认识方程的教学反思[5篇范文]

时间:2019-05-15 10:53:14下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《认识方程的教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《认识方程的教学反思》。

第一篇:认识方程的教学反思

《认识方程》是建立在学生已经学习了用字母表示数基础上进行教学的,他为后面学习稍复杂的方程、分数、百分数方程做铺垫。为此,在教学中我选取了贴近学生生活的事例入手,让学生感到既好玩,又新奇,还富有探索性。

一、想一想猜一猜

我首先从学生喜闻乐见的跷跷板入手,一个男孩和一个小女孩玩跷跷板,小女孩重一些,小男孩轻一些,这一环节就引起了同学们的好奇,一般都是小男孩重,小女孩轻,我这里设计的是小女孩子重,孩子们都笑了,我接下来就说,要想使他们平衡,怎么办?大家异口同声的说:让小男孩用力一些,或给小男孩增加一些重量等才能是跷跷板平衡,这时我问:平衡是什么意思?让学生说出自己的理解。

接下来,我出示天平,要想使左右两边平衡怎么办?学生说:左右两边各方10克的物品,我说10=10太简单了,能否再难一点,让大家算一算啊?学生说:左边放一个10克的砝码,再放一个40克的砝码,右边放一个50克的砝码。我激动的说:“好,”谁来列式?学生马上列出了10+40=50,有的说:左边放一个碗,不知道多重,碗里放10克粉丝,右边放40克,该怎么列式呢?学生乙马上说:可以把碗看做x,等式是10+x=40,这样在学生出题,学生解答,学生争论中,探索出方程,这样不仅可以培养学生的独立思考能力,而且也培养了学生的合作交流的能力。

二、辩一辩说一说

在探索方程的意义这一环节,我仍然放手让学生从众多的等式当中,和同桌辩一辩,说一说,这些等式之间到底有什么不同?让他们自我总结,自我概括。在x+10和x+10=40这一组中,学生出现了分歧,有的说应该归为一类,因为都有未知数,有的说不应该归为一类,因为前一个没有“=”,最后,通过天平必须平衡这一特点,排除了x+10,它不能使天平平衡,所以不是等式,想10+40=50,x+10=50才是等式,但是10+40=50是我们以前学过的算式,只有x+10=50我们没有学过它就是方程,方程有什么特点呢?学生很快总结出来了,它含有未知数,它也是等式,所以它是方程。由此,学生在辩论中,思维得到了升华,概念得到了深化。

三、拓展提升

在巩固练习环节,我设计了这样一道题:6x+()=60,23-()=10哪一道题一定是方程?哪一道题可能是方程?由于有了以上基础,学生很快就判断出了第一道题是方程,因为它明显有未知数,第二道题可能是方程,因为()可能是未知数,也可能是数字。

课堂教学中,教师经常设计一些有探索性,有趣味性,有挑战性的教学环节,容易激发学生潜在的能量,容易激发学生的探索欲望,容易调动学生的学习兴趣,也使教学效果更佳!

第二篇:《认识方程》教学反思

《认识方程》教学反思3篇

《认识方程》教学反思 篇1

本节课,我是尝试了前置性教学,在教学过程中充分信任学生,给学生提供广阔的思维空间。教学中创造让学生想一想,说一说,多次组织学生进行讨论交流,让学生有机会碰撞出思维的火花,并且有意识地培养学生在现实情境中寻找等量关系的能力,为以后运用方程知识解决实际问题打下基础。练习设计上不仅安排了归纳性的练习,也安排了对比的练习及综合性的练习,对学生所学知识有意义延伸和拓展,是学生充分感受到生活中的数学与数学中的生活,注重提供不同的问题让学生去尝试,鼓励学生去思考去创造,这样的设计体现了学习的自主性,大大激发了学生学习的积极性。同时也留给我三点困惑:

第一,概念引入时,教材中设计了三个问题情境,运用天平平衡寻找等量关系,利用盘秤来寻找等量关系,利用一壶水倒成两热水瓶多200毫升,找出等量关系,然后用含有字母的等式表示出等量关系。没有出现不等式。而我在教学中,出现了等式。因为我觉得不等式是以前的学习过程中客观存在的,其次不等式的引入能从另一个角度来体会等式的含义。可是不等式,是否会干扰等式的理解,占用学习等式的.时间等等,对于不等式,有没有必要引入,该引入多少,这是我第一个拿捏不准的。

第二,北师大的教材,在问题解决的过程中,对等量关系的态度很隐晦,用一句话形容,就是只言传不意会。而方程的教学核心就是寻找等量关系,并用方程的形式表达出来。某种意义上,从这节课,就得把关系堂堂正正地说出来,而且说得清清楚楚,明明白白,如何实现有隐晦到明白的这个转变,如何把以前欠下的从这节课开始慢慢补上?

