第一篇:九年级数学竞赛圆的基本性质优化教案
九年级数学竞赛圆的基本性质优化教案
本资料为woRD文档,请点击下载地址下载全文下载地址
【例题求解】
【例1】在半径为1的⊙o中,弦AB、Ac的长分别为和,则∠BAc度数为
.
作出辅助线,解直角三角形,注意AB与Ac有不同的位置关系.
注:由圆的对称性可引出许多重要定理,垂径定理是其中比较重要的一个,它沟通了线段、角与圆弧的关系,应用的一般方法是构造直角三角形,常与勾股定理和解直角三角形知识结
合起来.
圆是一个对称图形,注意圆的对称性,可提高解与圆相关问题周密性.
【例2】
如图,用3个边长为1的正方形组成一个对称图形,则能将其完全覆盖的圆的最小半径为
A.
B.
c.
D.
思路点拨
所作最小圆圆心应在对称轴上,且最小圆应尽可能通过圆形的某些顶点,通过设未知数求解.
【例3】如图,已知点A、B、c、D顺次在⊙o上,AB=BD,Bm⊥Ac于m,求证:Am=Dc+cm.
思路点拨
用截长或补短证明,将问题转化为线段相等的证明,证题的关键是促使不同量的相互转换并突破它.
【例4】
如图甲,⊙o的直径为AB,过半径oA的中点G作弦cE⊥AB,在cB上取一点D,分别作直线cD、ED,交直线AB于点F,m.
求∠coA和∠FDm的度数;
求证:△FDm∽△com;
如图乙,若将垂足G改取为半径oB上任意一点,点D改取在EB上,仍作直线cD、ED,分别交直线AB于点F、m,试判断:此时是否有△FDm∽△com?证明你的结论.
思路点拨在Rt△coG中,利用oG=oA=oc;证明∠com=∠FDm,∠cmo=
∠FmD;利用图甲的启示思考.
注:善于促成同圆或等圆中不同名称的相互转化是解决圆的问题的重要技巧,此处,要努力把圆与直线形相合起来,认识到圆可为解与直线形问题提供新的解题思路,而在解与圆相关问题时常用到直线形的知识与方法.
【例5】已知:在△ABc中,AD为∠BAc的平分线,以c为圆心,cD为半径的半圆交Bc的延长线于点E,交AD于点F,交AE于点m,且∠B=∠cAE,EF:FD=4:3.
求证:AF=DF;
求∠AED的余弦值;
如果BD=10,求△ABc的面积.
思路点拨证明∠ADE=∠DAE;作AN⊥BE于N,cos∠AED=,设FE=4x,FD=3x,利用有关知识把相关线段用x的代数式表示;寻找相似三角形,运用比例线段求出x的值.
注:本例的解答,需运用相似三角形、等腰三角形的判定、面积方法、代数化等知识方法思想,综合运用直线形相关知识方法思想是解与圆相关问题的关键.
学历训练
.D是半径为5cm的⊙o内一点,且oD=3cm,则过点D的所有弦中,最小弦AB=
.
2.阅读下面材料:
对于平面图形A,如果存在一个圆,使图形A上的任意一点到圆心的距离都不大于这个圆的半径,则称图形A被这个圆所覆盖.
对于平面图形A,如果存在两个或两个以上的圆,使图形A上的任意一点到其中某个圆的圆心的距离都不大于这个圆的半径,则称图形A被这些圆所覆盖.
例如:图甲中的三角形被一个圆所覆盖,图乙中的四边形被两个圆所覆盖.
回答下列问题:
边长为lcm的正方形被一个半径为r的圆所覆盖,r的最小值是
cm;
边长为lcm的等边三角形被一个半径为r的圆所覆盖,r的最小值是
cm;
长为2cm,宽为lcm的矩形被两个半径都为r的圆所覆盖,r的最小值是
cm.
3.世界上因为有了圆的图案,万物才显得富有生机,以下来自现实生活的图形中都有圆:它们看上去多么美丽与和谐,这正是因为圆具有轴对称和中心对称性.
请问以下三个图形中是轴对称图形的有
,是中心对称图形的有
.
请你在下面的两个圆中,按要求分别画出与上面图案不重复的图案.
a.是轴对称图形但不是中心对称图形.
b.既是轴对称图形又是中心对称图形.
4.如图,AB是⊙o的直径,cD是弦,若AB=10cm,cD=8cm,那么A、B两点到直线cD的距离之和为
A.12cm
B.10cm
c.8cm
D.6cm
5.一种花边是由如图的弓形组成的,AcB的半径为5,弦AB=8,则弓形的高cD为
A.2
B.
c.3
D.
