第一篇:“数值分析”课程教学改革浅谈
摘要:“数值分析”是计算机科学比较重要的基础课之一,从多方面就“数值分析”课程教学中存在的问题以及提高教学质量、学生兴趣的教学方法进行了探讨。
关键词:数值分析;教学方法;实践
作者简介:黄文芝(1978-),女,湖北武汉人,武汉工程大学计算机科学与工程学院,讲师;张蕾(1982-),女,湖北武汉人,武汉工程大学计算机科学与工程学院,讲师。(湖北 武汉 430073)
基金项目:本文系武汉工程大学青年科学基金项目(项目编号:q201107)的研究成果。
中图分类号:g642.0 文献标识码:a 文章编号:1007-0079(2012)05-0039-02
“数值分析”也称计算方法,它与计算工具发展密切相关。计算方法是数学的一个组成部分,很多方法都与当时的数学家名字相联系,如牛顿插值公式,方程求根的牛顿法,解线性方程组的高斯消去法,多项式求值的秦九韶算法,计算积分的辛普森公式等,这表明计算方法就是数学的一部分,它没有形成单独的学科分支。而计算机出现以后,计算方法迅速发展并形成数学科学的一个独立分支――计算数学。这说明了计算方法与计算机的密切联系,以及在计算机研究领域的重要性。并且数值分析在计算机相关领域应用比较广泛,比如在数学建模中,在图像处理中,在信号处理中等都会用到数值分析中相关的一些知识。这些都说明“数值分析”是计算机专业学生的一门核心专业基础课程。
“数值分析”课程的教学内容主要包括三部分,一部分是插值拟合,一部分是方程和方程组求解,另外一部分是常微分方程初值问题数值解。而数值积分也是在插值的基础进行,故笔者把它归为插值拟合部分。这些内容看上去都是以前学过的知识,积分是在高等数学里学过的,而方程和方程组求解更是中学就重点讲解过的知识,学生刚开始接触这门课的时候会和以前所学的纯数学学习的思想结合起来。通过“数值分析”课程的教学,培养学生用计算机解决问题的能力,并且为后续阶段的专业课程打下基础。
笔者是计算机科学与技术专业的一名老师,使用的教材是清华大学出版的李庆扬等编的《数值分析》,本文就当前“数值分析”课程在计算机科学与技术专业教学中存在的一些问题和教学方法、教学模式等方面进行讨论,其目的在于改进教学方法和手段,提高学生兴趣和教学效果。
一、“数值分析”课程教学中存在的问题
1.数学理论强,公式繁多冗长,学生学习兴趣不高
“数值分析”是数学的一部分,具有与其他数学课程一样的理论性强的特点,但“数值分析”又还有一些和以往学生所学各类数学课程不同的特点。首先,“数值分析”研究的是计算算法,用计算机来解决问题,以前学生学习数学课程大都是从理论学习到作业联系,涉及的知识逻辑推理的特性比较强,并且以往研究的大多数都是连续的,这种研究对象的差异使得学生不能很快接受,思想不能很快转变过来。其次,“数值分析”比以往所学的数学课程的公式更加繁多,更加冗长,比如解线性方程组,如果用以前的知识,学生都会解,但现在解线性方程组不仅仅是要得出结果,更重要的是解线性方程组的算法以及它的实现,这就涉及到至少4个公式,而我们要弄清楚了这些公式的来历才能通过编程实现这个算法,这也是学生不感兴趣的主要原因。
另外,由于学生对数学课程以及对数学公式的害怕,对“数值分析”这门课程的重要性认识不足,当学生学习遇到困难时,容易失去学习兴趣,从而放弃学习。虽然“数值分析”是计算机科学与技术专业的基础课,是大多数课程的基础,但学生还不能理会到“数值分析”这门课程对以后课程的重要性,对于大三的学生来说他们现在所学的课程还没能很好地得到应用,而对他们比较实际的用处――找工作也没有显现出比较重要的作用,因而学生会在潜意识里无视这门课,在课程学习遇到困难的情况下,他们往往会选择放弃学习。
2.知识点多,信息量大,掌握困难
这门课的知识点比较多,信息量比较大,对于理学的学生来说该课程学时比较多,但笔者承担的“数值分析”课程的学时是48学时,并且完全是讲授部分,然而相对于课程所包含的大量内容,这些学时数远远不够,比如函数逼近与快速傅里叶变换,它涉及到范数,赋范线性空间,欧氏空间,三角插值等许多概念,想让学生在规定的学时数内真正掌握这些概念比较困难,尤其是对计算机科学专业的学生而言。因为理学院的学生学过实变函数、泛函分析,所以理解这些概念就略显容易些。
3.重理论,轻实践
当前“数值分析”课程教学过程中,仍然存在理论与实践脱离的现象,虽然这门课实践比较重要,但鉴于课时的安排,大多数教师只能按书本知识来讲,学生听,学生没理解理论的用处,没能立刻就在实践中体现出来,因此使得很多学生只是为了考试而学习,为了学习而学习,不知道它的作用,考完就还给老师。这样他们也只获得了知识的皮毛,而没有抓住知识的精髓和实质。
二、“数值分析”课程教学方法浅谈
1.强调课程的重要性,提高学生的学习兴趣
为了让学生正确对待这门课,应该让学生充分认识到“数值分析”课程在计算机科学与技术专业中的重要性。在组织教学的过程中,可以安排一些有实践经验的学生介绍经验(这样学生更好理解,更容易相信,更实际),联系具体的研究方向,给出简单的例子,论述“数值分析”在计算机科学与技术专业方向中的应用,让学生切实感受到“数值分析”课程是后续课程学习的基础,应用比较广泛。另外,在教学中教师还必须联系实际,在课程中穿插一些有实际应用意义的例子,比如现在很多数学建模就用到“数值分析”的内容,可以就里面简单的例子引用一个。这样让学生了解到“数值分析”不是空洞抽象的理论,而是能够解决实际问题的工具,通过这些方法,使学生逐步树立“数值分析”比较有用,应该学好“数值分析”课程的观念。
然而仅有应该学好该课程的观念还不够,还应该从各个方面提高学生学习的兴趣,兴趣是最好的老师,只有有了兴趣,学生才会真正自主去学习,而不是被动的,为了考试而学习。如何让枯燥的课程变得生动有趣是值得研究的问题。在实际教学过程中,可以采用学生自己讲解,学生之间互相提问等方法,另外也可以编一些小程序,演示计算机解题的过程,这样让学生体会到虽然计算机的功能比较强大,还是需要人脑来控制,灵魂还是人。这样能使学生在整个课题中能主动思考,而不是被动接收。
2.合理取舍教学内容,把握全局,突出重点
“数值分析”课程所涉及的内容非常丰富,但现在课时有限,因此合理取舍教学内容非常重要,应该在有限的学时内,让学生掌握比较重要的理论方法,比如根据学生专业的特点,可以将主要的教学时间安排在讲解误差分析,插值,数值积分,方程和方程组的解法上面。在矩阵特征值计算方面,有时间的条件下可以简单介绍思想方法,而对于常微分方程初值问题的数值解可以舍去,因为本专业的学生没有学常微分方程,所以对常微分方程初值问题的数值解会无法理解。
3.合理使用多种教学方法和手段