第三,对于习惯于算术思维的学生,太喜欢写175—21=X这样的方程了,究其原因,是受了算术思维的干扰,不能将一个抽象的、假设的、虚构出来的、用字母表示放进运算过程中,把一个未知的当成已知的,来建立相等关系,来进行推理,求出假设的未知数。这样的方程如何进行引导?这是我难以把握的。

《认识方程》教学反思 篇2

《认识方程》是学生学习代数初步知识的开始。教材运用丰富的问题情境,引导学生用语言描述具体情境中的等量关系,并用含有未知数的等式表示,在此基础上引导学生找出这些含有未知数的等式的共同特征,了解方程的含义。

《认识方程》是在学生学会用字母表示数的基础上进行教学的。通过本课的教学,要使学生了解方程的含义,会用方程表示简单的数量关系。本课的教学在学生日后学习等式的性质、解方程及运用方程解决简单的实际问题的过程中起着承上启下的作用。它是学生学习用方程解决问题的起始课,在本单元中具有重要地位。

介于以上认识我对本课进行了一些设计,通过教学感觉比较成功的有以下几点做法。

一、“巩固复习,铺垫新知”这一部分通过填空和分类,让学生了解“等式、不等式、代数式”等概念,为后面区分方程和等式做一个铺垫。

1、填空:3.6+2.1○7.7-21.6×5○5×1.638.4×0.2○38.45.9÷0.1○5.9

t与8的和:b除42的商:

2、进行分类,出示名称(等式、不等式、代数式)

二、在认识方程之前就让学生辨认方程,了解学生对方程的认识程度,也激发学生学习方程的欲望。(你们能判断哪些是方程吗?

① 6+x=14② 3×42=126③ 60 +23 ﹥ 70④ 8+x

学生有争议没有关系,带着疑问学习新知。师:“到底谁说的对呢?让我们一起去找答案吧!”)

三、列方程最困难的就是找出等量关系式,为了让学生能较好的掌握等量关系,在教学三个例题中我都按照一个步骤去引导学生解决这类问题。(1)先找数量之间的等量关系。(2)用字母表示未知数。(3)列出方程

四、注意了细节的引导。例如未知数不要单独放一边;未知数最好放在左边,便于计算;等式与方程的关系等等。这些内容在新课中一一解决,学生掌握较好。

当然一节课总有不足的地方,这节课也不例外。比如方程的概念的出示就比较死板,其实当学生说到哪里我就应该顺势逐步完善概念,不一定非要在预定的时候出现,应该更灵活一些。

《认识方程》教学反思 篇3

《认识方程》是建立在学生已经学习了用字母表示数基础上进行教学的,他为后面学习稍复杂的方程、分数、百分数方程做铺垫。为此,在教学中我选取了贴近学生生活的事例入手,让学生感到既好玩,又新奇,还富有探索性。

一、想一想猜一猜

我首先从学生喜闻乐见的跷跷板入手,一个男孩和一个小女孩玩跷跷板,小女孩重一些,小男孩轻一些,这一环节就引起了同学们的好奇,一般都是小男孩重,小女孩轻,我这里设计的是小女孩子重,孩子们都笑了,我接下来就说,要想使他们平衡,怎么办?大家异口同声的说:让小男孩用力一些,或给小男孩增加一些重量等才能是跷跷板平衡,这时我问:平衡是什么意思?让学生说出自己的理解。

接下来,我出示天平,要想使左右两边平衡怎么办?学生说:左右两边各方10克的物品,我说10=10太简单了,能否再难一点,让大家算一算啊?学生说:左边放一个10克的砝码,再放一个40克的砝码,右边放一个50克的砝码。我激动的说:“好,”谁来列式?学生马上列出了10+40=50,有的说:左边放一个碗,不知道多重,碗里放10克粉丝,右边放40克,该怎么列式呢?学生乙马上说:可以把碗看做x,等式是10+x=40,这样在学生出题,学生解答,学生争论中,探索出方程,这样不仅可以培养学生的独立思考能力,而且也培养了学生的合作交流的能力。