6.如图,在三个等圆上各自有一条劣弧AB、cD、EF,如果AB+cD=EF,那么AB+cD与E的大小关系是()
A.AB+cD=EF
B.AB+cD=F
c.AB+cD D.不能确定 7.电脑cPU芯片由一种叫“单晶硅”的材料制成,未切割前的单晶硅材料是一种薄形圆片,叫“晶圆片”.现为了生产某种cPU芯片,需要长、宽都是1cm的正方形小硅片若干.如果晶圆片的直径为10.05cm,问:一张这种晶圆片能否切割出所需尺寸的小硅片66张?请说明你的方法和理由. 8.如图,已知⊙o的两条半径oA与oB互相垂直,c为AmB上的一点,且AB2+oB2=Bc2,求∠oAc的度数. 9.不过圆心的直线交⊙o于c、D两点,AB是⊙o的直径,AE⊥,垂足为E,BF⊥,垂足为F. 在下面三个圆中分别补画出满足上述条件的具有不同位置关系的图形; 请你观察中所画图形,写出一个各图都具有的两条线段相等的结论; 请你选择中的一个图形,证明所得出的结论. 0.以AB为直径作一个半圆,圆心为o,c是半圆上一点,且oc2=Ac×Bc,则∠cAB= . 1.如图,把正三角形ABc的外接圆对折,使点A落在Bc的中点A′上,若Bc=5,则折痕在△ABc内的部分DE长为 . 2.如图,已知AB为⊙o的弦,直径mN与AB相交于⊙o内,mc⊥AB于c,ND⊥AB于D,若mN=20,AB=,则mc—ND= . 3.如图,已知⊙o的半径为R,c、D是直径AB同侧圆周上的两点,Ac的度数为96°,BD的度数为36°,动点P在AB上,则cP+PD的最小值为 . 4.如图1,在平面上,给定了半径为r的圆o,对于任意点P,在射线oP上取一点P′,使得oP×oP′=r2,这种把点P变为点P′的变换叫作反演变换,点P与点P′叫做互为反演点. 如图2,⊙o内外各有一点A和B,它们的反演点分别为A′和B′,求证:∠A′=∠B; 如果一个图形上各点经过反演变换得到的反演点组成另一个图形,那么这两个图形叫做互为反演图形. ①选择:如果不经过点o的直线与⊙o相交,那么它关于⊙o的反演图形是 A.一个圆 B.一条直线 c.一条线段 D.两条射线 ②填空:如果直线与⊙o相切,那么它关于⊙o的反演图形是,该图形与圆o的位置关系是 . 5.如图,已知四边形ABcD内接于直径为3的圆o,对角线Ac是直径,对角线Ac和BD的交点为P,AB=BD,且Pc=0.6,求四边形ABcD的周长. 16.如图,已知圆内接△ABc中,AB>Ac,D为BAc的中点,DE⊥AB于E,求证:BD2-AD2=AB×Ac. 7.将三块边长均为l0cm的正方形煎饼不重叠地平放在圆碟内,则圆碟的直径至少是多少? 8.如图,直径为13的⊙o′,经过原点o,并且与轴、轴分别交于A、B两点,线段oA、oB的长分别是方程的两根. 求线段oA、oB的长; 已知点c在劣弧oA上,连结Bc交oA于D,当oc2=cD×cB时,求c点坐标; 在⊙o,上是否存在点P,使S△PoD=S△ABD?若存在,求出P点坐标;若不存在,请说明理由. 圆的基本性质复习课 教学目标: 1、在例题的分析过程中回顾并进一步理解圆的轴对称性和旋转不变性; 2、在知识框架的建立过程中进一步掌握由这两个性质得到的垂径定理及逆定理,以及圆心角定理、圆周角定理及推论; 3、通过例题的探究,进一步培养学生的探究能力、思维能力和解决问题的能力。 4、通过课堂学习,熏陶学生乐于探究、善于总结的数学学习品质。教学重点:圆的轴对称性、旋转不变性 教学难点:相关性质的应用 一、引入: 师:同学们已经发现,老师在黑板上画了好几个圆,我们今天上课的主角就是这些圆。圆是一切平面图形中最美的图形,它的美体现在哪些方面呢?让我们一起来感受一下。今天,老师也带来了一个圆,但圆心找不到了,你能通过折纸的方法帮老师来找到这个圆心吗? 生:对折两次,两条折痕的交点就是圆心。 师:非常好,两条折痕其实是圆的什么?对折后能完全重合,说明圆具有什么性质? 生:折痕是直径。圆具有轴对称性。 师:刚才这位同学其实就抓住了圆的这个性质,直径所在直线就是圆的对称轴,轻而易举地找到了这个圆心。这两条直径所夹的弧相等吗?为什么? 生:因为它们所对的圆心角相等。 师:在一个圆中,只要圆心角相等,它们所对的弧一定相等。