第一篇:同底数幂的除法.说课 教案 反思 潘秀霞
说课材料:
《同底数幂的除法》是学生已经掌握了《同底数幂乘法》,《幂的乘方与积的乘方》,这为进一步学习《同底数幂的除法》做了很好的铺垫。《同底数幂的除法》是整式的乘法和幂的意义的综合应用,是整式的四大基本运算之一,这节课是以培养学生学习能力为重要内容,对进一步培养学生的逻辑思维能力有着重要意义。本节课的教学目标:: 知识目标:
1.掌握同底数幂的除法运算性质.2.运用同底数幂的除法运算法则,熟练、准确地进行计算.3.通过总结除法的运算法则,培养学生的抽象概括能力.4.通过例题和习题,训练学生的综合解题能力和计算能力.5.渗透数学公式的简洁美、和谐美. 本节课的重难点:
同底数幂的除法法则的理解与运用是本节课的教学重点,教学突破在于同底数幂除法法则的推导与一般意义上的除法运算上的区别,由特殊殊到一般的教学方法,结合学生的自主探索能力,应该能够很好的解决这样的问题。
本节课我采用的教法及学生的学法:
针对这节课的重难点,围绕新课程理念所强调的我让学生亲身经历和体验数学知识的形成过程。因此,在“教”的设计上,结合学生的实际,我采用了教师启发、总结、点拔和补充的方法,充分发挥学生的主观能动性。在“学”的设计上,则注重学生自主探索,合作交流,将学习内容设计成探究活动过程,使学生在亲身尝试、讨论与交流的过程中,让课堂更开放、学习更轻松、热情更高涨,并能正确运用同底数幂的除法法则解决问题。
同底数幂的除法(第一课时)
一、教学目标
1.掌握同底数幂的除法运算性质.2.运用同底数幂的除法运算法则,熟练、准确地进行计算.3.通过总结除法的运算法则,培养学生的抽象概括能力.4.通过例题和习题,训练学生的综合解题能力和计算能力.5.渗透数学公式的简洁美、和谐美.
二、重点难点
1.重点: 准确、熟练地运用法则进行计算. 2.难点: 根据乘、除互逆的运算关系得出法则.
三、教学过程
1.创设情境,复习导入 问题
一种数码照片的文件大小是28K,一个存储量为26M(1M=210K)的移动存储器能存储多少张这样的数码照片?
2、前面我们学习了同底数幂的乘法,请同学们回答如下问题,看哪位同学回答得快而且准确.(1)叙述同底数幂的乘法性质.
(2)计算: 1、28×27=
2.52×53=3、102×105=
4.a3×a4=
学生活动:学生回答上述问题.
.(m,n都是正整数)
【教法说明】 通过复习引起学生回忆,巩固同底数幂的乘法性质,同时为本节的学习打下基础.
2.提出问题,引出新知
1、()× 27=2152、()×53= 55
3、()×105=1074、()× a4=a7 乘法与除法互为逆运算 1、215 ÷ 27 =()=215-72、5
5÷ 53 =()=55-3 3、107 ÷ 105=()=107-5
4、a7 ÷
a4 =()=a7-4 这就是我们这节课要学习的同底数幂的除法运算. 3.导向深入,揭示规律
.那么,当m,n都是正整数时,如何计算呢?(板书)
学生活动:同桌研究讨论,并试着推导得出结论. 师生共同总结:教师把结论写在黑板上. 请同学们试着用文字概括这个性质:
【公式分析与说明】 提出问题:在运算过程当中,除数能否为0? 学生回答:不能.(并说明理由)由此得出:同底数幂相除,底数
.教师指出在我们所学知识范围内,公式中的m、n为正整数,且m>n,最后综合得出:
一般地,这就是说,同底数幂相除,底数不变,指数相减.4.尝试反馈,理解新知 例1 计算:(1)(2)
例2 计算:(1)
(2)
学生活动:学生在练习本上完成例l、例2,由2个学生板演完成之后,由学生判断板演是否正确.
教师活动:统计做题正确的人数,同时给予肯定或鼓励. 注意问题:例1(2)中底数为(-a),例2(l)中底数为(ab),计算过程中看做整体进行运算,最后进行结果化简.