二、辩一辩说一说

在探索方程的意义这一环节,我仍然放手让学生从众多的等式当中,和同桌辩一辩,说一说,这些等式之间到底有什么不同?让他们自我总结,自我概括。在x+10和x+10=40这一组中,学生出现了分歧,有的说应该归为一类,因为都有未知数,有的说不应该归为一类,因为前一个没有“=”,最后,通过天平必须平衡这一特点,排除了x+10,它不能使天平平衡,所以不是等式,

想10+40=50,x+10=50才是等式,但是10+40=50是我们以前学过的算式,只有x+10=50我们没有学过它就是方程,方程有什么特点呢?学生很快总结出来了,它含有未知数,它也是等式,所以它是方程。由此,学生在辩论中,思维得到了升华,概念得到了深化。

三、拓展提升

在巩固练习环节,我设计了这样一道题:6x+()=60,23-()=10哪一道题一定是方程?哪一道题可能是方程?由于有了以上基础,学生很快就判断出了第一道题是方程,因为它明显有未知数,第二道题可能是方程,因为()可能是未知数,也可能是数字。

课堂教学中,教师经常设计一些有探索性,有趣味性,有挑战性的教学环节,容易激发学生潜在的能量,容易激发学生的探索欲望,容易调动学生的学习兴趣,也使教学效果更佳!

第三篇:《认识方程》教学反思

《认识方程》教学反思

《认识方程》教学反思1

《认识方程》这是一块崭新的知识点,对于四年级的学生来说,理解起来也有一定的难度。因此,在教学中我通过创设贴近学生生活的情境来激发学生的学习兴趣,从而使他们愿学乐学,为以后进一步学习方程打下基础。

回顾我的教学,我认为有如下几个特点。

一、科学引导,促进学生的自主学习

在教学方程的意义时我没有采用教材上的材料:而是通过猜想笑笑买学习用品的情境。学生通过猜想,可以列出各种各样的式子,这样放飞学生的思维,培养学生独立思考的能力。而且这样设计也使知识之间的联系更紧密,以便于后续教学活动的进行。

二、合作交流,总结概括

通过猜想得出了30+10×2=50、30+10=40、х+10×2=50、30+х=50、10+х﹤50、30×2=60、10+30+2х﹥50、2×30+2х﹥50等8个式子,接着教师提出能否按照一定的标准对这8个式子进行整理和分类。先让学生自己独立思考,随后再在小组中交流,最后在班级里汇报,选择一种有未知数的、没有未知数的这一类板书在黑板上。然后让学生把х+10×2=50、30+х=50、10+х﹤50、10+30+2х﹥50、2×30+2х﹥50这5个式子进行再次分类,最终得出方程的一类,其他的一类。从而总结出方程的意义。在此教学过程中,教师应充当一个导游的角色,站在知识的岔路口,启发诱导学生发现知识,充分发挥学生的学习潜能,将有一定难度的问题放到小组中,采用合作交流的方式加以解决,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。

三、回归生活,体会方程

在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。

《认识方程》教学反思2

【教学片断】

1.引入

师:我们来猜个谜语, “一个瘦高个,肩上挑副担,如果担不平,头偏心不甘”

生:天平。

师:对,就是天平,今天我们的学习就从天平开始。

2.认识等式

出示第一幅天平图,在天平的两边加上物体。

师:你看到了什么?

生:草莓和西红柿的重量等于芒果的重量。

师:怎样用数学式子来表示两边物体的质量关系呢?

生:20 + 30 =50(板书:20 + 30 =50)

师:像这样表示两边相等的式子叫等式。

出示第二幅图。

师:看到这副图,你有什么想法?

生:天平左边的物体比右边的物体轻。

师:怎样用式子来表示天平两边的数量关系呢?

生:40 <x+10(板书:40 <x+10)

追问:x表示什么?

生:x表示未知数。

出示四幅天平图

师:你们用式子来表示天平两边的数量关系。

学生观察图列出方程。

(学生口述,教师板书:30+ x=80 2 x=100 x+20=70x>30)

3.认识方程

师:我们来看黑板上所写的着几个式子,你能把这些式子按照一定的标准进行分类吗?

生1:一类是用等号连接的式子,都是等式,还有一类是用大于号、小于号连接的,都不是等式。

生2:将式子按照是否含有字母分成两类。

师:你能把两种分类方法综合起来对这些式子进行分类吗?