这说明圆具有一种旋转不变性。圆的这两种性质使得圆中五种基本量:圆心角、圆周角、弧、弦、弦心距之间具有特殊的关系。今天这节课我们来复习圆的基本性质。—出示课题《圆的基本性质复习》。 二、圆的基本性质复习: 例 1、(1)如图,AB是⊙O直径,C是⊙O上一点,OD是半径,且OD//AC。求证:CD=BD 师:在圆中,你想到用什么方法证明弦相等呢?下面我们以小组为单位,合作交流各自的想法,尽可能多角度、多途径来证明这两条弦相等。每组选派一位代表,整理组员的意见,待会来汇报展示。(学生分组交流,一会后学生汇报成果。),ACOCOD组一:连接OC,AC//OD ABOD OAOCAACOCODDOB CDBD 师:这是通过证圆心角相等,得到弦相等。还有其他证明方法吗? AC//OD,组二:连接AD,OA=OD CADODAOAD 弧CD=弧BD CD=BD 师:由圆周角相等,我们可以得到弧相等(或圆心角相等),从而得到弦相等。这种证法利用了圆心角、圆周角与弧的关系。在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于所对圆心角的一半;相等的圆周角所对的弧相等。这样,证弦相等,又多了两条途径:可以考虑弧相等,也可以考虑去证圆周角相等。(边总结,边在黑板上抽离基本图形) 去证 师:还有其他方法吗? 组三:连接BC,AB是直径 ACB90 0AC//OD BCOD 由垂径定理可以得到弧CD=弧BD CD=BD 师:这就利用了垂径定理的基本图形。(同时在黑板上画出这个基本图形) 垂径定理及逆定理体现了直径、弧、弦三种量之间的关系:直径垂直弦、直径平分弦、直径平分弧,这三个结论中,只要有一个成立,则另两个也同时成立。但要注意,若条件是直径平分弦,则这条弦必须不是直径,另两个结论才会成立。垂径定理及逆定理体现的是圆的轴对称性。 而在圆中,要构造直角,大家要想到直径所对的圆周角是直角;而90的圆周角所对的弦是直径。(同时在黑板上抽离这个基本图形。)连直径,作直角是圆中常添的辅助线方法。在圆中构造直角,还常作弦心距,弦心距、弦的一半、半径构成一个直角三角形,这在计算题中用得较多。师:还有其他方法吗? 组四:延长DO交⊙O于点E,连接AE。 AC//OD 弧AE=弧CD AE=CD AOEBOD AEBD CD=BD 师:这也是圆中的一种基本图形,由弦平行,可以得到所夹弧相等。这个结论我们书上证明过,可以证一对内错角又是圆周角相等得到。 若不添加任何辅助线,你能证明出来吗?(提示:已知的相等两角A、BOD的度数分别与弧的度数有什么关系?) m1组五:A弧BC BOD弧BD 21弧BC=弧BD=弧CD CD=BD 2m0师:圆周角度数等于所对弧度数的一半,圆心角度数等于所对弧的度数。 同学们真是太了不起了,一道题目想出这么多种证法,同学们的思路很开阔。在圆中还有一对基本量,我们刚才提到过,是什么?——弦心距。弦心距于圆心角、弧、弦之间也有一定的联系。在同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦心距中有一对量相等,其余各对量都相等。(同时抽离出基本图形)而圆周角又与圆心角、弧之间有这样的关系,这使得弦心距与圆周角之间也有一定联系。这五种量的关系体现了圆的旋转不变性。圆的轴对称性和旋转不变性构成了圆的基本性质。这四个基本图形集中体现了圆的基本性质。同学们在平时的学习中要注意积累一些基本图形,它有时是解 题的关键。 (这个例题分析完后,黑板上出现这些量之间的关系图。) (2):延长AC、BD交于点E,连接BC,正确的是______________。 ①AB=AE ②BD=DE ③∠E=2∠EBC ④ ⑤△ ECD ∽△EBA (3)过点D做DG⊥AE,垂足为G,则四边形DGCF为什么四边形?为什么? (4)移动点D位置,使点D在弧AB中点处,令点C在弧AD之间,过D做DF⊥BC,DG⊥AE,垂足为E、F,则四边形DGCF是什么四边形?为什么? 师:首先这个四边形已经是一个什么四边形?——矩形。 那再证一个什么条件,矩形就能成为正方形了? 由弧AD=弧BD,你能得到哪些结论?