传统的“黑板+粉笔”的教学模式对数学课程的教学非常重要,通过板书学生可以了解教师处理问题的思维过程,然而鉴于“数值分析”的特点,又不能完全用传统的教学模式,因为“数值分析”课程中有大量的矩阵和公式,如果单纯使用“黑板+粉笔”,黑板无法板书完整,如果擦掉原先板书的内容又无法把前后联系起来讲解,而使用多媒体就可以解决这一问题。另外,有条件的学校可以把上课安排到有投影的机房,在讲解算法时教师可以演示一些程序,学生学起来就不会觉得完全是在听数学课了。因为是计算机专业的学生,这样和他们的联系更紧密些,他们也可以通过编程来实现算法。
4.强调理论联系实践,培养解决问题的能力
“数值分析”这门课重点讲授的是算法,而学生如果没有很好的实践,对这些算法的应用只能停留在死记硬背上,这不是学习的目的。本来计算机专业也应该突出学生的动手能力,所以对讲授的每个算法都应尽可能让学生编程来实现,这样一来可以巩固学生学到的知识,二来也可以让学生明白这门课不是单纯的数学课,而是和实际联系比较紧密的一门课。当然要实现每个算法都编程,在所授课的学时内是无法完成的,这样就要鼓励学生自己主动去编程,可以采取一些奖励的措施,比如对编程完成比较好的学生可以适当提高平时成绩等。学生自己主动的学习有利于提高其学习兴趣,开发学生智力,培养学生解决问题的能力,从而提高学生的综合素质。
三、总结
随着计算机的广泛应用,“数值分析”课程作为计算机科学与技术的一门专业基础课程,在学生学习和工作中越来越重要,因此“数值分析”课程教学也应该不断更新知识结构,丰富教学内容,改进教学手段,以提高学生学习兴趣,提高教学质量,培养学习的能力,从而为后续课程的学习和将来的工作打下坚实的基础。
第二篇:数值分析课程教学改革探索与实践论文
摘要:本文主要就数值分析课程教学改革这个话题提出相应的分析探讨,并且认真进行了实践初步探索,以期能够对目前以及未来的数值分析课程教学改革有一定的帮助。
关键词:数值分析;教学改革;探索;实践初探
数值分析也被称为计算方法,它被广泛学习于各大高校的理工科专业。数值分析这门课程具有抽象的数学理论的特点,但是它又由于具有很强的实用性以及实践性的特点而被广泛应用于解决一些生活中的实际问题。不仅物理学专业、计算机专业、机械工程等理工科专业对数值分析这门课程有很严格的掌握要求,一些经济管理类专业也对掌握数值分析这门课程提出了要求,比如风险投资专业以及财务管理专业等。由此可见,数值分析这门课程在许多专业的课程学习中都处于十分重要的地位。目前,我们国家正在实施一系列的教育改革措施,以期获得更加完善、更加符合时代发展的教育体系。数值分析课程的教学改革也成为了当前教育改革过程中一个十分重要的步骤。并且,目前数值分析课程的实际教学过程中依然存在许多问题,比如课程难度系数大、公式非常复杂等。面对这些存在的问题以及教育改革的需要,数值分析课程进行教学改革已经势在必行。
1数值分析课程教学中存在的问题
1.1内容多,课时少
目前,我们国家各大高校在数学分析这门课程教学中存在的一个十分显著的问题就是课程内容多,而课时又太少。一方面,数学分析这门课程包含的知识点内容极其广泛;另一方面,数值分析这门课程是不断发展的,随着时代的进步这门课程也会有相应的更新。另外,伴随着计算机的广泛应用,数学分析课程与计算机进一步地加深了密切联系,也因此出现了一些新型的方法以及理论知识,这些都在一定程度上拓宽了数值分析这门课程的学习内容。因此,当数学分析课程知识点十分广泛时,老师如果想在有限的时间段将这门课程很好地教授给学生将是一个很大的挑战。
1.2内容相对独立,缺少连贯性
数值分析这门课程不仅存在知识点复杂多样的问题,内容相对独立,缺少连贯性也是它一个比较显著的问题。数值分析课程对于各种计算方法以及数学理论的讲解安排都比较独立,这使得数值分析课程的教学老师不能详细地将数值分析这门课程的一些知识点的发展过程清楚明白地展现给这些学生。同时,这些学生也因此不能很好地将这门课程中学到的一系列计算机知识以及数学理论融会贯通在一起,这对于这些学生灵活使用数值分析课程中的一些知识点有很大的影响。
1.3重理论,轻实践
数值分析这门课程还存在过度重视理论知识学习,轻视实践应用的问题。许多数值分析课程的教材都着重分析理论,教材中涉及的一些例题也缺乏创新性以及实际应用性。这容易导致这些学生掌握了理论知识以及具体的解题步骤,却不能灵活地将这些知识应用到实际问题的解决过程中去。
1.4直观性差
老师在教授数值分析这门课程时会广泛应用到多媒体,这些多媒体的使用在一定程度上可以帮助课程教学工作的展开,但是依然存在直观性较差的问题。数值分析这门课程不可避免的涉及许多复杂公式的推导,学生对于这些方法的理解大多还停留在书面意义上,这对于数值分析课程的教学工作有很大的阻碍性。
2数值分析课程教学改革实践
2.1教学手段
教学老师在教授数值分析这门课程时,要充分利用诸如多媒体等教学手段。通过多媒体等手段将数值分析课程做成课件,利用动画短片等方法展现数值分析课程中的一些计算方法,让这些学生可以更好地掌握数值分析这门课程。动画等多媒体方式可以让数学分析课程内容更加直观清晰地展现在这些学生目前,让课堂气氛更加生动活跃,提高数值分析课程的教学效率。将生动形象的动画课件与严谨科学的数值分析理论知识结合起来,可以让复杂难懂的数值分析课程变得更加通俗易懂,学生也可以更加轻松地掌握这门课程的学习,提高他们对这门课程的学习兴趣。
2.2教学模式
我们知道要想获得一个高效率的教学工作,那么就一定要重视教学模式。数值分析是一门涉及大量理论知识以及计算方法的课程,教学模式与这门课程能否很好地被学生理解以及掌握有十分大的关系。在数值分析课程的教学模式中,我们要重视每个计算方法的实际应用。诚然,每个教学方法我们都需要对它进行严谨科学的推导证明,但是这个过程往往会让人觉得繁琐并且不易理解。因此,我们需要适当地多结合一些实际问题,通过一些实际问题以及动画演示等多媒体方式更加直观地解释数值分析课程中的计算方法以及理论。总而言之,就是要改革以往数值分析课程的教学模式,辅之以更加生动形象的教学模式,提高数值分析课程的教学效率。
2.3上机实践
学好数值分析课程不仅要掌握好计算方法以及理论知识,上机实践也十分重要。通过相应的一系列上机实践,学生能够更好地将自己平时所学的理论知识与计算方法应用到计算机的实际操作中,真正做到学以致用,以理论知识带动实际应用,实际应用带动理论知识的学习。我们不仅要求学生要熟练地掌握编程能力,同时还不能忽视对数值算法的学习。另外,我们还需要要求这些学生能够对现有的一些程序作出一定的改进,能够融合使用一定的计算机技巧。为了锻炼这些学生的实际操作能力以及应用能力,我们可以选择一些计算复杂需要借助计算机操作并且实际应用性强的问题作为课后作业。这种课后作业可以很好地锻炼这些学生更加熟练利用平时学习的数值分析方法,并且培养他们在计算机上编写程序语言解决问题的能力。通过重视这些学生的上机实验操作,假以时日,这些学生的数值分析课程一定可以掌握得更好,老师们也可以获得一个更高效率的数值分析教学结果。
