广泛联系,学生在探究过程中能把新旧知识融汇贯通;
⑵在探究过程中能体验研究数学问题的思想与方法,如:举例验证,联系旧知识解决新问题,由个别到一般,由具体到抽象等;看似一个平常的练习,却蕴藏着丰富的教学资源。
在我们的教材(尤其是旧版教材)中,不乏存在着一些具有丰富内涵的内容有待我们去开发,有待我们用新理念、新眼光去重新审视这些内容的价值。
数学课程标准解读心得体会2
最近利用课余时间学习了初中数学新课标,有一定的心得体会。初中数学是义务阶段的一门主要课程,数学来源于生活,又服务于生活,很多的知识结构均是由现实生活中的实际问题抽象而来,并利用该知识解决数学问题,这也是我们常常说的提出问题、分析问题到解决问题的过程,从而更好的使学生形成理性思维达到提高能力的目的,具体有以下体会:
一、授课过程中一节课的知识点要少而精,重点问题重点讲解,使学生能吃透读懂,对知识的讲解要追本求源,把课本教材知识放在首位,同时还要积极的调动学生学习的积极性,让学生对知识进行提炼和总结,没有学生的主动参与就不是一节成功的课,新课标倡导学生自主学习,合作学习和探究学习,这些都是以学生的主动参与为前提的。
二、在教学活动中,教师要当好组织者。教师要充分信任学生,相信学生完成学习的能力,把机会交给学生,俯下身子看学生的学习,平等参与学生的研究,把课堂放给学生,给学生充足的时间与空间尝试并合作探究,让学生表现自己,树立自信心,培养学生的专研精神。
三、初中教师在新课标中的角色是:课程价值的思考者、学科专业的播种者、学生发展的促进者,合作探究的协作者,资源保障的服务者,终生发展的示范者。
四、新课标的新变化有以下五个方面的新变化:深化课程教育导向;优化课程标准结构;提高了学业质量标准;增强了指导性;变革育人方式,突出实践。
总之,我们在教学中对教材的处理、教学过程的设计以及评价的方式都要以学生发展为中心以提高全面发展为宗旨,这才是我对学习新课标的最终体会。
数学课程标准解读心得体会3
《义务教育数学课程标准(20xx年版)》自公布以来,短时间成为数学同行们交流的热点话题。课程标准是教师教学的指挥棒,深入学习和领会课程标准的精髓,会让自身教学不走错路,少走弯路。通过一段时间的自学,自身对新课标也有些许体会和感悟,与同行们分享一下我的心得:
一、夯实老内容,领会新导向
通过学习不仅夯实和重温了课程标准的老内容,更是解读了20xx版新课标的新增内容和导向。课程标准从20xx年出版到20xx年出版,再到今年的20xx年出版,基本上每十年改一次。今年新出版的新课标的指导思想中的基本理念和结构特征,与20xx年版的还是有不少的变化。在基本理念中体现了“逐步形成适应终身发展需求的核心素养”,要设计体现结构化特征的课程内容,重点对内容进行结构化的整合。在探索激励学习和改进教学的评价中,要通过学业质量的标准的构建,融合“四基”“四能”和核心素养的具体表现,形成阶段性评价主要依据。
二、理论与实践相结合
发现新课标并不是高不可及的“高大上”的标准,结合实践来解释主题结构化的意义,结构化突显内容的关联性,有助于知识与方法迁移,促进核心素养形成。强调内容结构化就是对学习内容的整体理解,对学生学习的整体把握,从基于单元的整体分析,对关键内容的深度探究,再通过核心概念的感悟,和知识与方法的迁移,促进学生整体发展,逐步形成核心素养。特别介绍了具有整体设计思路与内容结构化有密切关联的教学设计的理念和框架,强调了深度学习和单元整体教学可作为实现课程内容结构化的路径。
三、新名词的理解要结合教学实际
我们老师往往纠结于专业术语的新名词,困惑于他人对教学的初步结论。比如什么是“整合思想”,就是改变过于注重以课时为单位的教学设计,推进单元整体教学设计,体现数学知识之间的内在逻辑关系,以及学习内容与核心素养表现的关联。在小学阶段,更多的体现的是培养学生的“意识和感受”,在初中阶段,更多的培养的是其“能力与观念”。
四、学习过程中对问题的思考
如何在教学中更好地把握数学课程体现核心素养”和“如何深入理解课程标准的新要求”这样的系列问题会在我们学习课标时总在头脑中思考。通过思考感悟颇多:
1、社会文明的发展,影响和牵引着数学文明发展,要把数学与社会发展紧密相连。
2、不能叫用字母表示数,应该称为用字母表示关系、性质和规律。
3、“学科实践”指的就是我们教学实践,是实际教学中我们该怎么做。
4、对学生的计算思维的培养如何落实?事实上,就是要培养学生有逻辑地思考问题。
5、“会用数学的眼光观察世界,会用数学的思维思考世界,会用数学的语言表达世界”的“三会”目标里,不光要看世界外在的,还要将问题数学化、抽象化,来解决实际问题,它都是与现实世界相关联的,也就是说外在和内在的相结合。其具体表现更多的是内在的,例如:数感、量感和计算能力等等。
通过本次自学课标使我更能深刻的理解课标,让我去思考背后的教育价值和核心概念,促进我要能够质疑问难、反思自我、勇于探索、深入学习,从而掌握新课标核心思想的脉络,把握新时代教育思想的脉搏,凝心聚力再前行!