由弧你想到了什么? 请判断:下面结论中生1:连接OD,D是弧AB中点 BOD90 BCD01BOD450 DF=CF 矩形CFDG是正方形 生2:连接AD,BD 弧AD=弧BD AD=BD GADFBD,AGDDFB90 DAGDBF DGDF 矩形CFDG是正方形 师:在圆中,我们不要忽视弧的作用,它是弦与角转化的桥梁。 三、小结: 师:通过本节课的学习,你对圆的基本性质又有哪些认识呢?你还有什么收获? 通过本节课的复习,我们又重新梳理了圆心角、圆周角、弧、弦、弦心距五种量之间的关系,以及直径与弧、弦之间的关系定理——垂径定理及逆定理。从这些关系中我们发现,证明圆中一对量相等的道路是四通八达的,可以考虑证明圆中的其它几对量相等。圆的这些性质是我们计算角、线段及证明角、线段、弧相等的基本依据和方法。 四、圆的基本性质的妙用: 师:复习了圆的基本性质后,老师出了道思考题: 例:圆内接八边形的四条边长为1,另四条边长为2,如图:AB=BC=CD=DE=1,EF=FG=GH=HA=2,求此八边形的面积。师:九(3)班有几位爱探究的同学课后在一起讨论解决此题。 小慧觉得很困惑:“这个八边形又不是特殊的八边形,这能求出 0 它的面积吗?怎么求哦?“ 同学们是否也有这样的困惑呢? 小聪有想法了:“但八边形是放在圆中,我们能不能利用圆的性质,把八边形的八条边重新排列一下,让它变成比较特殊的八边形呢?” 小聪的想法可行吗?对同学们可有帮助?你们有思路了吗? 生:把长边和短边间隔排列。 师:这样排列后,形状改变了,难道面积不变吗?为什么? 生:利用圆的旋转不变性。 师:现在如何来求这个八边形的面积呢? 生:向外补成一个正方形,因为这个八边形的一个内角是1450。师:多边形的问题就可以转化为四边形和三角形的问题来解决。 这道题的解决完美体现了圆的旋转不变性的妙用。 第二十四章“圆”简介 课程教材研究所 李海东 与三角形、四边形等一样,圆也是基本的平面图形,也是“空间与图形”的主要研究对象,是人们生活中常见的图形。本章将在学生前面学习了一些基本的直线形──三角形、四边形等的基础上,进一步研究一个基本的曲线形──圆,探索圆的有关性质,了解与圆有关的位置关系等,并结合一些图形性质的证明,进一步发展学生的逻辑思维能力。本章共安排四个小节和两个选学内容,教学时间大约需要17课时,具体安排如下(仅供参考): 24.1 圆 5课时 24.2 与圆有关的位置关系 6课时 24.3 正多边形和圆 2课时 24.4 弧长和扇形的面积 2课时 数学活动 小结 2课时 一、教科书内容和课程学习目标 (一)本章知识结构框图 本章知识结构如下图所示: (二)教科书内容 本章是在学习了直线图形的有关性质的基础上,来研究一种特殊的曲线图形──圆的有关性质。圆也是常见的几何图形之一,不仅日常生活中的许多物体是圆形的,而且在工农业生产、交通运输、土木建筑等方面都可以看到圆。圆的有关性质,也被广泛的应用。圆也是平面几何中最基本的图形之一,它不仅在几何中有重要地位,而且是进一步学习数学以及其他科学的重要的基础。圆的许多性质,比较集中地反映了事物内部量变与质变的关系、一般与特殊的关系、矛盾的对立统一关系等等。结合圆的有关知识,可以对学生进行辩证唯物主义世界观的教育。所以这一章的教学,在初中的学习中也占有重要地位。 本章是在小学学过的一些圆的知识的基础上,系统的研究圆的概念、性质、圆中有关的角、点与圆、直线与圆、圆与圆、圆与正多边形之间的位置、数量关系。本章共分为四个小节,第1小节是“圆”,主要是圆的有关概念和性质,圆的概念和性质是进一步研究圆与其他图形位置、数量关系的主要依据,是全章的基础。这一节包括“圆”“垂直于弦的直径”“弧、弦、圆心角”“圆周角”四个部分。“24.1.1 圆”的主要内容是圆的定义和圆中的一些相关概念。圆的定义是研究圆的有关性质的基础。在小学,学生接触过圆,对它有一定的认识。教科书首先结合生活中一些圆的实际例子,在学生小学学过的画圆的基础上,通过设置一个观察栏目,用“发生法”给出了圆的定义。进一步的教科书又分析了圆上每一个点与圆心的距离都等于定长,同时到定点的距离等于定长的点都在圆上,这样实际上从点和集合的角度进一步认识圆,这样再认识之后,学生对圆的 认识就加深了。