3数值分析教学改革的建议
3.1采用“问题教学法”
问题教学法,顾名思义,就是通过我们日常生活实际中出现的一些问题,提出涉及数值分析课程内容的相应的一系列数学问题,以问题带动数值分析课程内容的学习。我们可以借助数学方法中经常使用的归纳、分析、演练等手段建立具体的数学模型,然后从理论上研究采用哪种方法以及思想去解决问题。借助数学模型,我们可以更加直观地分析这些方法具有什么优点以及缺点,并且这些方法分别适用于解决哪种类型的问题。在数值分析课程的教学过程中,老师可以充分利用问题教学法带来的好处,用一系列的问题带动这些学生对数值分析课程内容的思考与理解,提高他们的学习积极性以及学习兴趣。
3.2采用对比教学法
对比教学法是教学过程中经常使用的一种教学方法,可以很好地提高教学效率。在数值分析课程的教学过程中使用对比分析法,学生可以更加清晰地明白一些理论知识以及计算方法的应用,更加深刻准确地掌握课程知识内容。对于数值分析课程而言,老师可以通过对比传统数学教育以及目前学习的数值分析课程,以此达到对比教学法的目的。传统的数学教育将教学主要内容集中在高等数学这块,它十分强调对理论知识的分析,由于大多数数学问题都有复杂繁琐的特点,许多涉及数学问题的理工科的专业问题就出现了很难解决的情况。若不能很好地掌握数学知识的应用,就容易导致一些学生对数学课程的学习失去学习兴趣。反观数值分析这门课程,它具有实用性非常强的特点,它的理论知识以及计算方法被广泛应用于其他专业的学习课程中,同时在解决实际问题方面它也有很大的实用性。因此,对于传统的数学教育以及现在的数值分析这两门课程之间存在的联系以及区别,老师有必要通过对比教学法的方式对他们进行详细说明。老师可以通过某些具体的实例来说明传统数学方法是怎样解决这个问题,而数值分析又是怎样解决这个问题。由此达到对比教学法的目的,让学生可以更加深刻地理解掌握数值分析课程,也让数值分析课程教学效率更高。
3.3重视思维方式的培养
数值分析这门课程与高数、线性代数、概率论等数学课程有着十分密切的联系,同时又存在明显的区别。数值分析这门课程应用于实际问题,并且解决这些日常生活中的实际问题;高数等数学课程更加追求的是这些问题的精确度以及对此进行的理论推导。针对数值分析课程的特点,老师需要重视培养学生在数值分析课程方面的思维方式。
4教学改革的一点设想
目前我们国家各个高校之间大多存在这样一个问题———不同院系之间很少进行交流,这些不同院系不同专业的学生也缺少对彼此的了解,这严重影响了这些学生之间进行团队合作以及协作交流。我们计划将数值分析的教学过程与数学建模结合起来,将不同专业的学生进行分组组合,增加他们彼此之间的交流机会,发挥每个组中每个组员的专业优势,优势互补,合作交流,一起完成一些数值分析问题。同时,我们可以鼓励这些学生积极与老师进行合作交流,达到资源共享以及知识互补的目标。让不同专业、不同性格、不同背景的学生老师集中在一起,思维迸发,一起合作努力解决数值分析课程中遇到的一系列科学计算问题,提高他们的学习兴趣以及培养他们的创新思维。
5结语
数学源于生活,又服务于生活,在如今这个科技化信息化的时代,我们一定要重视对数值分析这门课程的学习以及应用。同时,为了更好地响应我们国家目前进行的教育教学改革目标,我们一定要重视对数值分析课程教学改革的探索,逐步进行实践探索,进一步提高教学效率,最终实现对数值分析课程教学改革的目标。
参考文献
[1]杜廷松.关于数值分析课程教学改革研究的综述和思考[J].大学数学,2007,23(2):8-15.[2]刘春凤,何亚丽.数值分析课程的教学改革研究与实践[J].河北理工大学学报,2006,6(3):118-119.[3]刘春凤,何亚丽.应用数值分析[M].北京:冶金工业出版社,2005.
第三篇:《大学语文》课程教学改革分析
《大学语文》课程教学改革分析
摘要:本文简要分析了《大学语文》课程的教学方法以及实效性,阐述了《大学语文》课程教学改革的必要性及意义,针对如何提高高职院校语文课程教学实效性的问题进行了深入研究,结合笔者丰富的教学实践以及本次研究,最终提出了一些提高高职语文教学实效性的对策。最终希望通过本文的分析研究,能够为更好地进行高职语文教学提供一些有益的参考与借鉴。
关键词:《大学语文》教学方法;实效性;课程教学;改革
中图分类号:G712 文献标志码:A 文章编号:1674-9324(2016)06-0135-02
《大学语文》是高等职业教育阶段一门比较重要的公共课,其对于提高大学生理解和应用语言的能力,增长大学生的视野,扩大大学学生的知识,提高大学生的人文素养,以及传承中华文明精神等方面起着非常重要的积极作用,此外,还能为其他专业课程的学习奠定良好而坚实的基础[1]。
一、《大学语文》课程的教学方法及实效性
1.缺乏明确的教学定位。高职院校的《大学语文》课程不太被重视,而且其在现有的人才培养课程体系中缺乏较为明确的定位。举例来说,有一部分高职院校将《大学语文》这门课程定位为工具性课程,不太重视《大学语文》这门课程本身所具有的人文内涵。另外,还有一部分高职院校将《大学语文》这门课程定位为文学教育,认为这门课程偏重人文素养教育,同职业技能教育的关系不大,因而不太重视这门课程,导致大部分《大学语文》课程设置偏重形式,而不注重内容。也正是由于《大学语文》这门课程本身缺乏明确的定位,致使语文课堂不被重视,相关的教学研究少之又少,而教学分析与讨论更是屈指可数。此外,高职院校的《大学语文》教学具有较大的随意性,学生缺乏上课积极性和主动性,语文课堂气氛不够活跃,课堂教学效果不佳。此外,高职院校的语文课堂缺乏科学、合理、规范的章法,导致高职院校的语文课堂教学出现了两种现象:一种现象是完全模仿或复制高校本科语文教学模式及教学方法,整个语文学科结构不够科学合理,在一定程度上弱化了高职院校所具有的职业技术教育的特征。还有另外一种现象就是高职院校的语文课堂教学文饰现象比较严重,过分偏重形式主义,采取上“超大课”形式或以讲座形式来进行语文课堂教学,结果往往是教师在上面讲,学生在下面睡,一堂课下来学生一无所获[2]。
2.教学模式固定,教学方法单一。当下高职院校的语文课堂教学方法仍然沿用传统的教学方法,即以教师讲授,学生听取为主的教学方法,教学模式比较固定,教学方法比较单一。使用这种“满堂灌”、“照本宣科”的方式进行语文课堂教学既不利于激发学生的语文学习兴趣,也不利于调动其学习积极性和主动性,更别说激发和培养学生的创新思维和想象力了,此外,高职院校语文教材内容与普通高校《大学语文》教材内容十分相似,内容毫无新意,多以传统思想为主,缺乏感染力,与实际生活相差较遥远,没有时代代入感,更缺乏针对性,容易让高职院校的学生产生厌学情绪。