数学课程标准解读心得体会4
20xx年4月颁布新课标后,我认认真真进行了阅读。新课标指出,学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者,并要求教师实现角色转变,由传统的以讲授为主导的教学转变为提倡以探索和引导发现的教学。
数学素养是现代社会每个公民应该具备的基本素养。数学教育既要使学生掌握现代化和学习中所需要的数学知识与技能,更要发挥数学在培养理性思维和创新能力方面不可替代的作用,因此,数学课程应致力于实现义务教育阶段的培养目标,要向全体学生,适应学生个性化发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上得到不同的发展,作为一名初中数学教师要遵循新课标,上好每节课。
教师不再是课堂教学的主体,课堂不再是以教师为主体的单边的教学活动,是师生双向交流,交往互动,相互沟通,相互补充的过程;是学生围绕着教师设计的课堂这条主线,思维高速运转,不断发展,不断成熟的过程。在这过程中,学生应有能力的提高,数学思想方法的形成,成就感的喜悦,创新思维火花的迸射。
课堂教学要建立合理的科学的评价体系,既要关注学生的数学学习结果,也要关注他们学习的过程满分作文网;既要关注学生数学学习的水平,也要关注他们在学习活动中表现出的情感,态度的变化,关注学生个性与潜能的发展,调动学生学习的积极性。
数学教学要关注个体差异,促使发展,不同的人在数学上得到不同的发展。数学教学同样也要让每个学生都有所收获,既要保证学困生能学得进去,要保证基础学生的整体发展,更不能压抑尖子生的个性及特长,教师要因材施教,因势利导,要通过多种途径及方法满足他们的学习需要,发展他们的数学才能。
课程下的课堂教学,应是通过师生互动、生生之间的互动,共同发展的课堂。它既注重了知识的形成过程,注重了学生的情感体验和能力的培养。对新课改,课堂上要放下“架”,让学生喜欢你,充分发扬教学民主,尊重学生的人格,努力形成新型的、平等和谐的师生关系。因此,我们在教学中对教材的.处理、教学过程的设计以及评价的方式都要以学生的发展为中心,以提升学生的全面发展为宗旨,这才是课改的最终目标。
在今后的数学教学中,认真上好每节课,使得我的每个学生在每节数学课上都能有所收获,既学到数学知识,又获得能力的提高,思维的发展,数学思想的形成,发展学生的数学素养。
数学课程标准解读心得体会5
我们的生活离不开数学,每天的日常生活中处处都有数学的影子,这是数学最基础的运用。数学课程也具有基础性、普及性和发展性,能通过对数学课程的学习,掌握适应现代生活及进一步学习必备的知识和技能。
数学是一切自然科学的基础。比如计算飞船“摆脱”地球引力的速度,是数学;生产精密仪器的时候不断调整数据更精准,是数学;物理坐标需要数字记录,物体运动轨迹需要建立数学模型,是数学;化学反应的进行速度、反应程度,以及反应过程的吸热放热、化学方程式的表达,也需要数学。上至天文,下至地理,所有涉及到计算的自然科学,全都与数学有关,而这些自然学科又相互融合,不断发展,衍生出各行各业。足可见数学之用的广泛性。
20xx年4月xx日,教育部印发义务教育课程标准(20xx年版),现就《义务教育数学课程标准(20xx年版)》谈谈数学组老师的研读心得。
一、数学何以重要
数学,是每一个学生必学的一门学科,数学知识我们每天也在用。对大多数人来说,小学学到的数学知识亦足够,随着年级的升高,我们会发现所学的数学知识越来越抽象,似乎离我们的生活越来越远,而数学的尽头是“哲学”。这也正体现了数学“化繁为简”这一学科特点。数学通过对现实世界的抽象化,以符号式就能高度概括出事物之间的关系,以及必然联系,在形成人的理性思维、科学精神和促进个人智力发展中发挥着不可替代的作用。