生:把不含有未知数的式子分为一类,含有未知数的等式分为一类,含有未知数的不等式分为一类。

师:正如你们所描述的,像这一类,含有未知数的等式是方程。

【反思】:这节课是对方程的认识,但不能脱离等式,所以,一开始,我就利用天平这一工具,引出等式、不等式,从而为后续认识方程,体会方程建立良好的基础。至于方程的凸显,这一环节我让学生通过观察、分析,再通过分类,比较式子的异同,在讨论和交流活动中,由具体到抽象,逐步感受,理解方程的含义。概念的构建过程,并不是由教师机械地传授甚至告诉学生,而是用数学符号提炼现实生活中特定关系的过程。一开始,学生分类也是凭一种直觉,很多学生是按照等式和不等式这个标准来把这些式子分成两类,还有些学生是按照看式子中有没有未知数x来进行分类,在这种情况下,进行点拨,用一句挑战性很强的话“你能把两种分类方法综合起来对这些式子进行分类吗?”,从而激发学生的思维,结合两个特征进行综合考虑,从而凸显含有未知数的等式这一类,也就是方程,整个过程用的时间和空间比较大,但我觉得是值得的,因为数学学习的最终目的,是数学的运用与创新。它离不开探索,没有了探索,就失去了数学灵魂。因此,我们要给学生探究的时空,让他们发现内在的获得知识的全过程。使其体会到通过自己的努力而获得成功的快乐,从而产生浓厚的兴趣和求知欲。

《认识方程》教学反思3

本节课,我是尝试了前置性教学,在教学过程中充分信任学生,给学生提供广阔的思维空间。教学中创造让学生想一想,说一说,多次组织学生进行讨论交流,让学生有机会碰撞出思维的火花,并且有意识地培养学生在现实情境中寻找等量关系的能力,为以后运用方程知识解决实际问题打下基础。练习设计上不仅安排了归纳性的练习,也安排了对比的练习及综合性的练习,对学生所学知识有意义延伸和拓展,是学生充分感受到生活中的数学与数学中的生活,注重提供不同的问题让学生去尝试,鼓励学生去思考去创造,这样的设计体现了学习的自主性,大大激发了学生学习的积极性。同时也留给我三点困惑:

第一,概念引入时,教材中设计了三个问题情境,运用天平平衡寻找等量关系,利用盘秤来寻找等量关系,利用一壶水倒成两热水瓶多200毫升,找出等量关系,然后用含有字母的等式表示出等量关系。没有出现不等式。而我在教学中,出现了等式。因为我觉得不等式是以前的学习过程中客观存在的,其次不等式的引入能从另一个角度来体会等式的含义。可是不等式,是否会干扰等式的理解,占用学习等式的时间等等,对于不等式,有没有必要引入,该引入多少,这是我第一个拿捏不准的。

第二,北师大的`教材,在问题解决的过程中,对等量关系的态度很隐晦,用一句话形容,就是只言传不意会。而方程的教学核心就是寻找等量关系,并用方程的形式表达出来。某种意义上,从这节课,就得把关系堂堂正正地说出来,而且说得清清楚楚,明明白白,如何实现有隐晦到明白的这个转变,如何把以前欠下的从这节课开始慢慢补上?

第三,对于习惯于算术思维的学生,太喜欢写175—21=X这样的方程了,究其原因,是受了算术思维的干扰,不能将一个抽象的、假设的、虚构出来的、用字母表示放进运算过程中,把一个未知的当成已知的,来建立相等关系,来进行推理,求出假设的未知数。这样的方程如何进行引导?这是我难以把握的。

《认识方程》教学反思4

《认识方程》是学生学习代数初步知识的开始。教材运用丰富的问题情境,引导学生用语言描述具体情境中的等量关系,并用含有未知数的等式表示,在此基础上引导学生找出这些含有未知数的等式的共同特征,了解方程的含义。

《认识方程》是在学生学会用字母表示数的基础上进行教学的。通过本课的教学,要使学生了解方程的含义,会用方程表示简单的数量关系。本课的教学在学生日后学习等式的性质、解方程及运用方程解决简单的实际问题的过程中起着承上启下的作用。它是学生学习用方程解决问题的起始课,在本单元中具有重要地位。

介于以上认识我对本课进行了一些设计,通过教学感觉比较成功的有以下几点做法。

一、“巩固复习,铺垫新知”这一部分通过填空和分类,让学生了解“等式、不等式、代数式”等概念,为后面区分方程和等式做一个铺垫。

1、填空:3.6+2.1○7.7-21.6×5○5×1.638.4×0.2○38.45.9÷0.1○5.9

t与8的和:b除42的商:

2、进行分类,出示名称(等式、不等式、代数式)

二、在认识方程之前就让学生辨认方程,了解学生对方程的认识程度,也激发学生学习方程的欲望。(你们能判断哪些是方程吗?