3.缺乏实效性,课堂教学效果不佳。高职院校的语文课堂教学缺乏实效性,课堂教学效果不佳,已经成为制约其课程教学顺利有效进行的主要因素之一。缺乏实效性具体表现为,高职院校所采取的语文教学方式与高职学生本身的特点与专业情况不相符合,因而导致高职院校语文课堂教学难以有效开展。语文教学应当以学生为主体,如果让其处于被动接受的地位,就会导致学生缺乏学习兴趣,学习兴致不高,继而导致语文课堂教学效果不佳。
4.师资力量较弱,综合素质有待提升。现阶段,高职院校语文学科的师资力量还比较薄弱,综合素质有待提升。不少语文教师仍将传统的教学观念用于新的教学要求上,无法适应和满足学生的需要,致使教学效果不佳。此外,近些年高职院校招生规模有所扩大,教师教授的班级多,因而,语文教师用于教学的精力有限,没有多余的精力提升自身综合素质和教学水平。
二、《大学语文》课程教学改革的必要性及意义
上述这些问题,诸如《大学语文》课程缺乏明确的教学定位、教学模式固定,教学方法单
一、缺乏实效性,课堂教学效果不佳、师资力量较弱等问题,严重影响了《大学语文》课程教学的顺利有效开展,因而,有必要对《大学语文》课程教学进行改革,其对于更好地开展《大学语文》课程教学具有重要的意义。此外,《大学语文》课程教学改革对于提升学生的整体人文素养,传播我国优秀文化,促进高职院校校园文化建设具有十分重要的意义。
三、如何提高高职大学语文课程教学实效性意识
1.提高对高职大学语文课程教学实效性的认识。对高职院校而言,要想提高其语文课程教学时效性意识,首先必须加强对其认识,通过强化认识能够在一定程度上促进高职大学语文课程教学实效性认识的提升。如何提高对高职大学语文课程教学实效性的认识,笔者认为应从以下两方面入手:首先,对高职大学语文课程教学进行必要的研究与分析。其次,从不同的角度、不同的方面对高职大学语文课程教学实效性进行探索和尝试,通过探索和尝试加深对高职大学语文课程教学实效性认识。
2.将课程开设、教材选择与专业相结合。对高职院校而言,要想提高其语文课程教学时效性意识,还必须将课程开设、教材选择与专业相结合。通过将这三者有机结合起来,能够对语文课程教学明确定位,避免盲目性。在课程开设方面,要结合高职院校自身所具有的高等职业技术教育的特征,重视课程的实用性、科学性和合理性,注意将课程设置目标与培养目标相结合。在教材选择方面,更要与高职院校所开设的专业相结合,结合高职院校的实践,精心挑选与高职院校学生专业相符合的语文教材。此外,在设计语文课程和筛选语文教材时,还要充分考虑高职院校学生自身的特点,按照其特点及不同的需求进行相关课程的开设。
3.加强形象思维与创造性思维的培养。大学语文学习具有其自身的特殊性,尤其是高职院校,其是为培养高级职业技术类应用型人才而服务的,应当注重培养学生的创造性思维,在高职院校的语文课程教学过程中,教师应当充分重视这一点,加强学生形象思维与创造性思维的培养。举例来说,高职院校的语文教师在进行课堂教学时,让学生去思考文章的主旨及含义时,不应当设置所谓的“标准答案”,而应当让学生充分开动脑筋,发挥自己的想象力,从不同方面、不同角度去寻找答案。
四、提高高职语文教学实效性的对策
1.学院提供有效的政策扶持。要想提高高职语文教学实效性,离不开高校院校提供的有效支持,尤其是有效的政策扶持。首先,高职院校应建立健全相关教育制度,出台有利于促进高职语文教学实效性提高的相关政策。其次,高职院校要上行下效,切实贯彻和执行这些制度与政策。
2.树立明确的教学目标,增加大学生的审美体验。对于高职院校而言,明确语文教学的目标,就是通过语文教学目标的实现以达到满意的教学效果。明确的教学目标能够使语文教学的方向更加明确,此外,还有利于与其培养目标相衔接。高职院校主要是为培养高等职业技术应用型人才而服务,以满足当今社会对各类人才的需要。在此前提下,高职院校的语文学科应具有其自身的学科特点,充分体现其所蕴含的文化底蕴及人文内涵。所以,高职院校的语文教学培养目标除了要不断强化必要的基础文化知识教育,还应强化相应的实践运用能力,提升学生的文化修养,增加其审美体验。举例来说,在现阶段的高职语文教材中,有不少古今中外的名篇名作,诸如《论语》、《资治通鉴》、《老人与海》等,高职院校的语文教师在带动学生对这些名篇佳作进行阅读赏析时,除了给学生分析其语言的运用、修辞的运用以及写作方法等,还应进行更深层次的赏析,借助这些名篇佳作对学生予以精神熏陶,让学生从中得到情感升华,获得更加深刻的审美体验。
3.优化高职语文课堂教学形式、方法及内容。对于高职院校的学生而言,语文课堂教学除了在教室进行讲授知识之外,还应包括实践性教学。高职学生除了掌握基本的科学文化理论知识之外,还应当多进行社会实践,多接触社会,在社会实践中对从书本上学到的科学文化理论知识进行检验。举例来说,在高职语文课堂教学过程中,教师可以组织或安排学生举行模拟情境训练,诸如,比较正式的面试表达,学生以后就业可能需要的自我推荐函书写、求职信的书写以及关系到学生以后找工作时能否应聘成功的竞聘演讲等,上述这些都属于比较基本和实用的应用型技能,对于高职院校学生而言,具有较大的现实意义和实践价值,对高职院校学生今后的职业规划与发展具有较大的影响,能够起到较大的作用。此外,通过上述这些训练还能够锻炼和提升高职院校学生的听说读写能力。
结束语:
综上所述,目前高职院校《大学语文》课程教学还存在一些问题,诸如:语文课程缺乏明确的教学定位、教学模式固定,教学方法单
一、缺乏实效性,课堂教学效果不佳、师资力量较弱,综合素质有待提升等。针对这些问题,有必要对《大学语文》课程教学进行改革,尤其是要提高高职大学语文课程教学实效性意识,至于如何提高高职大学语文课程教学实效性意识,笔者认为应当从以下三个方面入手:第一,提高对高职大学语文课程教学实效性的认识;第二,将课程开设、教材选择与专业相结合;第三,加强形象思维与创造性思维的培养。在高职语文课堂教学中,应该要提高其语文教学实效性。提高高职语文教学实效性的对策主要有:首先,学院提供有效的政策扶持;其次,树立明确的教学目标,增加大学生的审美体验;再次,优化高职语文课堂教学形式、方法及内容。
参考文献:
[1]于晓楠,杨冬,范晰,孙小越.高职院校大学语文课程教学改革的必要性[J].职教论坛,2013,(32):82-84.[2]于晓楠.我国高职院校《大学语文》课程教学研究[D].江西农业大学,2013.
第四篇:《数值计算方法》课程教学大纲.