5.反馈练习,巩固知识 抢答题:幻灯片第九片。
6、问题探究
(1)、32 ÷ 32 =()=32-2=30
(2)、103 ÷103 =()=103-3=100(3)、am ÷ am =()=am-m=a0
规定: a0 =1(a≠0)即任何不等于0的数的0次幂都等于1
7、练习:
1、判断正误:幻灯片第十片。
2、随堂练习:幻灯片第十11片。深化探究:幻灯片第十12、13片。总结、扩展 :师生共同小结本节课的内容。我们共同总结这节课的学习内容.
学生活动:①同底数幂相除,底数__________,指数________。②由学生谈本书内容体会.
前后呼应:现在你能解决我们一开始遇到的问题吗? 216÷28=216-8=28
所以,这种移动存储器能存储这样的数码照片28张、板书: 同底数幂的除法
例1 解(l)(2)
∴
∴
∴
例2 解(l)(2)
教学反思:本节课《同底数幂的除法》的第一节课,课堂所需要掌握知识的重点和难点可以通过教师少许的启发和指点,通过学生的自主合作学习获得。所以,以学生为主体、师生合作的教法成为最佳的选择。在选题上,从最基础的题练习起来,在学生全面掌握知识的前提下,逐步提升,给予中高难度的练习,力争85%以上的学生能够掌握。在情感调控上面,注重激情,着重在语言上做引导,对课堂进行有力的调控,从而保证学生旺盛的求知欲。
本节课中,我对学生的引导比较好,拓展题让学生说,让学生做,把课堂还给了学生,学生的积极性很高,课堂气氛特别活跃,学生主动性特别强,我与学生的亲和力很强。整堂课学生表现很好。不足之处:对学生读的数学术语要及时纠正。前面的知识我讲得有些费时。所以在今后的上课中,我要吸取经验,尽力把课上的更完美。
同底数幂的除法 说课 教案 教学反思
奇台四中
潘秀霞
第二篇:同底数幂的除法教案
《同底数幂的除法》教案
教学目的:
1、能说出同底数幂相除的法则,并正确地进行同底数幂的除法运算;
2、3、理解任何不等于零的数的零次幂都等于1; 能正确进行有关同底数幂的乘除混合运算。
教学重点:掌握同底数幂的除法的运算性质,会用之熟练计算; 教学难点:理解同底数幂的除法运算性质及其应用。教学过程:
一、知识点讲解:
(一)同底数幂的除法运算性质:
1、复习同底数幂的乘法法则。
我找个同学来回答一下同底数幂的乘法法则: 同底数幂相乘,底数不变,指数相加.即(板书内容)a m·a n = a m + n(m、n为正整数)下面我们共同学习一下这几道题: 用你熟悉的方法计算:(1)25÷22= ;(2)107÷103= ;(3)a7÷a3=(a≠0). 概 括
由上面的计算,我们发现: 25÷23=23=25-3;
107÷103= 104=107-3; a7÷a3= a4=a7-3.
同底数幂的除法性质:同底数幂相除,底数不变,指数相减。用字母表示:amanamn(a0,m、n是正整数且mn)
当m = n时amanamna01(a0)零指数的意义:a01(a0)a)典例剖析: 例
1、计算:
(1)x6÷x2;(2)(– a)5 ÷a3(3)an+4÷an+1(4)(a + 1)3÷(a + 1)2
解:(1)原式 = x6-2= x4;
(2)原式 = – a5 ÷a3= – a2(3)原式 = an+4–(n+1)= a3(4)原式 =(a + 1)3–2 = a + 1 * 当指数是多项式时,在同底数幂相除时,指数相减时,必须底数加括号。
* 指数为1时可以省略。
练习P23 1.2.同样的,我们也可以这样写:(板书)将等号两遍反过来。
amanamn(a0,m、n是正整数且mn)
b)课内小结:
1、同底数幂相除的法则:同底数幂相除,底数不变,指数相减。用字母表示:amanamn(a0,m、n是正整数且mn)
2、零指数幂:a01(a0)作业P23第五题
第三篇:同底数幂的除法教案
同底数幂的除法教案(2013.3.10)知识要点
1、同底数幂的除法法则:(重点)
同底数幂相除,底数不变,指数相减,用公式表示为:
am÷an=am-n(a≠0,m,n为正整数,且m>n)
注意:
(1)在运算公式am÷an=am-n中,a≠0,因为当a=0时,a的非零次幂都为0,而0不能作除数