对于“数学是什么”,课标在一开始就给出了概括性的定义:数学是研究数量关系和空间形式的科学,是培养孩子理性思维的重要学科。数学不仅是运算和推理的工具,还是表达和交流的语言。数学承载着思想和文化,是人类文明的重要组成部分。数学素养是现代社会每一个公民应当具备的基本素养。而在小学阶段,数学教育承载着落实立德树人的根本任务,实施素质教育的功能。通过数学课程学习激发学习数学的兴趣,养成独立思考的习惯和合作交流的意愿;发展实践能力和创新精神,增强社会责任感,梳理正确的世界观、人生观、价值观。
二、课标哪里有“变”
(一)确立核心素养在课程目标中的导向作用
新课标一个最引人注目的变化就是确立核心素养在课程目标中的导向作用,把培养学科核心素养提到一个前所未有的高度。
首先,我们需要明晰“核心素养”是什么。数学课程要培养的学生核心素养,主要包括三个方面,见图1;小学阶段数学核心素养的表现,见图2。
图1核心素养的内涵
若用隐喻的方式来形容数学核心素养的“三会”,可以这样理解:“会用数学的眼光观察现实世界”,即用数与量,图与形来观察现实世界。如一瓶水,用语文的眼光观察是“水”字的结构和笔顺这些语文元素,用数学的眼光观察是瓶子的容积和水的体积这些数学元素。
“会用数学的思维思考现实世界”,即将问题简化、抽象化,使得方法和思维可迁移运用到其他学科乃至生活中。如我们日常整理房间,就蕴含着数学中的归纳与分类的方法与思想。“会用数学的语言表达现实世界”,数学语言是连接着数学思维与现实世界的媒介,数学语言的特点是简洁、清晰、符号化。如我们学习的数,+—x÷><=,字母表示数,解决问题的算式等,就是教孩子用数学语言表达现实世界及其与事物的关系。
图2核心素养的主要表现
新课标中的课程目标以学生发展为本,以核心素养为导向,进一步强调使学生获得数学基础知识、基本技能、基本思想和基本活动经验(简称“四基”),发展运用数学知识与方法去发现、提出、分析和解决问题的能力(简称“四能”),形成正确的情感、态度和价值观。课程目标的素养导向,有利于转变将知识、技能的获得等同于学生发展的目标取向,引领教学实践及教学评价从核心素养视角来促进和观察学生的全面发展。用核心素养来表述课程目标,让课标“目中有人”。此举以“立”带“破”,让教师在教授“有用”之知识中贯穿“大用”之学识。
(二)设计体现结构化特征的课程内容
在新课标的课程内容板块,首先映入眼帘的是小学由原来的两个学段调整为三个学段(见图3),且每个学段都有学业目标和评价标准。
此外,各学段的主题变化较大。课程内容的结构化体现了学习内容的整体性,反映了学科本质的一致性、表现学生学习的阶段性。课程内容结构化,必然要求要以结构化的方式来组织教学内容,如以主题、项目、任务来组织结构化的课程内容,这也是我校目前各学科对于新课改的落地举措。
正如许多专家所指出的,内容结构化并不意味着可以忽视或无视知识点,而是要在知识结构中去重新认识和定位知识点的意义与价值,要在学生的主动活动中实现知识点的教育价值。
(三)学业质量的评价方式更加丰富数学学习活动的实践性与丰富性对数学学业质量的评价方式提出了更多的需求,除了常用的的纸笔测试以外,表现性评价、增值性评价、过程性评价等方式的应用也更加综合和贴近学生发展实际。我校在对学生的综合评价中就加入了表现性评价的新型方式,还引入了多元主体评价,自主评价等操作方法,反馈更全面客观,导向更加明确科学,更加综合且真实地为每一位学生画像,引领学生的核心素养全面发展(见图4)。
三、我们如何应“变”
从课标文本来看,学生素养发展,贯穿课标全文本,隐含在课程内容及教学实践中,体现在课程学习结果的具体描述中。要促成素养落地,需要更多教育协同方的共同努力。