《数值计算方法》课程教学大纲
课程名称:数值计算方法/Mathods of Numerical Calculation 课程代码:0806004066 开课学期:4 学时/学分:56学时/3.5学分(课内教学 40 学时,实验上机 16 学时,课外 0 学时)先修课程:《高等代数》、《数学分析》、《常微分方程》、《C语言程序设计》 适用专业:信息与计算科学
开课院(系):数学与计算机科学学院
一、课程的性质与任务
数值计算方法是数学与应用数学专业的核心课程之一。它是对一个数学问题通过计算机实现数值运算得到数值解答的方法及其理论的一门学科。本课程的任务是架设数学理论与计算机程序设计之间的桥梁,建立解决数学问题的有效算法,讨论其收敛性和数值稳定性并寻找误差估计式,培养学生数值计算的能力。
二、课程的教学内容、基本要求及学时分配
(一)误差分析
2学时 了解数值计算方法的主要研究内容。2 理解误差的概念和误差的分析方法。熟悉在数值计算中应遵循的一些基本原则。重点:数值计算中应遵循的基本原则。难点:数值算法的稳定性。
(二)非线性方程组的求根
8学时 理解方程求根的逐步搜索法的含义和思路 掌握方程求根的二分法、迭代法、牛顿法及简化牛顿法、非线性方程组求根的牛顿法 3 熟悉各种求根方法的算法步骤,并能编程上机调试和运行或能利用数学软件求非线性方程的近似根。
重点:迭代方法的收敛性、牛顿迭代方法。难点:迭代方法收敛的阶。
(三)线性方程组的解法
10学时 熟练掌握高斯消去法 熟练地实现矩阵的三角分解:Doolittle法、Crout法、Cholesky法、LDR方法。3 掌握线性方程组的直接解法:Doolittle法、Crout法、Cholesky法(平方根法)、改进平方根法、追赶法。
4能熟练地求向量和矩阵的1-范数、2-范数、-范数和条件数。5 理解迭代法的基本思想,掌握迭代收敛的基本定理。掌握解线性方程组的雅可比(Jacobi)迭代法、高斯-赛德尔(Gauss-Seidel)迭代法、逐次超松驰(SOR)迭代法。7能写出线性方程组的各种直接解法和间接解法的算法,并能编程上机运行或能利用数学软件求解线性方程组。
重点:矩阵的三角分解。
难点:线性方程组迭代解法的收敛问题。
(四)插值法
6学时
1.了解插值的一般概念和多项式插值的存在唯一性。
2.熟练掌握Lagrange插值、Newton插值、Hermite插值、分段低次插值及三次样条插值的求解。
3.熟悉曲线拟合的最小二乘法,能熟练地求矛盾方程组的最小二乘解。
4.能对Lagrange插值、Newton插值、Neville插值、Hermite插值、三次样条插值、线拟合的最小二乘法等编程上机调试和运行或借助数学软件求插值函数和曲线拟合。
重点:Lagrange插值、Newton插值、Hermite插值。难点:三次样条插值的求解。
(五)最佳逼近多项式的一般理论
5学时 了解最佳逼近的基本问题。掌握C[a,b]空间中最佳逼近的唯一性问题。3 了解切贝绍夫定理与Vallee-Poussin定理。
(六)数值微分与数值积分
5学时 了解数值积分的基本思想,能够熟练地确定具体求积公式的代数精度及确定求积公式的节点和系数。熟练地用Newton-cotes公式,Romberg公式,两点、三点Gauss公式等进行数值积分 重点:确定具体求积公式的代数精度及确定求积公式的节点和系数。难点:用待定系数法确定Gauss型求积公式的节点和系数。
(七)常微分方程的数值解
4学时 理解常微分方程的数值解的含义 掌握常微分方程的欧拉解法、R—K方法、亚当姆斯方法,理解其算法思想。重点:基于数值积分的方法。难点:R—K方法。
三、推荐教材及参考书
推荐教材:
1、张韵华等编著,数值计算方法与算法,科学出版社,2001。
2、冯天祥编著,数值计算方法,四川科技出版社,2003。参考书:
1、冯天祥编著,数值计算方法理论与实践研究,西南交通大学出版社,2005。
2、李庆扬等著,数值分析,华中理工大学出版社,2000。
3、林成森著,数值计算方法,科学出版社出版,1999。
4、李庆扬等著,现代数值分析,高等教育出版社,1998。
5封建湖等,计算方法典型题分析解集,西北工业大学出版社,1999。
四、结合近几年的教学改革与研究,对教学大纲进行的新调整 增加了最佳逼近多项式的一般理论。
大纲制订者:冯玉明
大纲审定者:陈小春
制订日期:2008-11-15
第五篇:数值分析学习心得体会
数值分析学习感想
一个学期的数值分析,在老师的带领下,让我对这门课程有了深刻的理解和感悟。这门课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处理问题的时候,可以合理适当的提出方案和假设。他的内容贴近实际,像数值分析,数值微分,求解线性方程组的解等,使数学理论更加有实际意义。
数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有了更加方便以及科学的方法。像第一章就讲的误差,在现实生活中,也许没有太过于注意误差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在别的地方没有什么,但是在数学领域,一个小的误差,就很容易有不好的后果,而学习了数值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。
数值分析不只在知识上传授了我很多,在思想上也对我有很大的影响,他给了我很多数学思想,很多思考的角度,在看待问题的方面上,多方位的去思考,并从别的例子上举一反
三。像其中所讲的插值法,在先学习了拉格朗日插值法后,对其理解透彻,了解了其中的原理和思想,再学习之后的牛顿插值以及三次样条插值等等,都很容易的融会贯通,很容易的就理解了其中所想,他们的中心思想并没有多大的变化,但是使用的方式却是不同的,这不仅可以学习到其中心内容,还可以去学习他们的思考方式,每个不同的思考方式带来的都是不同的算法。而在看待问题上,不同的思考方式总是可以快速的全方位的去看透彻问题,从而知道如何去解决。
在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的不懈讲解下,我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。
计算132 2013014923 张霖篇二:数值分析学习报告
数值分析学习心得报告
班级:11级软工一班
姓名: * * * 学号: 20117610*** 指导老师:* * * 学习数值分析的心得体会
无意中的一次选择,让我接触了数值分析。
作为这学期的选修课,我从内心深处来讲,数值分析真的有点难。感觉它是在高等数学和线性代数的基础上,又加深了探讨。虽然这节课很难,我学的不是很好,但我依然对它比较感兴趣。下面就具体说说我的学习体会,让那些感兴趣的同学有个参考。学习数值分析,我们首先得知道一个软件——matlab。matrix laboratory,即矩阵实验室,是math work公司推出的一套高效率的数值计算和可视化软件。它是当今科学界最具影响力、也是最具活力的软件,它起源于矩阵运算,并高速发展成计算机语言。它的优点是强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面、便捷的与其他程序和语言接口。
根据上网搜集到的资料,你就会发现matlab有许多优点:
首先,编程简单使用方便。到目前为止,我已经学过c语言,机器语言,java语言,这三个语言相比,我感觉c语言还是很简单的一种编程语言。只要入门就很好掌握,但是想学精一门语言可不是那么容易的。惭愧的说,到目前为止,我依然处于入门阶段,只会编写小的简单的程序,但是班里依然还是有学习好的。c语言是简单且容易掌握的,但是,matlab的矩阵和向量操作功能是其他语言无法比拟的。在matlab环境下,数组的操作与数的操作一样简单,基本数据单元是不需要指定维数的,不需要说明数据类型的矩阵,而其数学表达式和运算规则与通常的习惯相同。
其次,函数库可任意扩充。众所周知,c语音有着丰富的函数库,我们可以随时调用,大大方便了程序员的操作。可是作为it人士的你知道吗,由于matlab语言库函数与用户文件的形式相同,用户文件可以像库函数一样随意调用,所以用户可任意扩充库函数。这是不是很方便呢?