接下来,是与圆有关的一些概念,如半径、直径、弦、弧等,对于这些概念要让学生结合图形进行认识,并多进行比较,以搞清他们的异同。在接下来的几部分,教科书探究并证明了垂径定理、弧、弦、圆心角的关系定理、圆周角定理。垂径定理及其推论反映了圆的重要性质,是圆的轴对称性的具体化,也是证明线段相等、角相等、垂直关系的重要依据,同时也为进行圆的计算和作图提供了方法和依据;圆周角定理及其推论对于角的计算、证明角相等、弧、弦相等等问题提供了十分简便的方法。所以垂径定理及其推论、圆周角定理及其推论是本小节的重点,也是本章的重点内容。而垂径定理及其推论的条件和结论比较复杂,容易混淆,圆周角定理的证明要用到完全归纳法,学生对与分类证明的必要性不易理解,所以这两部分内容也是本节的难点。 “24.2 与圆有关的位置关系”包括三部分内容,点与圆的位置关系、直线与圆的位置关系、圆与圆的位置关系。在“点与圆的位置关系”中,教科书首先结合射击问题,给出了点与圆的三种不同位置关系,接下来讨论了过三点的圆,并结合“过同一直线上的三点不能作圆”介绍了反证法。在“直线与圆的位置关系”中,教科书首先讨论了直线与圆的三种位置关系,然后重点研究了直线与圆相切的情况,给出了直线与圆相切的判定定理、性质定理、切线长定理,在此基础上介绍了三角形的内切圆。在“圆与圆的位置关系”中,重点是讨论圆与圆的不同位置关系。本小节中,直线与圆的位置关系是中心内容,切线的判定定理、性质定理、切线长定理等则是研究直线与圆的有关问题时常用的定理,是本节的重点内容。反证法的思想在前面章节有所渗透,在这一小节正式提出,它是一种间接证法,学生接受还是有一定的困难,所以对于反证法的教学是本节的一个难点;另外切线的判定定理和性质定理的题设和结论容易混淆,证明性质定理又要用到反证法,因此这两个定理的教学也是本节的难点,这些也同时是本章的难点。正多边形是一种特殊的多边形,它有一些类似于圆的性质。例如,圆有独特的对称性,它不仅是轴对称图形、中心对称图形,而且它的任意一条直径所在直线都是它的对称轴,绕圆心旋转任意一个角度都能和原来的图形重合。正多边形也是轴对称图形,正n边形就有n条对称轴,当n为偶数时,它也是中心对称图形,而且绕中心每旋转,都能和原来的图形重合,可见正多边形和圆有很多内在的联系。另外,正多边形也在生产和生活中有着广泛的应用,所以教科书接下来安排了“正多边形和圆”的内容。教科书回顾学生已经了解的正多边形概念的基础上,以正五边形为例,证明了利用等分圆周得到正五边形的方法,接下来介绍了正多边形的有关概念,如中心、半径、中心角、边心距等,并进一步介绍了画正多边形的方法。正多边形的有关计算是本节的重点内容,这些计算都是几何中的基础知识,正确掌握它们也要综合运用以前所学的知识,这些知识在生产和生活中也常要用到。本节的教学难点在学生对正n边形中“n”的接受和理解上。学生对三角形、四边形、圆等这些具体图形比较习惯,对于泛指的n边形 不习惯。为了降低难度,教科书涉及的证明、计算等问题都是结合具体的多边形为例的,教学时要注意把这种针对具体图形的结论和方法推广,使学生实现由具体到抽象,特殊到一般的认识上的飞跃,提高学生的思维能力。 教科书接下来的24.4节的主要内容是一些与圆有关的计算,包括两部分“弧长和扇形的面积”“圆锥的侧面积和全面积”。“弧长和扇形的面积”是在小学学过的圆周长、面积公式的基础上推导出来的,应用这些公式,就可以计算一些与圆有关的简单组合图形的周长和面积。由于圆锥的侧面展开图是扇形,所以教科书接下来介绍了圆锥的侧面积和全面积的计算。这些计算不仅是几何中基本的计算,也是日常生活中经常要用到的,运用这些知识也可以解决一些简单的实际问题。圆锥的侧面积的计算还可以培养学生的空间观念,因此对这部分内容的教学也要重视。 (三)课程学习目标 1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征。 2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线。 3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆。 