(一)数学要整体性和一致性学习在数与代数中,新课标把原来的四个主题变为了“数与运算”和“数量关系”两个主题,把负数、方程、反比例移到了初中,这是不是意味着小学数学更轻松了?这个改动,按照史宁中教授的说法,其实是“更注重数学学习的整体性和一致性”的体现。他认为,数学的学习必须要能“串起来”,也就是孩子学到的知识要能有迁移。1。要呈现有结构的概念
给孩子一个新概念,不仅要讲是什么,更要讲怎么比较,要有概念之间的区别和联系,能让孩子学会从一个知识点迁移到另一知识点,还能渐渐通过理解把这些知识点串起来。2。要能将方法学以致用教孩子的方法要让孩子觉得“有用”“好用”,在过去的小学数学中,用字母表示数的内容很少,并没有让孩子形成代数思想。课标提出加强孩子的代数思维,就是用字母一般性代表数,让孩子建立初步的“符号意识”,为以后学习方程打下基础。让孩子学会用抽象符号表示对象,会是将来数学学习的重点。中国教育学会副会长史宁中教授提出了孩子学代数的两个层次:两匹马→□□上面这个式子代表了感性具体→感性一般,叫做简约阶段。
这个式子代表了感性一般→理性具体,叫做符号阶段。
让孩子学会用抽象的符号表示对象,会是将来数学的重点。
比如,孩子需要学会用符号表示对象的性质:
当n是正整数的时候,2n是偶数。
还要学会用符号来表示对象的关系:
小明的爸爸比小明大30岁,如果小明a岁,爸爸b岁,那就可以写成:b=a+30
还可以用符号表示对象的规律:
一辆汽车以平均每小时60公里的速度行驶,t小时后行驶了s公里。可以写成:s=60t
用符号表示对象的性质、关系和规律,是每个孩子都要培养的数学思维。未来也会从低年级开始渗透,比如让孩子接触这种式子:5—□□=2←→5=2+□□
用符号表示对象的性质、关系和规律,是每个孩子都应该培养的数学思维,如何引导孩子把一个个具象的内容,转化成抽象的符号,不仅仅是老师的任务,家长也可以在生活中多举例,以帮助孩子完成思维转换。
3、更加注重跨学科的实践数学与其他学科的融合点比较多,比如语文课本里的曹冲称象,也能跨进数学课例,孩子通过重现曹冲称象的故事,能够自己探索“总量等于分量之和”这样的数学概念。通过综合与实践这个主题是希望把数学知识与日常生活联系得更紧密,让孩子们学会用数学的眼光看生活和传统文化。
(二)更加重视对高阶思维的发展对比20xx年课标中4—6年级的要求,能看到新课标对孩子的思维能力的要求是有所提高的。数学知识的学习量变少,但是对于数学知识的概念和性质的理解却更为重要,更关注概念+性质的理解。以往的数学题目可以靠背,考的是记忆层面。如:三角形内角和等于什么?但是未来的题目,将会更侧重考察孩子的数学思维层面,如:如果它不是直角三角形,那么它至多有几个钝角?也就是说,以后的题目将会更灵活,而不是让孩子简单地套公式,就能得出答案。所以新课标提出,要让孩子学会用推理的方式得到答案,重视推演的过程,是非常有必要的。经过小学数学学习,孩子们能探索出数与运算的一致性,形成符号意识、运算能力和推理意识,以形成更加高阶的思维方式;并能运用基本的数量关系,以及几何直观、逻辑推理和其他学科知识、方法,分析与解决问题,形成模型意识和初步的创新意识。
生活处处皆数学。我们也可以尝试在孩子提出的问题中寻找数学规律,引导他们进一步思考,为什么测核酸要10个人一组、为什么买彩票很难中奖、为什么井盖是圆形的……这些都是我们身边的数学。数学之“用”不仅仅是书本知识与应试技能,“聚焦核心,面向未来”是对数学新课标研读的总结。背公式、刷题的时代已一去不复返,知识最为重要的力量是对人身心潜能的激发和学习机制的改造,是对人性、人的精神世界的涵养,这时候,知识的内涵也从书本上的概念、原理、公式变成人在社会现实互动中的视野、立场和方法,变成了面对问题时的智慧与胆识,此时的知识才真正成为了个体力量,也就是真正的核心素养落地。数学之“大用”不仅在于启智增慧,更要能立德树人,把育人蓝图变成现实,培育一代又一代有理想、有本领、有担当的时代新人,为实现中华民族伟大复兴作出新的、更大的贡献!