接着,语言简单内涵丰富。数值分析所用的语言中,最重要的成分是函数,其一般形式为:function[a,b,c??]=fun(d,e,f??),你也发现了吧,这样的语音是不是很容易掌握呢!fun是自定义的函数名,只要不与库函数想重,并且符合字符串书写规则即可。
然后是丰富的工具箱。由于matlab 的开放性,许多领域的专家都为matlab 编写了各种程序工具箱。这些工具箱提供了用户在特别应用领域所需的许多函数,这使得用户不必花大量的时间编写程序就可以直接调用这些函数,达到事半功倍的效果。不过你得提前知道这些工具箱,并且会使用。
最后,我们来说一下matlab的运算。利用matlab可以做向量与矩阵的运算,与普通加减运算几乎相似。
矩阵乘法用 “ * ” 符号表示,当a矩阵列数与b矩阵的行数相等时,二者可以进行乘法运算,否则是错误的。如果a或b是标量,则a*b返回标量a(或b)乘上矩阵b(或a)的每一个元素所得的矩阵。
对n×m阶矩阵a和p×q阶矩阵b,a和b的kronecher乘法运算可定义为: kronecker乘法的matlab命令为c=kron(a,b):例如,在matlab中输入: a=[1 2;3 4];b=[1 3 2;2 4 6];c=kron(a,b)则程序会给出相应的答案 c = 1 3 2 2 6 4 2 4 6 4 8 12 3 9 6 4 12 8 6 12 18 8 16 24 这就充分的考验了我们的实际动手能力,当然运用一般的计算方法能算出结果,但相对来说没有用它来运算节省时间,其他算法又很不方便。上面介绍了matlab的特点与使用方法,接着我们要说它的程序设计,其实跟c语言相比,它们的程序设计都差不多。
大家都知道,matlab与其它计算机语言一样,也有控制流语句。而控制流语句本身,可使原本简单地在命令行中运行的一系列命令或函数,组合成为一个整体—程序,从而提高效率。以下是具体的几个例子,看过之后,你会发现,matlab的控制流语句跟其他计算机真的很相似:
(1)for 循环for循环的通用形式为:for v=expressionstatementsend其中expression 表达式是一个矩阵,因为matlab中都是矩阵,矩阵的列被一个接一个的赋值到变量v,然后statements语句运行。
(2)while 循环while循环的通用形式为:while v=expressionstatementsend当expression的所有运算为非零值时,statements 语句组将被执行。如果判断条件是向量或矩阵的话,可能需要all 或any函数作为判断条件。(3)if和break语句通用形式为:if 条件1,命令组1;elesif条件2,命令组2;??;else命令组k;endbreak%中断执行,用在循环语句内表示跳出循环。对于数值分析这节课,我的理解是:只要学习并掌握好matlab,你就已经成功了。因此说,matlab是数学分析的基础。另外,自我感觉这是一个很好的软件,其语言简便,实用性强。但是作为一个做新手,想要学习好这门语言,还是比较困难的。在平常的上机课中,虽然我没有问过老师,但是我向那些学习不错的学生还是交流了许多,比如说,张**,贾**,还有那个皮肤白白的女生。跟他们交流,我确实学到不少有用的东西。但是,毕竟没有他们学得好,总之,在我接触这门语言的这些天,除了会画几个简单的三维图形,其他的还是有待提高。在这个软件中,虽然有help,但大家不要以为有了这个就万事大吉了,反而,从另一个方面也对我们大学生提出了两个要求——充实的课外基础和良好的英语基础。在现代,几乎所有好的软件都是来自国外,假如你不会外语,想学好是非常难的,即使高考中的英语比重降低了,但我们依旧得学好。这样我们才能走得更远。
其实想要学习好一们语言,不能只靠老师,靠朋友,关键是自己。每个人内心深处都是有抵触意识的,不可能把老师的所有都学到。其实,我发现学习数值分析这门课,不光是学习一种语言,一些知识,更重要的是学习一种方法,一种学习软件的方法,还有学习的态度。
在最后,我想说的是,谢谢郭老师的辛勤付出,我们每个学生都会看在眼里记在心里的,谢谢您。篇三:数值分析学习总结感想
数值分析学习感想 摘要:数值分析主要介绍现代科学计算中常用的数值计算方法及其基本原理,研究并解决数值问题的近似解,是数学理论与计算机和实际问题的有机结合。随着科学技术迅速发展,运用数学方法解决工程技术领域中的实际问题,已经得到普遍重视。
作为这学期的考试课,在我最初接触这门课时,我感到了很困难,因为无论是高数还是线性代数我都放下了很久,而我感觉数值分析是在高等数学和线性代数的基础上,又加深了探讨。虽然这节课很难,但是在老师不断地引导和讲授下,我逐渐对其产生了兴趣。在老师的反复讲解下,我发现我被它吸引了,因为它不仅是单纯的学科,还教会了我许多做人生活的道理。
首先,数值分析这门课程是一个十分重视算法和原理的学科,同时它能够将人的思维引入数学思考的模式,在处理问题的时候,可以合理适当的提出方案和假设。他的内容贴近实际,像数值分析,数值微分,求解线性方程组的解等,使数学理论更加有实际意义。
数值分析在给我们的知识上,有很大一部分都对我有很大的帮助,让我的生活和学习有了更加方便以及科学的方法。像第一章就讲的误差,在现实生活中,也许没有太过于注意误差,所以对误差的看法有些轻视,但在学习了这一章之后,在老师的讲解下,了解到这些误差看似小,实则影响很大,更如后面所讲的余项,那些差别总是让人很容易就出错,也许在别的地方没有什么,但是在数学领域,一个小的误差,就会有很大的差别,而学习了数值分析的内容,很容易就可以将误差锁定在一个很小的范围内,在这一范围内再逼近,得出的近似值要准确的多,而在最开始的计算中,误差越小,对后面的影响越小,这无疑是好的。数值分析中,“以点带面”的思想也深深影响了我。这里的“点”是根本,是主线。在第二章学习插值法的时候是以拉格朗日插值、牛顿插值为主线,然后逐渐展开介绍艾尔米特插值、分段低次插值和三次样条插值。在学习中只要将研究拉格朗日插值和牛顿插值的基本原理、基本方法理解透彻,其他的插值方法就基本掌握了。第四章处理数值积分和数值微分的基本方法是逼近法,只要将函数逼近的基本思想理解好,掌握起来就会得心应手;第六第七章是以迭代法为主线来求解线性方程组和非线性方程组的。在学习过程组只要将迭代法的相关原理掌
握好,便能掌握第六第七章。总的来数,数值分析所涉及到数学中很多学科的知识,内容比较复杂,因此在学习过程中一定要将基本原理、基本算法理解透,然后再逐步推广。同样在生活中每件事情都有它的主线,只要抓住这条主线再难的事情也会迎刃而解。
还比如“等价转化”的思想,这里的“等价”不是完全意义上的“等价”,是指在转化前后转化的主体主要特征值没有变。插值法的思想就是抓住已知函数或者已知点的几个主要特征,用另一个具备主要特征的简单函数来代替原函数或拟合已知数据点。实际生活中也有很多类似情况,已知事件或者面临的情况往往是复杂的,常常不能直接用数学方法直接研究,我们可以做的就是抓住已经事件的主要特征转化为数学模型来建立。
在不断的学习中,知识在不断的获取,能力在不断的提升,同时在老师的耐心讲解下,我逐渐的发现数值分析所涵盖的知识面特别的广泛,而我所需要学习的地方也更加的多,自己的不足也在不断的体现,我知道这只是我刚刚接触到了数学的那一角,在以后我还会接触到更多,而这求知的欲望也在不停的驱赶我,学习的越多,对今后的生活才会有更大的帮助。
希望在将来,通过反复的实践能加深我的理解,在明年的这个时候我能有更多的感悟。同时,因为十五周的学习时间太短加上我的基础薄弱,我决定明年继续来旁听老师的课程,达到进一步学习,加深理解的目的。
数值分析课程论文:
数值分析学习心得感悟
姓名:崔俊毅
学号:2015210211 专业:防灾减灾专硕
院系:土木工程学院篇四:数值分析学习报告
数值分析学习心得报告
班级:姓名:
学号: ************ *** *********** 学习数值分析的心得体会
数值分析是一门利用计算机求解数学问题数值解的课程,有很强的理论性和实践性,无意中的一次选择,让我接触了数值分析。随着科学技术的发展,提出了大量复杂的数值计算问题,在建立电子计算机成为数值计算的主要工具以后,它以数字计算机求解数学问题的理论和方法为研究对象。有可靠的理论分析,要有数值实验,并对计算的结果进行误差分析。数值分析的主要内容包括插值法,函数逼近,曲线拟和,数值积分,数值微分,解线性方程组的直接方法,解线性方程组的迭代法,非线性方程求根,常微分方程的数值解法。
作为这学期的选修课,我从内心深处来讲,数值分析真的有点难。感觉它是在高等数学和线性代数的基础上,又加深了探讨。虽然这节课很难,我学的不是很好,但我依然对它比较感兴趣。下面就具体说说我的学习体会,让那些感兴趣的同学有个参考。学习数值分析,我们首先得知道一个软件——matlab。matrix laboratory,即矩阵实验室,是math work公司推出的一套高效率的数值计算和可视化软件。它是当今科学界最具影响力、也是最具活力的软件,它起源于矩阵运算,并高速发展成计算机语言。它的优点是强大的科学运算、灵活的程序设计流程、高质量的图形可视化与界面、便捷的与其他程序和语言接口。
根据上网搜集到的资料,你就会发现matlab有许多优点: 首先,编程简单使用方便。到目前为止,我已经学过c语言,机器语言,java语言,这三个语言相比,我感觉c语言还是很简单的一种编程语言。只要入门就很好掌握,但是想学精一门语言可不是那么容易的。惭愧的说,到目前为止,我依然处于入门阶段,只会编写小的简单的程序,但是班里依然还是有学习好的。c语言是简单且容易掌握的,但是,matlab的矩阵和向量操作功能是其他语言无法比拟的。在matlab环境下,数组的操作与数的操作一样简单,基本数据单元是不需要指定维数的,不需要说明数据类型的矩阵,而其数学表达式和运
算规则与通常的习惯相同。
其次,函数库可任意扩充。众所周知,c语音有着丰富的函数库,我们可以随时调用,大大方便了程序员的操作。可是作为it人士的你知道吗,由于matlab语言库函数与用户文件的形式相同,用户文件可以像库函数一样随意调用,所以用户可任意扩充库函数。这是不是很方便呢?