4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积。 5.结合相关图形性质的探索和证明,进一步培养学生的合情推理能力,发展学生的逻辑思维能力和推理论证的表达能力;通过这一章的教学,进一步培养学生综合运用知识的能力,运用学过的知识解决问题的能力,同时对学生进行辩证唯物主义世界观的教育。 二、本章编写特点 (一)突出图形性质的探索过程,重视直观操作和逻辑推理的有机结合 圆是日常生活中常见的图形之一,也是平面几何中的基本图形,本章重点研究了与圆有关的一些性质。教科书在编写时,注意突出图形性质的探索过程,重 视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来探索图形的性质。 例如结合圆的轴对称性,发现垂径定理及其推论;利用圆的旋转对称性,发现圆中弧、弦、圆心角之间的关系;通过观察、度量,发现圆心角与圆周角、圆周角之间的数量关系;利用直观操作,发现点与圆、直线与圆、圆与圆之间的位置关系等等。在学生通过观察、操作、变换探究出图形的性质后,还要求学生能对发现的性质进行证明,使直观操作和逻辑推理有机的整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续。 (二)注意联系实际 圆是人们日常生活和生产中应用较广的一种几何图形,不仅日常生活中许多物体是圆形的,而且在工农业生产、交通运输、土木建筑等方面都可以见到圆。这部分内容与实际联系比较紧密。在教科书编写时,也充分注意到这一点。例如,在引入圆、正多边形等概念时,举出了大量的实际生活中的例子;在介绍点与圆、直线与圆、圆与圆的位置关系时,也是注意从它们在实际生活中的应用引入;利用垂径定理解决求赵州桥的主桥拱半径的问题;根据海洋馆中人们视野的关系引出研究圆周角与圆心角、圆周角之间的关系;利用正多边形的有关计算求亭子的地基;实际问题中有关弧长、扇形的面积、圆锥的侧面积和全面积的计算问题等等。教科书的例、习题中也有一些实际应用的例子等等。这些材料都是从实际中提炼出来的,要通过这些知识的教学,帮助学生从实际生活中发现数学问题、运用所学知识解决实际问题。教学时,还可以根据本地区的实际,选择一些实际问题,引导学生加以解决,提高他们应用知识解决问题的能力。 (三)重视渗透数学思想方法 教学中不仅要教知识,更重要的是教方法,本章重涉及的数学思想方法也比较多。例如,圆周角定理证明中的通过分类讨论,把一般问题转化为特殊情况来证明;研究点与圆、直线与圆、圆与圆的位置关系时的分类的思想;研究正多边形的有关问题是通过把问题转化为解直角三角形来解决的;正多边形的画图是通过等分圆来完成的;等等。通过这些知识的教学,使学生学会化未知为已知、化复杂为简单、化一般为特殊或化特殊为一般的思考方法,提高学生分析问题和解决问题的能力。 另外,在本章,通过理论联系实际,对学生进行唯物论认识论的教育;通过圆的许多性质之间的内在联系,圆与其他图形之间量变与质变的关系,一般与特殊之间的关系等,对学生进行辩证唯物主义观点的教育;使学生增强民族的自豪感和振兴中华的使命感,对他们进行学习目的的教育,培养他们良好的个性品质。 三、几个值得关注的问题 (一)进一步培养推理论证能力 从培养学生的逻辑思维能力来说,“圆”这一阶段处于学生初步掌握了推理论证方法的基础上进一步巩固和提高的阶段,不仅要求学生能熟练地用综合法证明命题,熟悉探索法的推理过程,而且要求了解反证法。教学中要重视推理论证的教学,进一步提高学生的思维能力。教科书在这方面也还是很重视的。在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,有一些图形的性质是直接由已有的结论经过推理论证得出的。另外,为了巩固并提高学生的推理论证能力,本章的定理证明中,除了采用了规范的证明方法外,还有一些采用了探索式的证明方法。这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论。这些对激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处。