(2)底数相同,如:-63÷52是除法运算,但不是同底数幂相除,不能运用这个法则(3)相除运算,如:a3+a4不是相除运算,不能用这个法则(4)去处结果是底数不变,指数相减,而不是指数相除。
2、同底数幂的除法的应用(难点)
对于三个或三个以上的底数幂相除,仍然适用运算性质。
3、零指数幂与负整数幂的意义
(1)零指数幂:a0=1(a≠0)
即任何不等于0的数的0次幂都等于1.(2)负整数指数幂
a-P=1/ ap(a≠0,p是正整数)
即任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数
4、用科学记数法表示绝对值较小的数
科学记数法是将一个数写成a×10n的形式,其中1≤|a|≤10.一个绝对值较小的数也可以用科学记数法来表示,其形式为×10n,n是数中从左边起第一个非零数 字前零的个数。注 :用科学记数法把绝对值大于1或小于1的数x表示成x=±a×10n的形式时,n的取值规律:
(1)|x|>1时,n是一个非负整数,n等于x的整数部分的位数减去1(2)|x|<1时,n是一个负整数,/n/为x的第一个非零数字前所有零的个数(包括小数点前面的那个零)(3)a是一位整数
经典例题1.计算(x)5(x)2=_______,x10x2x3x4 =______.2.水的质量0.000204kg,用科学记数法表示为__________.3.若(x2)0有意义,则x_________.4.(3)0(0.2)2=________.5.[(mn)2(mn)3]2(mn)4=_________.6.若5x-3y-2=0,则105x103y=_________.7.如果am3,an9,则a3m2n=________.8.如果9m327m134m781,那么m=_________.1
9.若整数x、y、z满足()x(89109)(y1615)2x,则x=____,y=_______,z=____.10.21(5ab)2m78(5ab)24,则
nm、n的关系(m,n为自然数)是________.二、选择题:(每题4分,共28分)11.下列运算结果正确的是()①2x3-x2=x ②x3·(x5)2=x13 ③(-x)6÷(-x)3=x3 ④(0.1)-2×10-•1=10 A.①② B.②④ C.②③ D.②③④ 12.若a=-0.3,b=-3,c=()2,d=()0, 则()
332-
211 A.a
14.已知999999,Q90,那么P、Q的大小关系是()A.P>Q B.P=Q C.P 12)0=1 C.(│a│-1)0=1 D.()01 a116.若3m5,3n4,则32mn等于()A.254 B.6 C.21 D.20 三、解答题:(共42分)17.计算:(12分)(1)()0(1)3()33;(2)(27)15(9)20(3)7;3321(3)()3()3()2()3(3)031.5623365321(4)[(xy)2n]4(xy)2n1(n是正整数).18.若(3x+2y-10)0无意义,且2x+y=5,求x、y的值.(6分)19.化简:24n1(42n16n).20.已知32m5,3n10,求(1)9mn;(2)92mn.21,.已知xx1m,求x2x2 的值.22.已知(x1)x21,求整数x.,23、用小数或分数表下列各数(1)(112)0(2)3-3(4)1.3×10-5(4)5-2 24.计算1.252m÷()1-2m2、若3m=6,9n=2,求32m-4n+1的值。 5整式 :单项式和多项式统称为整式。 整式和同类项 1.单项式 (1)单项式的概念:数与字母的积这样的代数式叫做单项式,单独一个数或一个字母也是单项式。注意:数与字母之间是乘积关系。 (2)单项式的系数:单项式中的字母因数叫做单项式的系数。 如果一个单项式,只含有字母因数,是正数的单项式系数为1,是负数的单项式系数为—1。 (3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。 2.多项式 (1)多项式的概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。多项式中的符号,看作各项的性质符号。 (2)单项式的次数:单项式中,次数最高的项的次数,就是这个多项式的次数。 (3)同类项的概念: 所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。 掌握同类项的概念时注意: 1.判断几个单项式或项,是否是同类项,就要掌握两个条件: ①所含字母相同。 ②相同字母的次数也相同。 2.同类项与系数无关,与字母排列的顺序也无关。 3.几个常数项也是同类项。 (4)合并同类项: 1.合并同类项的概念: 把多项式中的同类项合并成一项叫做合并同类项。 2.合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母是指数不变。 3.合并同类项步骤: ⑴.准确的找出同类项。 ⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。 ⑶.写出合并后的结果。 在掌握合并同类项时注意: 1.如果两个同类项的系数互为相反数,合并同类项后,结果为0.2.不要漏掉不能合并的项。 3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。 整式的乘法知识点 (1)单项式的乘法 单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含的字母,则连同它的指数作为积的一个因式。练习: 2xy(123xyz)(3xy)112233 9(3xy)(x)(y) nn1343(1.210)(2.510)(410)15xy2xyn1 (2)单项式与多项式相乘 单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。练习: (3x)(x2x1) (2x4x8)((3x222312x)232 12y23y)(212xy)3 12ab[2a34(ab)b] (3)多项式与多项式相乘 多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 练习:(3x-1)(4x+5)(-4x-y)(-5x+2y)(y-1)(y-2)(y-3)(3x2+2x+1)(2x2+3x-1)经典例题 例1 计算(1)(a)3(2ab2)34ab2(7a5b4例2.化简求值 1.已知ab26,求ab(a2b5ab3b)的值。2.若x3.212ab5)(2)(x2yz)(x2yz) 312,y1,求x(x2xyy2)y(x2xyy2)3xy(yx)的值。 2x(x6x9)x(x8x15)2x(3x),其中x16。 4.已知2m5(2m5n20)20,求(2m2)2m(5n2m)3n(6m5n)3n(4m5n)的值。例3 综合应用 1.若(x2+ax-b)(2x2-3x+1)的积中,x3的系数为5,x2的系数为-6,求a,b. 2.若2a3,2b6,2c12,求证:2b=a+c.3.若4.若 2xy0a1a3,求代数式a24x2xy(xy)y33的值 1a2,则 .4 同底数幂的除法教学反思8篇 同底数幂的除法教学反思1 北京版教材,就“同底数幂除法”这一内容只安排了一课时,而在老版本教材和其他新版教材(如新人教版,华师版)等,都安排了两课时内容。第一课时为m>n时的同底数幂的除法运算,第二课时为零指数幂和负整指数幂。 在教学设计初期,设计了如下的教学过程:由学生类比同底数幂乘法的运算性质的学习过程,自主探究同底数幂除法的运算性质,使学生自己经历由特殊到一般的研究过程;运算性质得出后,再由学生自主编题,探究同底数幂除法的运算性质。 随着对教材的深入研究,我越发感觉到上面的教学设计虽然力争体现“学生学”的教学新理念,但是却剑走偏锋,过分强调了学生的自主活动,而忽略了对基本知识的落实。另外,由于同底数幂除法运算中引入了零指数幂和负整指数幂,因此与同底数幂乘法运算性质相比,不但知识容量增大,而且知识的难度也加深了,这就使得上面的教学设计在实施时加大了难度,也不能取得事半功倍的效果。 基于以上原因,在第二次教学设计时,我将设计调整如下:1.由学生自主探索m>n时,同底数幂除法运算性质;2.通过教师板演,学生口算,学生动笔演练等方式,巩固“同底数幂相除,底数不变,指数相减”的运算法则。3.