数学课程标准解读心得体会6
我通过学习,思想上更清楚了,我们搞创新教学是时代的需求。下面谈谈我今后如何来搞好创新教学的。
一,理解新课程的基本理念,改变教学方法。新课程倡导教师“用教材”,而不是简单地使用新教材,教师要创造性的用教材。要在使用教材的过程中融入自己的科学精神和智慧,要对教材知识进行重组和整合。选取更好的内容,对教材深加工,设计出活生生的,丰富多彩的课来,充分有效地将教材的知识激活,形成有教师教学个性的教材知识。既要有能力把问题简要的阐述清楚,同时也要有能力引导学生去探索,自主学习。
二,搞好创新教学,教师要正确把握自己的角色定位。面对新课程,教师要首先转变角色,确认自己的教学身份。新课程要求教师由传统知识传授者转变为学生学习的引导者。另外,从新的课程标准来看,数学活动的教学是师生之间,学生之间来往互动与共同发展的过程,数学教学应该从学习的实际出发,利用已有经验的基础上,让学生摸索新的学习方法,教师起到从旁协助的作用。
总之,新课程已经为我们指明了新的方向。我们只有跟着新的方向,搞好创新教学,才不会迷失自己的方向。
数学课程标准解读心得体会7
周三下午在学校教导处的安排下,我校全体数学教师参加了油田教育中心组织的小学数学新课程标准学习的线上培训。通过本次培训,我对新课标有了新的理解,下面我就谈一下自己的感受:刘主任从小学数学课标的演变、数学课程核心素养的内涵及其表现以及基于新课标的小学数学教学新变革几个方面为大家深入剖析了“20xx版课标”。
一、抓好“四基”是发展学生数学的关键。
刘主任提到数学核心素养主要由三方面构成:
(1)会用数学的眼光观察现实世界
(2)会用数学的思维思考现实世界
(3)会用数学的语言表达现实世界。抓好“四基”是发展学生数学的关键。
因为,学习数学的目的就是要让学生学会用数学的思维去思考问题,在实际操作中去体会数学,积累数学活动的经验,为应用打下坚实的基础。
二、注意培养学生在生活中发现数学、应用数学的习惯。
数学来源实际生活,教师要培养学生从生活实际中出发,从平时看得见、摸得着的周围事物开始,在具体、形象中感知数学、学习数学、发现数学。教师除了让学生将书本中的知识与生活联系外,还要经常引导学生去发现身边的数学,记下身边的数学,灵活利用已有的数学知识去思考问题,养成应用数学的习惯。
三、对比理解新课程的基本理念,灵活使用教学方法。
我认为正确理解课程标准的基本理念是教好学的关键,因为基本理念是教学的导航。例如,原标准:义务教育阶段的数学课程应突出体现基础性。普及性和发展性,使数学教育面向全体学生,实现“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展”。修订后的标准:数学课程应致力于实现义务教育阶段的培养目标,体现基础性。普及性和发展性。义务教育阶段的数学课程要面向全体学生,适应学生个性发展的需要,使得“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。两者都强调基础性、普及性和发展性。但后者注重的是学生学习数学的情感态度和思想教育。这就更加要求教师注意学生学习的情感态度,灵活采用有效的教学方法,调动学生学习数学的积极性,使不同的学生在数学上不同的发展。
总之,面对新课程改革的挑战,我们任重而道远,我们必须正确、深入理解新课标思想,转变教育教学观念,领悟教材、回归课堂,把握课堂教学的基本要求,改进教学方式,提高专业能力,多动脑筋,多想办法,密切数学与实际生活的联系,使学生从生活经验和客观事实出发,在研究现实问题的过程中做数学、理解数学和发展数学,让学生在学习数学中享受数学的乐趣。
数学课程标准解读心得体会8
为期一天的初中数学教师培训会,得到了XX中学的大力支持。会议安排的紧凑有序,在XX老师风趣幽默的引导带动下,与会老师积极参与,畅所欲言,各抒己见,无论从知识上,还是从思想上,都给我们以启示。会后,再去回顾培训过程,感受颇多。
1、出示目标保证质量
简洁的会议日程安排后,X老师及时给出了学习任务,做好评课发言准备,会后写出学习心得。有了学习任务,就有了学习压力,制约了原先那种学习就是放松的思想,现场秩序出奇的好,老师们认真倾听,捕捉亮点,思考疑惑,才有了评课时的跃跃欲试、精彩发言,成为会议的一大亮点。用刘老师的话讲:这是干教研员以来会场秩序最好的一次。
由此,我想,在我们的工作中,是不是也尝试着这样做,以求获得更好效果。
2、潜心观察激发思维
只有潜心观察,善于思考,才能产生思想的碰撞,灵感的生成。从十多位老师的发言中,我们能感受到这一点。如XX老师在两节课的基础上,进行梳理,归纳出了两种课型的一般步骤和上课流程,并进行了详细的解释,令现场的老师佩服。
3、善于捕捉及时整理
只有善于发现,随时捕捉,才有所感,既而有所发。听同一节课,甚至同一个问题,由于大家观察的角度不同,想法的不一致,认识上就会有差别。
中午休息的时候,大多数老师找个清净的地方午休,也有老师在树荫下聊天,留意一下,你会发现,更有老师,乐此不疲,学习在继续,他们在会议室里,伏案整理笔记,因此有了评课时的慷慨激昂,也赢得了同行们赞许的目光。