接着,语言简单内涵丰富。数值分析所用的语言中,最重要的成分是函数,其一般形式为:function[a,b,c??]=fun(d,e,f??),你也发现了吧,这样的语音是不是很容易掌握呢!fun是自定义的函数名,只要不与库函数想重,并且符合字符串书写规则即可。
然后是丰富的工具箱。由于matlab 的开放性,许多领域的专家都为matlab 编写了各种程序工具箱。这些工具箱提供了用户在特别应用领域所需的许多函数,这使得用户不必花大量的时间编写程序就可以直接调用这些函数,达到事半功倍的效果。不过你得提前知道这些工具箱,并且会使用。
最后,我们来说一下matlab的运算。利用matlab可以做向量与矩阵的运算,与普通加减运算几乎相似。
矩阵乘法用 “ * ” 符号表示,当a矩阵列数与b矩阵的行数相等时,二者可以进行乘法运算,否则是错误的。如果a或b是标量,则a*b返回标量a(或b)乘上矩阵b(或a)的每一个元素所得的矩阵。
对n×m阶矩阵a和p×q阶矩阵b,a和b的kronecher乘法运算可定义为: kronecker乘法的matlab命令为c=kron(a,b):例如,在matlab中输入: a=[1 2;3 4];b=[1 3 2;2 4 6];c=kron(a,b)则程序会给出相应的答案 c = 1 3 2 2 6 4 2 4 6 4 8 12 3 9 6 4 12 8 6 12 18 8 16 24 这就充分的考验了我们的实际动手能力,当然运用一般的计算方法能算出结果,但相对来说没有用它来运算节省时间,其他算法又很不方便。上面介绍了matlab的特点与使用方法,接着我们要说它的程序设计,其实跟c语言相比,它们的程序设计都差不多。
大家都知道,matlab与其它计算机语言一样,也有控制流语句。而控制流语句本身,可使原本简单地在命令行中运行的一系列命令或函数,组合成为一个整体—程序,从而提高效率。以下是具体的几个例子,看过之后,你会发现,matlab的控制流语句跟其他计算机真的很相似:
(1)for 循环for循环的通用形式为:for v=expressionstatementsend其中expression 表达式是一个矩阵,因为matlab中都是矩阵,矩阵的列被一个接一个的赋值到变量v,然后statements语句运行。
(2)while 循环while循环的通用形式为:while v=expressionstatementsend当expression的所有运算为非零值时,statements 语句组将被执行。如果判断条件是向量或矩阵的话,可能需要all 或any函数作为判断条件。
(3)if和break语句通用形式为:if 条件1,命令组1;elesif条件2,命令组2;??;else命令组k;endbreak%中断执行,用在循环语句内表示跳出循环。对于数值分析这节课,我的理解是:只要学习并掌握好matlab,你就已经成功了。因此说,matlab是数学分析的基础。另外,自我感觉这是一个很好的软件,其语言简便,实用性强。但是作为一个做新手,想要学习好这门语言,还是比较困难的。在平常的上机课中,虽然我没有问过老师,但是我向那些学习不错的学生还是交流了许多,跟他们交流,我确实学到不少有用的东西。但是,毕竟没有他们学得好,总之,在我接触这门语言的这些天,除了会画几个简单的三维图形,其他的还是有待提高。在这个软件中,虽然有help,但大家不要以为有了这个就万事大吉了,反而,从另一个方面也对我们大学生提出了两个要求——充实的课外基础和良好的英语基础。在现代,几乎所有好的软件都是来自国外,假如你不会外语,想学好是非常难的,即使高考中的英语比重降低了,但我们依旧得学好。这样我们才能走得更远。其实想要学习好一们语言,不能只靠老师,靠朋友,关键是自己。每个人内心深处都是有抵触意识的,不可能把老师的所有都学到。其实,我发现学习数值分析这门课,不光是学习一种语言,一些知识,更重要的是学习一种方法,一种学习软件的方法,还有学习的态度。
数值分析是研究分析用计算机求解数学计算问题的数值计算方法及其理论的学科,是数学的一个分支,它以数字计算机求解数学问题的理论和方法为研究对象。在科学研究和工程技术中有许多问题可归结为求解方程组的问题。本文主要讨论了插值法求函数,解线性方程组的求解方法,非线性方程组的解法及微分方程的解法,并通过在电流回路和单晶硅提拉过程中分析应用。进一步体现了数值分析的广泛应用,实际上由于误差的存在,一些问题只能求得近似解。对于良态方程组,只要求解方法稳定,即可得到比较满意的计算结果。但对于病态方程组,即使使用稳定性好的算法求解也未必理想,还需进一步的研究。总之,数值分析可以通过计算方法进行一种比较完善的构造,使之更普遍化,能够有举一反三的思想,能够解决一些实际中难解的问题,应用到各个领域。
在最后,我想说的是,谢谢老师的辛勤付出,我们每个学生都会看在眼里记在心里的,谢谢您。篇五:数值分析期末总结论文,程序界面 数值计算方法论文
论文名称:数值计算方法期末总结
学 号:
姓 名:完成时间:
摘要:数值计算方法是数学的一个重要分支,以用计算机求解数学问题的理论和方法为研究对象。本文是我对本学期数值分析这门课程中所学到的内容以及所作的工作的总结。通过一学期的学习,我深入学习了线性方程组的解法,非线性方程的求根方法,矩阵特征值与特征向量的计算,函数的插值方法,最佳平方逼近,数值积分与数值微分,常微分方程初值问题的数值解法。通过陶老师课堂上的讲解和课下的上机训练,对以上各个章节的算法有了更深刻的体会。最后做了程序的演示界面,使得程序看起来清晰明了,便于查看与修改。通过本学期的学习。
关键词:数值计算方法、演示界面
第一章 前言
随着电子计算机的普及与发展,科学计算已成为现代科学的重要组成部分,因而数值计算方法的内容也愈来愈广泛和丰富。通过本学期的学习,主要掌握了一些数值方法的基本原理、具体算法,并通过编程在计算机上来实现这些算法。
第二章 基本概念 2.1算法
算法是指由基本算术运算及运算顺序的规定构成的完整的解题步骤。算法可以使用框图、算法语言、数学语言、自然语言来进行描述。具有的特征:正确性、有穷性、适用范围广、运算工作量少、使用资源少、逻辑结构简单、便于实现、计算结果可靠。2.2 误差
计算机的计算结果通常是近似的,因此算法必有误差,并且应能估计误差。误差是指近似值与真正值之差。绝对误差是指近似值与真正值之差或差的绝对值;相对误差:是指近似值与真正值之比或比的绝对值。误差来源见表2.1 表