① 6+x=14② 3×42=126③ 60 +23 ﹥ 70④ 8+x

学生有争议没有关系,带着疑问学习新知。师:“到底谁说的对呢?让我们一起去找答案吧!”)

三、列方程最困难的就是找出等量关系式,为了让学生能较好的掌握等量关系,在教学三个例题中我都按照一个步骤去引导学生解决这类问题。(1)先找数量之间的等量关系。(2)用字母表示未知数。(3)列出方程

四、注意了细节的引导。例如未知数不要单独放一边;未知数最好放在左边,便于计算;等式与方程的关系等等。这些内容在新课中一一解决,学生掌握较好。

当然一节课总有不足的地方,这节课也不例外。比如方程的概念的出示就比较死板,其实当学生说到哪里我就应该顺势逐步完善概念,不一定非要在预定的时候出现,应该更灵活一些。

《认识方程》教学反思5

方程是个建模的过程,怎么认识方程?学生不认可有文字的、有图形的等式是方程,怎么解决

1、方程是个建模的过程,天平可以直接解读方程,所以从直观的天平开始

(1)从图中获取信息。

(2)发现等量关系。

(3)用自己的语言表达。

(4)用含有未知数的等式表达。(数学表达)

2、方程就是讲故事。

让方程回归生活,在身边找方程,进一步理解方程意义。把抽象的方程与生活情境建立联系,让学生换个思路理解方程。

举例列方程:生身高145CM 师身高:XCM 师比生高35CM 生:X-145=35 X-35=145 145+35=X 为什么学生喜欢145+35=X的表达?那是因为对算术思想根深蒂固。

对“方程”的整体建议

1、准确把握内容定位,正确理解其价值。

2、有效开发教学资源,为课堂所用。

3、方程思想不是一蹴而就的,需要用心作好过渡。

让抽象的直观起来,让枯燥的生动起来,把孤立的联系起来!

听了吴老师讲的《认识方程》一课我有很多的收获。方程在小学数学教学中是非常重要的,可以说是小学阶段学习的重点,对于学生将来的初中阶段学习也有着非常重要的意义。吴老师首先借助孩子们熟悉的生活场景引入天平的概念,虽然只是一个天平图片和几张水果图片,几个砝码,普普通通的一节数学课却让吴老师演绎地如此精彩!。

在教学过程中,吴老师先问针对方程想知道些关于方程的什么内容,引导学生说出什么是方程,有的学生可能在书上看到过这句话,知道“含有字母的等式叫做方程。”但对于方程真正表示的意义却不知道。吴老师用简易天平和肢体语言表示平衡与不平衡,然后告诉学生每人心里都有一个天平。通过放水果的游戏,让学生写出一些等式与不等式的关系式,然后通过分类,明白哪些是方程,哪些不是方程。学生在活动的过程中真正明白了方程的意义。课堂上吴老师面向全体,关注学困生,关照课堂上没有注意听讲的学生,不断吸引学生的注意力,让全体学生都能跟上集体的步伐,在充分的交流与展示活动中,学生快快乐乐、真真实实地构建知识的模型。

总之,通过听、看、感受吴老师的课堂,我真正领略了名师的风采,我将在以后教学中,努力工作,提高自己的业务能力。要以热情的鼓励、殷勤的期待,巧妙的疏导与孩子们思维共振,情感共鸣。要用真诚的爱心去感染孩子们,贴近孩子们的心。在先进的教育思想引导下,以自己独特的教学艺术,把学生推到自主学习的舞台上,使他们真正成为学习的小主人。

《认识方程》教学反思6

《认识方程 》 是北师大四年级下册第七单元《认识方程》的第三课时。 这一内容是学生第一次接触方程, 对于四年级的学生来说有一定的难度。 因为方程 的意义是一节数学概念课,概念教学是一种理论教学往往会显得枯燥无味,但是方程与 学生的生活又有密切的联系,因此在本课教学中始终注重学生兴趣的培养,让学生感受方程与生活的密切联系。从课前谈话开始,我利用两三分钟与班上学生聊上几句,轻松导入课题,消除彼此之间的紧张心情。在探究方程概念时,我放手让学生自学课本,以天平图,月饼图、 水壶图整节课的主线, 让学生观察情境图, 让学生从这些具体的情境中获取信息, 去寻找隐含的相等关系 并用自己的语言加以表述,然后尝试用含有字母的等式——方程表示各个相等关系。 让学生亲身体验方程产生的需求,方程在运用中的优越性并成功建立数学模型, 最后总结出方程的意义。