4、用心倾听精彩点评
十多位老师的评课,XX老师都给出了精彩点评。我们听过不同层次的课,有感却不知道从何而发,XX老师的点评正好弥补了这种不足。每位老师评完课,XX老师先是给予肯定,然后将评课老师的观点给予归纳,让我们听得心服口服,他总是强调,我们评课不分对和错,只有适合和不适合。XX老师还不失时机的抛出问题,供大家探讨,正是这种抛砖引玉,使得会场气氛一度高涨,老师们争先发表自己的看法、观点,使问题的探讨进一步深化,解决的方案也进一步多样、细化。
5、自我反思学以致用
每次学习,我们都会认识到自身的一些不足和差距,都会给我们一些启发,都会感受到一些好的经验和做法,但随着时间的推移,慢慢就淡忘了。就像很多人说的那样,看着感动,听着激动,缺少行动。这是影响我们发展的一个重要因素,只有跨越这个障碍,把认识到的贯彻到日常工作中,学以致用,才能促进个人成长。
学习能开阔一个人的眼界,丰富一个人的内涵。一天的培训结束了,带给我们的思考是久远的,需要我们把感受体现在日常工作中,对自己负责,为学生奠基。
第五篇:解读《义务教育小学数学课程标准》(2011年版
解读《义务教育小学数学课程标准》(2011年版)
发布者:黄秀华 发布日期:2012-04-17 我校数学组把新课标挂在校园FTP软件上,要求全体数学老师用两三天时间进行自学,然后于2012年3月13日下午数学教研时,组织了教师对2011年版小学数学课程标准进行了解读,同时对新、旧课标进行比较,还结合教学实际
提出了学习过程中存在的问题。
【新旧课标比较】
与旧课标相比,新课标从基本理念、课程目标、内容标准到实施建议都更加准确、规范、明了和全面。具体变化如下:
一、总体框架结构的变化
2001年版分四个部分:前言、课程目标、内容标准和课程实施建议。2011年版把其中的“内容标准”改为“课程内容”。前言部分由原来的基本理念和设计思路,改为课程基本性质、课程基本理念和课程设计思路三部分。
二、关于数学观的变化 2001年版:
数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。
数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。2011年版:
数学是研究数量关系和空间形式的科学。
数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具。
数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。
三、基本理念“三句”变“两句”,“6条”改“5条” 2001年版“三句话”:
人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。
2011年版“两句话”:
人人都能获得良好的数学教育,不同的人在数学上得到不同的发展。
“6条”改“5条”:
在结构上由原来的6条改为5条,将2001年版的第2条关于对数学的认识整合到理念之前的文字之中,新增了对课程内容的认识,此外,将“数学教学”与“数学学习”合并为数学“教学活动”。
2001年版:数学课程——数学——数学学习——数学教学活动——评价——现代信息技术
2011年版:数学课程——课程内容——教学活动——学习评价——信息技术
四、理念中新增加了一些提法
要处理好四个关系
数学课程基本理念(两句话)
数学教学活动的本质要求
培养良好的数学学习习惯
注重启发式
正确看待教师的主导作用
处理好评价中的关系
注意信息技术与课程内容的整合五、“双基”变“四基”
2001年版: “双基”:基础知识、基本技能; 2011年版 “四基”:基础知识、基本技能、基本思想、基本活动经验。并把 “四基”与数学素养的培养进行整合:
掌握数学基础知识,训练数学基本技能,领悟数学基本思想,积累数学基本活动经验。六、四个领域名称的变化
2001年版:数与代数、空间与图形、统计与概率、实践与综合应用。2011年版:数与代数、图形与几何、统计与概率、综合与实践。
七、课程内容的变化
更加注意内容的系统性和逻辑性。如在数与代数领域的第一学段:增加了认识小括号,能进行简单的整数四则混合运算。综合与实践领域的要求更加明确和具有可操作性。
八、实施建议的变化
不再分学段阐述,而是分教学建议、评价建议、教材编写建议、课程资源利用和开发建议。在强调学生主体作用的同时,明确提出教师的组织和引导作用。
根据几年课程改革实验的经验和出现的问题,在深入调查、认真研讨和广泛征求意见的基础上,数学课程标准修改组形成了的《标准》(修改稿)。标准(修改稿修改的主要内容包括以下几个方面。1.体例与结构做了适当调整
本次修改,在保持原课程标准基本结构不变的基础上,经充分讨论,在结构上有两处调整。