通过23÷23,23÷25两个特例引出零指数幂与负整指数幂的规定,再通过学生的举例,让学生体会这种规定的合理性,进而完整同底数幂除法的运算性质。4.通过教师板演题目,学生快速读题,口答,巩固零指数幂与负整指数幂,通过多种变形形式,让学生加以区分。5.最后由学生进行小结。 同底数幂的除法教学反思2 同底数幂的除法的主要内容是根据除法是乘法的逆运算,是在学习了同乘方、积的乘方的基础上进行的,为后续的整式除法的学习打下基础,并且同底数幂的除法在今后的物理、化学、生物学课中常得以应用。本节课的学习对于学生来说,无论在知识上,还是类比学习能力和抽象思维能力的培养上,都起着不容忽视的作用。 反思本节课的教学,使我进一步明确了数学学习不能单纯依赖模仿与记忆,应该从学生的生活经验和已有知识的背景出发,提供给学生充分进行数学活动和探索的机会,使他们在自主探索的过程中真正理解和掌握数学知识。 反思本节课的教学,学生给了我几个惊喜: 惊喜一:在探索“同底数幂的除法法则”时,我本来以为学生可能不会想到可以用两种方法来解决,在备课时预先想好了如何启发引导等方案,在ppt制作过程中也充分考虑了这些因素,做了几个“超链接”以应对可能出现的情况。结果这几个“超链接”根本就没用上,因为学生在前面知识的铺垫下已经水到渠成地想到了这两种方法,这是我事先没有估计到的。 惊喜三:课上,我让学生进行交流,辨析(-x)5÷ (-x)5和-x5÷ (-x)5 的值是否相等?学生分组进行了讨论,他们畅所欲言,各抒己见,由开始的意见不一致,引起争论,被同学反驳,到最后达成共识,统一意见。在他们讨论的过程中,我及时进行指导,适度点拨,学生既把握了知识的本质,又提高了交流的能力。 在教学过程中出现了问题,不是都能在备课时预料得到的,我觉得自己本堂课还有很多需要改进的地方: ①在学生出现的错误时,只指出了学生运算顺序的错误,简单地进行纠正,如果当时举个整数乘除法的例子来说明,学生可能更容易接受和理解,我没有利用好学生“解答错误”这一资源。 ②时间没有把握好,在用字母法则时由于过多强调字母的限定条件,而浪费了较多时间,导致后面的练习题没有时间完成,没能在课上巩固所学的知识。 同底数幂的除法教学反思3 1、在平时的教学过程中,没有注意培养学生应如何聆听他人的回答,导致学生只会认真听老师所说的每一句话,认为老师所说的才是重点,同学的意见都无关紧要;另外,就像上面所说,我总是担心学生漏听他人的意见,而将学生的回答进行简单的重复,这也是导致学生产生不良听讲效果的原因。 2、我没有很好地区分强调和重复的意义。教学过程中重点的内容是应该强调的,单并不是每一个内容都必须重复,不是重点内容的地方,学生回答正确了,教师就不需要再重复了;而这节课重点及学生易错的内容,学生即使回答正确了,教师也应该再次强调。基于以上两点原因,在今后的教学过程中,我应该逐步培养学生的听讲能力,提高学生的听讲效率,做到让学生自己去评判同学之间的回答是否正确,并给出准确的评价;学生回答正确的内容,若非重点或疑难,则尽量的不重复。 3、本节课容量稍微大了点,可分两个课时来讲,同底数幂除法法则的逆运用可以放到下一课时,主要对同底数幂除法法则的直接运用进行训练,这样学生容易理解和掌握。 本节课还有一点不足,就是对于练习的处理,我还是放不开,担心学生讲不好,总喜欢自己讲。其实完全没有这个必要,可以放手让学生,让学生去发现错误,并指出错误,真正体现学生的主体地位。 学生的学习积极性有较大的提高,学习效果好。原本枯燥的、抽象的纯数学的东西通过与实际联系,变的有趣、易懂。从根本上改变了过去那种填鸭式的教学方法,不但使学生掌握了课本上的知识,还使学生加强了对日常事物的观察分析的能力。真正使教学提高到培养学生能力的层面上来了。但是这对教师自身素质的要求大大提高。只有自己不断的学习,充实自己,才能把新教材教好。 同底数幂的除法教学反思4 教材分析 “同底数幂的除法”选自人教版八年级上册第15章第3节。本课的主要内容是根据除法是乘法的逆运算,从计算具体的同底数的幂的除法,到计算底数具有一般性的字母,逐步归纳出同底数幂除法的法则,并运用法则熟练、准确地进行计算。本节课的学习对于学生来说,无论在知识上,还是类比学习能力和抽象思维能力的培养上,都起着不容忽视的作用。 