得出概念 后,进入练一练环节,我 设计了两个练习:一是判断是不是方程的练习,通过学生自己合理判断认识到方程的两个特征缺一不可,弄清等式与方程的区别与联系,加深学生对方程外部特征的印象, 进一步体会方程 的意义,加深了对方程 概 念的理解:二是设计了根据情境图写出相应的方程 , 借助媒体呈现一些线段图,组织学生根据这些图中的等量关系列出方程。这些题可以培养学生在现实情境里寻找等量关系的能力, 也为以后运用方程 知识解决实际问题打下基础。查一查的练习是是从人类最普遍的日常生活中的衣、食、住、行这四大方面入手,把课本后的练习题套上适当的情景,激发学生学习的积极性,使得学生感受到数学就在自己的身边。最后拓展题,让学生根据所给信息提出问题,列出方程,在较复杂的问题情境中,让学生体会算术方法解决起来比较复杂的问题,可以比较容易地通过方程表示其中的数量关系,体会方程思想的魅力。经历方程建模的全过程,真正让学生理解方程的含义,体验方程思想,引领学生走进方程世界。

不足之处,还是有点紧张,比如学生把等式说成等号老师没有及时纠正,但是学生心理明白的,只是表达时的口误。

总之,整堂课学生的积极性很高,参与度很强,大部分同学都能理解方程的意义, 能用方程表示简单情境中的等量关系。

《认识方程》教学反思7

数学是创造思维的体操,数学学习是小学生增长创造力的广阔天地。从尝试中起步,在数学教学中培养学生的探索意识,养成探索习惯,增强探索能力,从而发展学生的创造力,是提高学生综合素质的一个有效途径。

一、创设情境,激发尝试探索的欲望。

现代教学论认为:教师在课堂中是学生学习活动的组织者﹑引导者和合作者;而学生始终是一个发现者﹑探索者。教师的教要为学生的学服务。教学的艺术,就在于教师对学生的激励和唤醒。而恰当的教学情境就能唤起学生的求知欲望,使他们保持持久的学习热情,从而获得最佳的教学效果。要使学生学得生动活泼,可以通过游戏﹑竞赛﹑图片﹑幻灯﹑多媒体课件等手段创设一定的学习情境,使学生动口﹑动手﹑动脑,诱发他们主动探索知识的热情和兴趣,形成强大的自主探索动力。

例如:在学生用具展销、篮球比赛、天平称量月饼、热水壶倒水这些生活情景环节,让学生尝试用数学式子来表述一些生活问题,从而分别得到了如下算式:30+x=50 10+y<50 30+10+5×2=50 26<33 26+x<33 x=“”>33 26+x=33 4x=400 2x+200=20xx……然后很自然地进入了式子归类环节的探索。

二、提供创新的支持氛围,给学生广阔的思维空间。

皮亚杰认为,儿童认识的形成发展是建构的结果。儿童只有自己发展、具体地参与各种实际活动,大胆地提出自己的假设,并努力去证实,才能获得真正的知识,才能发展创新思维。课前我让学生自己先自学课本。但是看书不是要求学生单纯地看书本,弄懂怎样做就可以了,而是让学生把自己不明白的地方大胆地提出来,通过看书,把未知的提出来,让学生运用已知的去解决未知的。学生基本明白怎样做,但对方程的意义仍存在一些疑惑。

如:(1)方程与等式的关系?

(2)是不是用X表示未知数的等式才称为方程?

(3)未知数在等式右边的是不是未知数……。

对于上述的问题,我是通过逐步引导,让学生对导入环节发现的式子按照式子的连接符号进行分类,发现有这样几种式子:(1)等于、(2)大于、(3)小于。进而针对一直学习的等号连接的式子进行分类:(1)含有未知数的、(2)不含有未知数的。其中(2)类等式已经掌握了,于是,老师揭示(1)类等式称为方程,接着再组织学生进行方程意义的归纳,教师适时帮助整理。

在方程意义的正确理解基础上,通过由易到难、分层递进的能否用方程表示、方程的判断、方程的生活应用等练习,有效地帮助学生对这种理解进行了巩固、深化。为下阶段的解简易方程做好了理论铺垫