一是前言内容做了较大的调整。在前言重点阐述了《标准》的指导思想、意义与功能。明确了《标准》应以《义务教育法》和全面推进素质教育,培养创新型人才为依据。明确了《标准》的意义和功能。在前言中指出,“《标准》提出的数学课程理念和目标对义务教育阶段的数学课程与教学具有指导作用,所规定的课程目标和内容标准是义务教育阶段的每一个学生应当达到的基本要求。《标准》是教材编写、教学、评估和考试命题的依据。”
二是将课程目标中的关键术语的解释和所有比较完整的案例统一放在附录中,案例进行统一编号,便于查找和使用,同时减少了《标准》正文的篇幅。
2、修改和完善了数学课程的基本理念
《标准》提出的基本理念总体上反映了基础教育改革的方向,对个别表述的方式进行了修改。如将原来“人人学有价值的数学,人人获得必需的数学,不同的人在数学上得到不同的发展”,改为“人人都能获得良好的数学教育,不同的人在数学上得到不同的发展”。
3、理清了《标准》的设计思路
《标准》中设计思路表述的不够清晰,修改稿对设计思路做了较大的修改。主要是对四个方面的课程内容“数与代数”,“图形与几何”,“统计与概率”,“综合与实践”做了明确的阐述。将“空间与图形”改为“图形与几何”。确立了“数感”、“符号意识”等七个义务教育阶段数学教育的关键词,并给出较清晰的描述。
4、对学生培养目标做了修改
学生的培养目标在具体表述上做了修改,提出了“四基”:基础知识、基本技能、基本思想和基本活动经验;提出了“两能”:发现问题和提出问题的能力、分析问题和解决问题的能力。
5、具体内容做了适当的修改,表述方式更加合理
对于三个学段的具体内容进行了适当调整。对“数与代数”,“图形与几何”的内容也做了一定的调整,增加了一些论证的要求;对“统计与概率”的内容进行了梳理,增强了三个学段内容的层次性;
为了削弱形式化,明确指出,几何证明不限于“综合证明法”。为了减轻学生的负担,修改中适当减少的一些知识点。如“图形与几何”中减少10个左右的知识点;在“数与代数”中删去了“一元不等式组的应用”等。具体修改情况如下: 数与代数 第一学段
1、增加“能进行简单的四则混合运算(两步)第二学段
1、增加“结合现实情境感受大数的意义,并能进行估计”。
2、增加“了解公倍数和最小公倍数;了解公因数和最大公因数”。
3、删除“会口算百以内一位数乘、除两位数。
4、理解等式的性质,会用等式的性质解简单方程,改为“能解简单的方程(如3x+2=5,2x-x=3)。”
图形与几何
1、内容的结构的调整:
《标准(实验稿)》的“空间与图形”分为四个部分:
第一、二学段为(1)图形的认识;(2)测量;(3)图形与变换;(4)图形与位置。
《标准(修改稿)》的“图形与几何”,第一、二学段仍分为四部分,具体表示有所变动,(1)图形的认识;(2)测量;(3)图形的运动;(4)图形与位置。
其中,第(1)部分大体整合了《标准(实验稿)》的第(1)、(4)部分的内容,以利于在探索、发现、确认、证明图形性质过程的过程中,体现两种推理(合情推理与演绎推理)相辅相成的关系;体现《标准(修改稿)》在总体目标中提出的增强学生“发现和提出问题,分析和解决问题”的能力的要求。第(2)部分除了《标准(实验稿)》第(2)部分的图形的轴对称、旋转、平移、相似外,还包括了图形的投影。这部分内容强调了图形的运动是研究图形性质的一种有效方法。第(3)部分包括两部分内容——坐标与图形的位置、坐标与图形的运动,比《标准(实验稿)》的第(3)部分内容有所增加,要求也更加具体、明确。
2、主要内容的修改 第一学段
(1)“能在方格纸上画出简单图形沿水平方向、垂直方向平移后的图形”放在第二学段
(2)“能在方格纸上画出简单图形的轴对称图形”放在第二学段。
(3)在东、南、西、北和东北、西北、东南、西南中,给定一个方向,辨认其余七个方向,并能用这些词语描绘物体所在的方向;会看简单的路线图。改为:给定东、南、西、北四个方向中的一个方向,能辨认其余三个方向,知道东北、西北、东南、西南四个方向,能用这些词语描绘物体所在的方向。第二学段
(1)删掉“两点确定一条直线和两条相交直线确定一个点”。(2)增加“通过操作,了解圆的周长与直径的比为定值”。
统计与概率
1.统计
与《标准》相比,《标准修改稿》对统计内容做了适当调整,使三个学段统计内容学习的层次性方面更加明确。主要变化如下:
(1)第一学段与《标准》相比,最大的变化是鼓励学生运用自己的方式(包括文字、图画、表格等)呈现整理数据的结果,不要求学生学习“正规”的统计图(一格代表一个单位的条形统计图)以及平均数(这些内容放在了第二学段)。这种变化主要原因有三:第一,更加突出了学生对数据分析的体验,鼓励学生用自己的方式去分析数据;第二,早期经验的多样化可以为以后学习“正规”的统计图表和统计量奠定比较牢固的基础;第三,使得统计内容在第一、二学段的要求层次更加明确。
在收集数据方法方面,考虑到学生年龄特征,要求学生了解测量、调查等的简单方法,不要求学生从报刊、杂志、电视等媒体中获取数据信息。