教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展。 另外,这部分内容所涉及的图形很多是圆和直线形的组合,而且题目也相对以前比较复杂,教学时应注意多帮助学生复习有关直线形的知识,做到以新带旧、新旧结合,而且要加强解题思路的分析,帮助学生树立已知与未知、简单与复杂、特殊与一般在一定条件下可以转化的思想,使学生学会把未知化为已知,把复杂问题化为简单问题,把一般问题化为特殊问题的思考方法。如对于圆周角定理的证明,可以先从最简单的情况──角的一边经过圆心时入手,再推广到一般情形。通过这样的训练,可以提高学生逻辑思维能力和分析解决实际问题的能力。 (二)重视知识间的联系与综合 圆是学生学习的第一个曲线形。学生由学习直线形到曲线形,在认识上是一个飞跃。在教学时,应注意充分利用学生在小学学过的圆的知识,搞好衔接。同时要注意加强圆和直线形的联系,把圆和直线形的有关问题对照讲解。如在讲“不在同一直线上的三个点确定一个圆”时,可以和“两点确定一条直线”相对照,这样可以加深学生对知识的理解。教科书在编写时,也注意从学生学习的规律出发,加强新旧知识的联系,发挥知识的迁移作用。例如,在讲圆的定义时,先回顾小学学过的定义,在分析圆上的点的特征的基础上,用集合语言重新给出描述;在学习圆及正多边形的计算时,注意将新知识与直角三角形的知识、小学学过的圆的周长与面积的知识联系起来,使新知识在学生眼里不陌生,容易接受。 圆是一种特殊曲线,它有独特的对称性。它不仅是轴对称图形、中心对称图形,而且它的任何一条直径所在直线都是它的对称轴。绕圆心旋转任意一个角度都能与原来的图形重合(旋转对称性)。圆的对称性在日常生活和生产中有着广泛的应用,因此应当让学生很好地掌握。在研究圆的有关性质时,充分利用圆的 对称性也是本章编写的一个特点。如垂径定理,弧、弦、圆心角的关系,切线长定理等,都是让学生充分利用圆的这些对称性,通过观察、实验等探究出性质,再进行证明,体现图形的认识、图形的变换、图形的证明的有机结合。这些也是教学时应当重点注意的。 (三)注意把握好教学要求 本章教学内容与以往教材内容相比,删减幅度比较大(原义教大纲教材53课时,现在17课时),教学时要注意把握好教学要求。教学内容应当限制在课标和教材所出现的范围,按照课标要求删减的内容,教学中不要再拣回,以免影响学生对基础知识的学习。对于推理论证的要求,课程标准中在本章没有明确规定。教科书中是按照整套教科书对于推理证明的要求来处理的。在本章,要求学生对于一些圆的有关性质进行证明,并利用这些性质去证明一些相关的结论。但要注意,这里的证明也要控制难度,对于一般学生,控制在教科书“综合应用”的题目难度内,对于学有余力的学生,可以要求他们完成“拓广探索”栏目的习题。 反证法的思想在七年级上册教科书代数部分就有涉及,在后续的相关章节也有应用。但当时只是渗透反证法的思想,没有作为一种方法提出。在本章,结合“过同一直线上的三点不能作圆”,正式提出了反证法,并且在后续内容,如“圆的切线垂直于过切点的半径”的证明时也有应用。由于反证法是一种间接证法,学生接受起来有一定困难。因此,教科书主要是要求让学生理解反证法的思想,后续习题也没有安排相应的习题。这里也要注意把握好对反证法的要求,不要让学生作过多过难的关于反证法的习题。 另外,圆有许多重要性质,其中最主要的是圆的对称性(轴对称和旋转不变性),教科书在证明圆的许多重要性质时,都运用了它的对称性。但是,因为用对称的定义证明问题,对学生来说比较困难,所以在本章的教学中,一方面要重视利用圆的对称性(教科书中在使用圆的对称性);另一方面又不应要求学生严格地利用对称性写出证明过程。教学中要把握好这个要求。 (四)重视信息技术的应用 在本章的教学中,有条件的学校还是要重视信息技术工具的使用。利用信息技术工具,可以很方便地制作图形,可以很方便地让图形动起来。许多计算机软件还具有测量功能,这也有利于我们在图形运动变化的过程中去发现其中不变的位置关系和数量关系,有利于发现图形的性质。 例如,本章许多图形的性质都可以利用计算机软件设置一些探究活动,让图形动起来,在这种运动变化中发现图形的性质。