第三章 泛函分析 2.1泛函分析概要
泛函分析(functional analysis)是研究“函数的函数”、函数空间和它们之间变换(映射)的一门较新的数学分支,隶属分析数学。它以各种学科为具体背景,在集合的基础上,把客观世界中的研究对象抽象为元素和空间。如:距离空间,赋范线性空间,内积空间。2.2 范数
范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领
域,泛函是一个函数,其为矢量空间内的所有矢量赋予非零的正长度或大小。
这里以cn空间为例,rn空间类似。最常用的范数就是p-范数。若,那么
当p取1,2,∞的时候分别是以下几种最简单的情形: 1-范数:║x║1=│x1│+│x2│+?+│xn│ 2-范数:║x║2=(│x1│2+│x2│2+?+│xn│2)1/2 ∞-范数:║x║∞=max(│x1│,│x2│,?,│xn│)
其中2-范数就是通常意义下的距离。
对于这些范数有以下不等式:║x║∞ ≤ ║x║2 ≤ ║x║1 ≤ n1/2║x║2 ≤ n║x║∞
另外,若p和q是赫德尔(hölder)共轭指标,即1/p+1/q=1,那么有赫德尔不等式:
|
一般来讲矩阵范数除了正定性,齐次性和三角不等式之外,还规定其必须满足相容性:║xy║≤║x║║y║。所以矩阵范数通常也称为相容范数。
如果║·║α是相容范数,且任何满足║·║β≤║·║α的范数║·║β都不是相容范数,那么║·║α称为极小范数。对于n阶实方阵(或复方阵)全体上的任何一个范数║·║,总存在唯一的实数k>0,使得k║·║是极小范数。
注:如果不考虑相容性,那么矩阵范数和向量范数就没有区别,因为mxn矩阵全体和mn维向量空间同构。引入相容性主要是为了保持矩阵作为线性算子的特征,这一点和算子范数的相容性一致,并且可以得到mincowski定理以外的信息。
第四章 算法总结
本学期讲解过的主要算法列举如下:线性方程组的解法(高斯消元法,列主消元法,doolittle分解法,追赶法,ldl分解法,jacobi分解法,seidel迭代法);非线性方程的求根方法(二分法,简单迭代法,newton迭代法,newton+下山因子,newton迭代法2,newton非线性方程);矩阵特征值与特征向量的计算(householder矩阵,反幂法,幂法,qr分解);函数的插值方法(三次样条插值,lagrange插值法,newton差商插值法);最佳平方逼近(chebyshev最小二乘法,曲线拟合最小二乘法);数值积分与数值微分(simpson求积分式算法,romberg算法,外推法);常微分方程初值问题的数值解法(欧拉改进法、龙格库塔法和修正的adams法)。下面对主要算法进行分析。4.1线性方程组的解法 本章学习了一些求解线性方程组的常用方法,其中gauss消元法,列主元消元法,lu分解法,追赶法和ldl’分解法都是解线性方程组的直接方法;而jacobi迭代法和sor法则是解线性方程组的基本迭代法。求解线性方程组时,应该注意方程组的性态,对病态方程组使用通常求解方程组的方法将导致错误。迭代求精法可用于求解某些病态方程。4.1.1高斯列主元lu分解法求解线性方程组
高斯消元法和lu分解法是直接法求解线性方程组中的两种方法。其中高斯消元法的基本思想是将线性方程组(1.1)通过消元,逐步化为同解的三角形方程组,然后用回代法解出n个解。高斯列主元消元法则是在高斯消元法的基础上提(k?1)(k?1)a?0akkkk出的先选主元再消元的方法,避免了时消元无法进行或者是当的绝(k?1)a(i?k?1,k?2,ik对值与其下方的元素,n)的绝对值之比很小时,引起计算机
上溢或产生很大的舍入误差而导致所求出的解失真的问题。lu分解法是将矩阵a用一个下三角矩阵和一个上三角矩阵之积来表示,即a?lu,然后由a?lu,ax?b,得lux?b,将线性方程组的求解化为对两个三角形方程组ly?b和ux?y的求解,由此可解出线性方程组(1.1)的n个解x1,x2,xn。这两种求解线性方程组的方法在处理单个线性方程组时没有差别,只是方法的不同,但在处理系数矩阵a相同,而右端项不同的一组线性方程组时,lu分解法就有明显的优势,因为它是将系数矩阵a和右端项b分开处理的,这样就可以只进行一次分解。例如,求解线性方程组ax?bi,i?1,2,m,用高斯消元法求解的计算量 1313mnn?mn2 大约为3,而用lu分解求解的计算量约为3,后者计算量显然小很多。但是lu分解法同样有可能由于ujj的绝对值很小而引起计算机上溢或产生很大的舍入误差而导致所求出的解失真。因此提出了结合高斯列主元消元的lu分解法。
我们采用的计算方法是先将a矩阵进行高斯列主元消元,然后再计算相应的l矩阵和u矩阵(u矩阵就是经过n-1步消元后的a矩阵)。但要注意,第k步消元时会产生mik(i?k?1,k?2,n),从而可以得到l矩阵的第k列元素,但在下一步消元前选取列主元时可能会交换方程的位置,因此与方程位置对应的l矩阵中的元素也要交换位置。4.2非线性方程组的求根方法
本章学习的二分法简单迭代法、newton迭代法等方法,代表着求解非线性方程所采用的两类方法。大范围收敛方法的初值x0选取没有多少限制,只要在含根区间任选其一即可,二分法就是这类方法。局部收敛法要求x0要充分靠近根x*才能保证收敛,以简单迭代法为基础,newton迭代法为代表的各类迭代法都属这类方法。4.2.1newton迭代法
牛顿迭代法的构造过程是这样的:设x0是f(x)?0的一个近似根,将f(x)在 f(x0)f(x)?f(x0)?f(x0)(x?x0)?(x?x0)2?x0处作taylor展开得2!,若取其
x?x?f(x)/f(x0),然后再对x1做f(x)100前两项来近似代替,得近似方程的根 f上述同样处理,继续下去,一般若(xk)?0,则可以构造出迭代格式 xk?1?xk?f(xk)f(xk)此格式称为牛顿迭代格式,用它来求解f(x)?0的方法称为牛顿迭代法。牛顿迭代法的几何意义是用f(x)在xk处的切线与x轴得交点作为下一个迭代点xk?1的。由于这一特点,牛顿迭代法也常称为切线法。
牛顿迭代法虽然收敛很快,但它通常过于依赖初值x0的选取,如果x0选择不当,将导致迭代发散或产生无限循环。