学情分析 本节教材在学生系统地学习了整式乘法的知识后而安排学习整式除法,符合学生的从易到难的认知规律。同底数幂的除法法则是整式除法的基础,在本节同底数幂的除法则和零指数、负指数的规定中,体会规定是因实际计算的需要而产生的。再次体验认识来源于实践,并在实践中不断发展。同时在除法运算中体会乘除的联系,容易构建完整的知识体系。 教学目标 (一)教学知识点 1.同底数幂的除法的运算法则及其应用. 2.同底数幂的除法的运算算理. (二)能力训练要求 1.经历探索同底数幂的除法的运算法则的过程,会进行同底数幂的除法运算. 2.理解同底数幂的除法的运算算理,发展有条理的思考及表达能力. (三)情感与价值观要求 1.经历探索同底数幂的除法运算法则的过程,获得成功的体验,积累丰富的数学经验. 2.渗透数学公式的简洁美与和谐美. 教学重点和难点 重点:准确熟练地运用同底数幂的除法运算法则进行计算. 难点:根据乘、除互逆的运算关系得出同底数幂的除法运算法则. 同底数幂的除法教学反思5 同底数幂的除法的性质是幂的运算性质之一,是整式除法的基础,所以,本节的重要性可见一斑。 与同底数幂的乘法一样,同底数幂的除法的性质的导出也是一个由特殊到一般的过程,运用探究的方法让学生主动的参与到性质的发现中来,有利于提高学生对知识的认可度和加深他们的印象。归纳得出性质后要特别注意性质中的一些条件,尤其是要让学生知道,底数a是不等于0的,这是因为若a=0,则除数为0,除法就没有意义了。另外这里不讲零指数和负指数的概念,所以性质中必须规定m,n都是正整数,并且m>n,这些条件都应让学生在运用时予以注意。 由于这里不讲零指数,负指数的概念,所以在性质中加上了指数m,n都是正整数,并且m>n的条件,但是在除法运算中还是会遇到 对于此种情况还可以多举例子,或者让学生自己举例自己计算从而得出=1,进而将这个结论推广。 在解决同底数幂的除法的问题时,应该注意分清楚底数,指数,然后按照性质进行计算。 同底数幂的除法教学反思6 本节课与同底数幂的乘法一样,同底数幂的除法的性质的导出也是一个由特殊到一般的过程,运用探究的方法让学生主动的参与到性质的发现中来,有利于提高学生对知识的认可度和加深他们的印象。归纳得出性质后要特别注意性质中的一些条件,尤其是要让学生知道,底数a是不等于0的,这是因为若a=0,则除数为0,除法就没有意义了。另外这里不讲零指数和负指数的概念,所以性质中必须规定m,n都是正整数,并且m>n,这些条件都应让学生在运用时予以注意。在应用同底数幂乘法法则计算时,要注意防止把幂的乘法运算性质与整式加法相混淆。乘法只要求同底就可以用性质计算,而加法则不仅要求底数相同,而且指数也必须相同。底数是相反数的幂相乘时,应先化为同底数幂的形式,再用同底数幂的乘法法则,转化时要注意符号问题。 由于这里不讲零指数,负指数的概念,所以在性质中加上了指数m,n都是正整数,并且m>n的条件,但是在除法运算中还是会遇到对于此种情况还可以多举例子,或者让学生自己举例自己计算从而得出=1,进而将这个结论推广。 在解决同底数幂的除法的问题时,应该注意分清楚底数,指数,然后按照性质进行计算。 同底数幂的除法教学反思7 在学了同底数幂的乘法的基础上,我在上同底数幂的除法时,首先复习了整式乘法的几个运算法则,使学生能顺利迁移到同底数幂的除法,再让通过学案中的引入题目,让学生用8分钟时间自学“同底数幂的除法”,然后思考后分组讨论“同底数幂的除法”怎么计算?为什么要这样计算,你是怎么想的'?最后通过老师的引导和点拨,让学生归纳从三个方面的思考。一是根据乘法的逆运算得出,如a2m+2=a2m×a2,a2m-2=a2m÷a2。二是根据除法的意义,a6÷a3=a×a×a×a×a×a/a×a×a约分之后就是a3,三是根据指数降一级运算,可以推出除法运算中指数降一级运算指数相减。经过这样的探究总结后我马上给学生完成课堂练习,通过检查,这次连基础较差的学生都能又快又好的完成了课堂练习。接着,在学生还情绪高昂的情况下,要求学生在规定的时间内完成我指定的部分练习,进行比赛。大部分的学生都能又快又好的完成了。 反思本节课的教学,使我进一步明确了数学学习不能单纯依赖模仿与记忆,应该从学生的生活经验和已有知识的背景出发,提供给学生充分进行数学活动和探索的机会,使他们在自主探索的过程中真正理解和掌握数学知识。