如弧、弦、圆心角之间的关系。 有许多计算机软件具有测量功能,可以方便地测出角的大小和线段的长度,这也有利于在运动变化中观察它们的关系,发现图形的性质。如圆周角定理。另外还可以通过计算机软件让图形动起来,在动态变化过程中去发现点与圆、直线与圆、圆与圆的位置关系,还可以通过测量,去发现这种位置关系所对应的数量关系,如直线与圆的位置关系中直线到圆心的距离与圆的半径的关系,两圆位置关系中圆心距与圆半径的关系等。 九年级《数学》上册《圆》教案 教学内容:正多边形与圆 第二课时 教学目标:(1)理解正多边形与圆的关系; (2)会正确画相关的正多边形 (3)进一步向学生渗透“特殊——一般”再“一般——特殊”的唯物辩证法思想. 教学重点: 会正确画相关的正多边形(定圆心角与弧长) 教学难点: 会正确画相关的正多边形(定圆心角与弧长) 教学活动设计: (一)观察、分析、归纳:实际生活中,经常会遇到画正多边形的问题,举例(见课本如画一个六角螺帽的平面图,画一个五角星等等。 观察、分析:如何等分圆周,画正多边形? 教师组织学生进行,并可以提问学生问题. (二)回忆正多边形的概念,正确画正多边形: (1)概念:各边相等、各角也相等的多边形叫做正多边形.如果一个正多边形有n(n≥3)条边,就叫正n边形. 问题:正多边形与圆有什么关系呢? 发现:正三角形与正方形都有外接圆。 分析:正三角形三个顶点把圆三等分;正方形的四个顶点把圆四等分.要将圆五等分,把等分点顺次连结,可得正五边形.要将圆六等分呢? 可得:把圆分成n(n≥3)等份: 依次连结各分点所得的多边形是这个圆的内接正n边形; (2)以画正六边形为例: 分析:由于同圆中相等的圆心角所对的弧相等,因此作相等的圆心角就可以等分圆,从而得到相应的正多边形。例如,画一个边长为2cm的正六边形时,我们可以以2cm为半径作一个⊙O,用量角器画一个等于3600/6=600的圆心角,它对着一段弧,然后在圆上依次截取与这条弧相等的弧,就得到圆的6个等分点,顺次连接各分点,即可得出正六边形(如图) 对于一些特殊的正多边形,还可以用圆规和直尺来作。例如,我们可以这样来作正六边形。(见课本)等等 (三)初步应用 1.画一个半径为2cm的正五边形,再作出这个正五边形的各条对角线,画出一个五角星。 2.用等分圆的方法画出下列图案:(见课本107页) (四)归纳小结: (五)作业布置; 107-108 第24章 圆 24.2 圆的基本性质(1) 【教学内容】圆的两种定义、弦、弧等概念 【教学目标】 知识与技能 明确圆的两种定义、弦、弧等概念,澄清“圆是圆周而非圆面”、“等弧不是长度相等的弧”等模糊概念。过程与方法 通过观察、比较、分析,发展学生的合情推理能力和演绎推理能力。情感、态度与价值观 在观察、比较、分析中,激发学生的好奇心和求知欲。【教学重难点】 重点:“圆是圆周而非圆面”、“等弧不是长度相等的弧” 等模糊概念 难点:“圆是圆周而非圆面”、“等弧不是长度相等的弧” 等模糊概念 【导学过程】 【知识回顾】 1、举例说出生活中的圆。 2、你是怎样画圆的?你能讲出形成圆的方法有多少种吗? 【情景导入】 自学课本,思考下列问题: 1.分别用不同的方法作圆,标明圆心、半径,体会圆的形成过程。2.圆的两个定义各是什么? 3.弄清圆的有关概念?怎样用数学符号表示? 【新知探究】 探究 一、1、车轮为什么做成圆形的? 2、为什么说“直径是圆中最长的弦”?试说说你的理由.3、什么是弦、直径、弧、半圆、等圆、等弧、优弧、弧劣? 4、什么是圆?圆可以看作什么? 探究 二、教学例1 【知识梳理】 圆的两种定义法(1)旋转法(2)集合法 2.直径、半径 3.弧 4.关系 【随堂练习】 判断正误: 1)、弦是直径()2)半圆是弧;()3)过圆心的线段是直径;()4)过圆心的直线是直径;()5)半圆是最长的弧;()6)直径是最长的弦;()7)圆心相同,半径相等的两个圆是同心圆;()8)半径相等的两个圆是等圆;()9)等弧就是拉直以后长度相等的弧。()第二篇:人教版九年级圆的基本性质复习课教案
第三篇:九年级数学圆教案4
第四篇:九年级数学上册圆教案
第五篇:九年级数学下册 24.2 圆的基本性质教案1 沪科版