现代教学不再是教师单纯地教学知识。而应是老师教给学生主动学习的能力和主动进取的意识。在教学中应处处以学生为本,处处为学生着想,让学生积极参与学习,在学习的过程中自己动手、动脑、动口,学习知识、巩固知识、拓展知识,才能营造出开放的、适合主体发展需要的教学氛围,才能在课堂教学中真正实施好主体性教学。才能真正发展学生的创造力。

《认识方程》教学反思8

“含有未知数的等式是方程”,这句话中包括两个条件,一个是”含有求知数”一个是“等式”。因此,“含有未知数”与“等式”是方程意义的两个重要的内涵。所以在本节课的教学中,就要围绕着这两处条件,设计教学。

一、创设情境,在实际天平的操作中等到等式,并在实际操作中得到方程。

为了加深学生对等式的理解和掌握,采用教科书的设计意图和设计,用天平的平衡找到两边物体质量相等,从而得到等式。为了让我们的设计更贴近我们的生活,直接用我们的粉笔列道具,来称粉笔的重量的过程中得到不等式和等式,含有求知数的等式(方程)。一步一步,让学生从浅到深,一点一点掌握知识,得到要掌握的知识点。从而学会判断哪些是方程,哪些不是方程。

二、通过比较和断定,从而加深对方程的理解。

断定一个式子是不是方程,要从两个条件入手,一是“含有求知数”二是“等式”,两个条件缺一不可。从而学生互相问,这个为什么不是,哪个为什么不是。含有求知数:5Y不是方程,因为不是等式。5+8=13不是方程,因为没有求知数。所以方程既要是等式又要含有求知数。

X+Y=Z也是方程,因为含有求知数,并且是等式。Y=5也是方程,因为含有求知数,并且是等式。

三、在观察天平平衡列式过程中建立方程的概念,不仅要了解方程的外在特点,更要理解方程的意义。

从判断等式方程到借助现实的相等情境写出方程,由表及里,由浅入深。学生在把实际问题的等量关系用符号化抽象成方程时,不仅感受了方程与日常生活的联系,也体会了方程的本质特征,从而巩固了方程的概念。

《认识方程》教学反思9

开学第一节数学课就学习《认识方程》,由数字到方程是认识上的一个飞跃,因此要让学生初步了解方程的意义,理解方程的概念,感受方程思想。使学生经历从生活情境到方程概念的建立过程,培养学生观察、猜想、验证、分类、抽象、概括、应用等能力。通过自主探究,合作交流等数学活动,激发学生的兴趣,所以我在教学设计的过程中十分重视用直观手法向抽象过渡,用递进形式层层推进,让学生经历一个知识形成的过程。

1、借助天平直观理解,建立等式模型

用天平创设情境直观形象,通过平衡或者不平衡判断出两个物体的质量是否相等,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,多种多样的式子,激发学生的探究欲望。

2、在分类比较中,建立方程模型

让学生通过观察比较,把写出的式子进行分类。经过探索和交流,认识方程的特征,归纳出方程的意义。

3、实际运用,升华提高

在练习设计中由易到难,由浅入深,使学生的思维不断发展,使学生对于方程意义的理解更为深刻,特别使让学生看图列方程这一练习题,让学生理解方程的意义。

尽管课堂上感觉学生理解了什么是方程,什么是等式,可是家庭作业中一道题是选出那些是等式,哪些是方程,结果好多同学选出的等式只包含数字等式,不包含方程。让学生区别比较等式和方程的含义,通过练习加以巩固。

第四篇:方程的初步认识教学反思

方程的初步认识教学反思

云台小学

《方程的意义》这是一块崭新的知识点,是在学生熟悉了常见的数量关系,能够用字母表示数的基础上教学,但理解起来有一定的难度。数学教学过程,首先应该是一个让学生获得丰富情感体验的过程。要让学生乐学、好学,让学生在教学过程中获得积极的情感体验,下面就结合我所执教的<<方程的意义>>这节课,谈谈我在教学中的做法和看法。

回顾我的教学,我认为有如下几个特点。

一、设置情景引导,促进学生的自主学习

在执教,《方程的意义》一课时通过学生熟悉的跷跷板引入,激发学生的学习兴趣。然后再利用天平的演示: 认识天平,同学们说天平的作用、用法。在这个环节要充分发挥低视的动手能力,但要注意对学困生的引导,在这个方面应该给学困生更多的机会去接触天平,起码让他们对天平建立起一个初步的认识。