这节课我让学生用了类比迁移的方法来学习新课,这样既复习了旧知,又能完成新知的学习,并且能把有关联的知识紧密联系起来,让学生既掌握学习的方法、数学的类比思想,又能掌握了新知,且学生的学习效果很好,我觉得这是一节较成功的课。 表现在一下几个方面: 一、重视学生的思维的训练。 本节课我利用教材设置的情境引入,激发学生的探索兴趣,引出课题。通过做一做,由学生类比同底数幂乘法的运算性质的学习过程,自主探究同底数幂除法的运算性质,使学生自己经历由特殊到一般的研究过程;运算性质得出后,设置了两个例题,例1是单纯的字母同底,检查学生对同底数幂除法法则的掌握情况,锻炼计算能力,总结在运算时需要注意的地方;例2是底是多项式、互为相反数的练习,培养学生整体思想和化归思想。知识拓展是同底数幂除法法则的逆运用,加深学生对同底数幂除法法则的理解,使学生能够灵活运用。 二、尊重、重视学生的主体性。 放手让学生,让学生去发现错误,并指出错误,真正体现学生的主体地位。 学生的学习积极性有较大的提高,学习效果好。原本枯燥的、抽象的纯数学的东西通过与实际联系,变的有趣、易懂。从根本上改变了过去那种填鸭式的教学方法,不但使学生掌握了课本上的知识,还使学生加强了对日常事物的观察分析的能力。真正使教学提高到培养学生能力的层面上来了。但是这对教师自身素质的要求大大提高。只有自己不断的学习,充实自己,才能把新教材教好。 三、重视小组巡视学习效果,并充分利用错误资源。 在备课时,我就预计到学生很可能会在处理符号是出现错误,在学生做练习时,我重点查看了关于底数是负数的幂的除法的题目,果然有相当多的学生出现了这样的问题,并且,还有些之前没预料到的问题,比如,是否计算到最后结果,计算的格式的规范性等问题。我都把这样的问题让学生板书到黑板,在纠正的过程中让学生看到问题避免再犯。 做得不够的方面: 小组的合作学习中学生之间的互动做得不够好。本次上课中,学生的学习积极性没有很好的发挥出来,一是我注重了计算方法的训练,忽视了组内的操作训练。二是借用了别班的学生,对学生的了解和调动不够。应该在授课前,积极了解学生情况,对他们可能会出现疑难的地方,提前做出设想,并做出设计。 同底数幂的除法教学反思8 同底数幂的除法法则:同底数幂相除,底数不变,指数相减;是在同底数幂乘法的基础上根据乘、除互逆的运算关系得出的,回顾整节教学活动,从法则的引入、探索、总结及运用,我主要着力于以下三个方面: 1、关于教材处理:为了给学生尽可能多的提供参与活动机会,在本节课中主要(1)通过“创设情景,探究新知”吸引学生参与活动。活动开始幻灯片显示“一种数码照片的文件大小是2 K,一个存储量为2 M的移动存储器能存储多少张这样的数码照片?”这一实际问题引入同底数幂的除法运算,学生在探索这个问题的过程中自然体会到学习它的必要性,了解数学与现实世界的联系,增加设问“你是怎样计算 的?”促使学生参与到活动中积极探索运算方法。(2)通过“应用新知,再探新知”鼓励学生主动参与活动。在熟悉同底数的幂除法法则基本运用的同时,引导学生正确理解公式中字母的广泛意义,比如零指数幂的探索就是对原有正整数指数概念的扩展: 先利用除法意义填空,再利用公式计算,你能得出什么结论? (1) 3 2÷32 =( ) (2) 10 3÷103 = ( ) (3) a m÷a m= ( ) (a≠0) 学生独立完成 解:利用除法意义计算 (1) 3 2÷32 =1 (2) 10 3÷10=1 mm3 (3) a ÷a =1(a≠0) 利用同底数幂的除法法则计算 (1)32 ÷32 =3 2-2 =3 0 (2)103 ÷103 =10 3-3 =100 (3)a m÷a m= a m-m =a0 (a≠0) 0 学生观察后归纳得 :a =1(a≠0)即任何不等于0的数的0次幂都 等于1。 (3)通过“解决问题,填写评价表”促进学生参与活动。举一些生活中用同底数的幂就解决实际问题的例子,运用法则运算。并通过自我和小组对学习活动的评价,来反馈学习效果,以促进学生参与活动的积极性,也为我组织新的教学活动奠定了基础。 2、关于教与学方法的选择:在教学活动中始终关注,如何认真组织让学生在丰富的活动中探索、交流与创新,因此用了“引导——发现教学法”。