(2)第二学段与《标准》相比,在统计量方面,只要求学生体会平均数的意义,不要求学生学习中位数、众数(这些内容放在了第三学段)。这种变化主要原因有二:第一,平均数是一个非常重要的刻画数据平均水平的统计量,需要学生重点体会;第二,考虑到学生的年龄特征,其他刻画数据平均水平的统计量不宜集中学习。
另外,删去“体会数据可能产生的误导”这一要求。
(3)加强体会数据的随机性
实际上,体会数据的随机性是《标准修改稿》的一个重要特点,也是一个重要变化。在以前的学习中,学生主要是依靠概率来体会随机思想的,《标准修改稿》希望通过数据使学生体会随机思想。这种变化从“数据分析观念”核心词的表述,以及案例
21、案例
43、案例73中也可以看到。
(4)增加了一些案例,特别是对案例在数学上、教学上做了比较详细的阐述,希望对教师有所启发。2.概率
与《标准》相比,《标准修改稿》的主要变化如下:
(1)第一学段、第二学段的要求降低。
在第一学段,去掉了《标准》对此内容的要求;第二学段,只要求学生体会随机现象,并能对随机现象发生的可能性大小做定性描述。
(2)明确指出所涉及的随机现象都基于简单随机事件:所有可能发生的结果是有限的、每个结果发生的可能性是相同的。在第三学段,学生通过列出简单随机现象所有可能的结果、以及指定事件发生的所有可能结果,来了解随机现象发生的概率。(3)增加了一些案例,特别是对案例在数学上、教学上做了比较详细的阐述,希望对教师有所启发。
综合与实践
在标准的修改中,根据课程实验积累的经验,进一步理清了思路,主要变化为:
一、把三个学段的名称作了统一,统称为“综合与实践”,进一步明确了“综合与实践”的目的和内涵:
“综合与实践”是一类以问题为载体,学生主动参与的学习活动,是帮助学生积累数学活动经验、培养学生应用意识与创新意识的重要途径。针对问题情境,学生综合所学的知识和生活经验,独立思考或与他人合作,经历发现问题和提出问题、分析问题和解决问题的全过程,感悟数学各部分内容之间、数学与生活实际之间、数学与其他学科之间的联系,加深对所学数学内容的理解。
二、提出了明确的要求:
“综合与实践”应当保证每学期至少一次。它可以在课堂上完成,也可以在课外完成,还可以课内外相结合。
三、对三个学段的差异作了进一步的明确,一方面突出了创新的核心是“发现和提出问题、分析和解决问题”,另一方面突出了不同学段的特点。第一学段:
内容安排应强调问题情境相对简单、生动有趣、学生容易参与,可以把操作活动作为主要形式。教师在组织教学活动时要力求使学生明白解决问题的目标和步骤,引导学生多动手、多思考、多提问题,争取更多的学生获得成功的体验,鼓励学生之间的合作交流。具体目标
1.经历实际操作的过程,在解决问题的过程中了解所学内容之间的关联,加深对学习内容的理解。
2.获得一些初步的数学实践活动经验,感受数学在日常生活中的作用,知道能够运用所学的知识和方法解决简单问题。第二学段:
学生将在教师的指导下,经历有目的、有设计、有步骤的综合与实践活动,进一步获得数学活动的经验。通过应用和反思,加深对所学知识的理解;通过探索,引发学习的兴趣和培养思考的习惯;通过交流,发展理解他人、团结互助的合作精神。
教师应通过问题设计、求解过程的引导,鼓励学生多动手、多思考;发现问题、提出问题;克服困难、积极进取;主动与同伴合作、积极与他人交流。具体目标
1.通过应用和反思,加深对于所用知识和方法的理解,了解所学过知识之间的联系。
2.初步获得在给定目标下,设计解决问题方案的经验。
3.结合实际背景,初步体验发现问题、提出问题和解决问题的过程。
【结合教学实际提出学习新课标过程中存在的问题】
1、新课标将于2012年9月开始实行,而教材跟不上新课标的理念,造成老师教学
不便,如:新课标将平移中的“能在方格纸上画出简单图形沿水平方向、垂直方向平移后的图形”改为放在第二学段,而现在所用的人教版在二年级就有这个教学要求了。
2、新课标中把旧课标里的理解等式的性质,会用等式的性质解简单方程,改为“能解简单的方程(如3x+2=5,2x-x=3)。”是否理解为“只要求会解简单方程就可以,什么方法都可以”?
3、《数学课程标准》的基本理念中明确指出“评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学;应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生数学学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。” 数学课堂教学中教师的评价性语言,能激发学生的学习兴趣,调动学生的积极思维,培育良好的情感。但在我们的实际教学中,却存在着很大的问题:评价重诊断性,轻激励性,淡过程性。
4、伴随着新课程改革的新理念和新思想,我们的课堂教学发生了翻天覆地的变化。
以往的“师问生答”变成了“畅所欲言”,“纹丝不动”变成了“自由活动”。“师说生听”变成了“自主探索”,学生的个性得到了张扬,教学气氛异常活跃。然而在这些花样繁多、热闹非凡的很多课堂教学中,我们的学生却没有得到真正有效的发展,课堂教学的有效性不高。