如:(1)应用乘除互逆思想,引导学生独立思考、小组合作,完成对同底数幂除法法则的自主探索,突出对学生代数推理能力的培养。如:推导同底数幂相除的运算法则: 方法一:am ÷a n= a 。 方法二:根据除法是乘法的逆运算 ∵ a m-nm-n·a n=a m-n+n=am ∴am ÷a n= am-n 因此可以概括出同底数幂的除法法则。(2)加强应用性,通过“求移动存储器的存储量是多少?”和“举出生活中应用同底数幂解决实际问题的例子”两个环节,密切将同底数幂除法与现实生活及其它学科相联系,发展数学应用意识,突出对学生解决实际问题能力的培养。 3、关于评价反馈。在活动中注重运用态势,语言对学生进行即时评价,在评价表的设计中安排多维评价;即关注学生发现问题和解决问题的能力更要关注自己教学中专业水平的发展和提高。 总之,在同底数幂的除法这节教学活动中,通过组织学生从具体到一般,从生活到课堂,从未知到已知,一步步的探索,学生的化归,符号演算等代数推理能力和有条理的表达能力得到进一步的发展,同时,也加深了我对新教材的理解,从而更好的完善新的教学模式。 同底数幂的除法说课稿 清水三中 许志强 授课时间 2017.9.8 一、说教材: 《同底数幂的除法》是新教材八年级上册数学第12章第1节的第四节课的内容.在此前,学生通过学习,已经掌握了《同底数幂乘法》,《幂的乘方》,《积的乘方》,这为进一步学习《同底数幂的除法》做了很好的铺垫.《同底数幂的除法》是整式的四大基本运算之一,也是整式除法的基础.二、教学目标分析 知识与技能:同底数幂的除法的运算法则及其应用. 过程与方法: 1、经历探索同底数幂的除法运算法则的过程,会进行同底数幂的除法运算; 2、在进一步体会幂的意义的过程中,发展学生的推理能力和有条理的表达能力,提高学生观察、归纳、类比、概括等能力。 情感态度与价值观:在解决问题的过程中了解数学的价值,发展“用数学”的信心,提高数学素养。 三、教学重难点分析 教学重点:同底数幂除法的运算法则及应用.. 教学难点:同底数幂除法的逆用.四、教学过程分析 活动1课堂复习,引入新课,通过复习同底数幂乘法导入课题。 活动2 自主探索,发现新知。由于同底数幂的除法性质与同底数幂的乘法性质类似,因此在此环节设计了一个利用同底数幂的乘法性质进行计算的题目,让学生经历一个由特殊到一般的数学归纳过程,根据除法与乘法互为逆运算的关系对25÷23和a3÷a2 进而到am÷an的引导计算,学生类比的方法得到a÷a =a。为培养学生严密的思考问题的习惯,在这里提出问题:除法运算中,为什么底数a不能为0?为什么 M》N?让学生观察、归纳得到结论同底数幂除法的法则。 活动3尝试练习,感受新知。对本节课所学内容进行简单的运用,检查学生掌握、理解的情况。 活动4 思考,探索,交流 同底数幂除法逆用,达到提升。 活动5 回顾反思,课堂小结。为使所学新知识尽快纳入已有的认知结构,形成知识网络,进一步提高学生的数学表达能力,小结采取学生自主小结与引导概括相结合。m n m-n活动6作业布置。 五、评价分析 《同底数幂的除法》性质的得出,是一个从数的运算、归纳得到式的运算性质,是一个由特殊到一般,从具体到抽象的归纳过程。本节课的设计遵循学生的认知规律,让学生通过的动口、动脑、动手的主动探究,经历知识的产生、发展、形成与应用的过程,重在培养学生观察、分析、抽象概括的思维能力。学生在充分经历这一归纳过程中,既能理解和掌握同底数幂的除法性质,并能用代数和文字语言正确地进行表述,运用这一性质熟练地进行计算,还有助于训练学生的思维,使学生领会到数学的思想和方法。 本节课体现了学生主体、教师主导的地位,多数时间让学生自己去探究,敢于表述自己的观点,学生通过利用同底数幂的乘法性质进行计算及实际问题的解决中发现新问题,引发认知冲突,进而通过独立思考、合作交流等方式,充分经历“观察猜想——验证结论——尝试探究——交流展示——理性思辨”的全过程,学生充分体验到研究问题、解决问题,最后得出一般结论的过程,加深学生对同底数幂的除法性质的理解,既知其然,又知其所以然,同时拓展了学生的思维空间,促进了数学的思考能力。第四篇:同底数幂的除法教学反思
第五篇:同底数幂的除法说课稿