二、合作交流,总结概括

通过对天平的观察得出等式的概念,接着应让学生自己独立思考。通过比较等式与方程,以及不等式与方程的不同,得出方程的概念,体现学生自主学习的能力,而不应该替学生很快的说出答案,在将出方程的概念后,应该让学生通过变式训练明白不仅X可以表示未知数,其他的字母都可表示未知数。在此教学过程中,教师应充当一个导游的角色,站在知识的岔路口,启发诱导学生发现知识,充分发挥学生的学习潜能,将有一定难度的问题放到小组中,采用合作交流的方式加以解决,逐步的引导学生对问题的思考和解决向纵深发展,有利于培养学生的倾听习惯和合作意识。

三、回归生活,体会方程

在建立方程的意义以后,设计了根据情境图写出相应的方程,并在最后引入生活实例,从中找出不同的方程。这一过程学生在生活实际中寻找等量关系列方程,进一步体会方程的意义,加深了对方程概念的理解,同时也为以后运用方程知识解决实际问题打下基础。

从学生已有的知识储备来看,他们会用含有字母的式子表示数量,大多数学生知道等式并能举例,向学生提供表示天平左右两边平衡的问题情境,大部分学生运用算术方法列式。但是,学生已有的解决数学问题的算术法解题思路对列方程会造成一定的干扰。对于利用天平解决实际问题较感兴趣,但是,要求学生把看到的生活情境转化成用数学语言、用关系时表示时可能存在困难,对于从各种具体情境中寻找发现等量关系并用数学的语言表达则表现出需要老师引导和同伴互助,需要将独立思考与合作交流相结合。

第五篇:方程教学反思

方程教学反思

方程教学反思1

一、4点说明

1、单元中的地位及重难点;

本节课是人教版七年级上册第三章第四节《实际问题与一元一次方程》的第二课时——销售中的盈亏问题的探究。通过本节课的学习对学生的要求是:能够找出实际问题中的已知数和未知数,分析他们之间的关系,找出问题中的等量关系,体会建立数学模型的思想。通过探究实际问题与一元一次方程的关系,进一步体会利用一元一次方程解决问题的过程,感受数学的应用价值,提高分析问题、解决问题的能力。

本节课是有理数、整式加减之后,以及在第三章2,3小节已经讨论过由实际问题建立一元一次方程和解决一元一次方的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决实际问题。本节课选择了具有一定综合性的问题(“销售中的盈亏问题”),设置了探究点,引导学生利用方程为工具进行具有一定深度的思考,具有承上启下作用,把全章所强调的以方程为工具把实际问题模型化的思想提到新的高度。一方面通过更加贴近实际生活的问题,进一步突出方程这种数学模型的应用具有广泛性和有效性;另一方面使学生能在更加贴近实际生活的问题情境中运用所学数学知识,激发学生学习数学的兴趣,使学生在分析问题和解决问题的能力、创新精神和实践意识在更高层次上得到提高,为以后几节列方程解生活中的实际问题埋下伏笔。

基于教材分析,我确定本节课的教学重难点是:建立实际问题的模型,让学生知道销售中的盈亏的算法。通过探究活动,加强数学建模思想,培养运用一元一次方程分析和解决实际问题的能力。

2、教学思想;

运用建模思想来指导七年级学生学习,在很大程度上是要在学生认知过程中建立起一种符号化的具有数学结构特征的“模型”载体,通过这样具有“模型”功能载体,帮助学生实现数学抽象,为后续学习提供强有力的基础支持。

3、育人思想;

通过对盈亏问题的探索,让学生体验数学来源于生活,又服务于生活,从而激发学生学好数学的热情,培养学生严谨的学习态度和与刻苦钻研的顽强毅力。

4、教与学的困惑、对策;

我的困惑

1、一部分学生不习惯用方程解决实际问题,偏爱算术方法;

2、学生掌握等量关系较弱,等量关系式列不出来,影响方程成形。

3、书写格式不规范,解方程过程中去分母,去括号,移项经常出错。

优化对策

1、优化教学设计,丰富数学课堂活动,让学生体会到列方程简单;

2、选择能充分展示用方程解题思维上独特优势的练习题;

3、设计有坡度,使学生会用已有知识解决一个问题,通过解决此问题有助于下一个问题的解决。

二、3个设计特色

1、教学模式:安康市初中数学“四环五课”型第二类概念课教学模式,即情景诱导—探究指导—展示归纳—变式练习。

2、探究提纲简洁明了,层层深入。使学生能够在完成第一个题目的基础上,能独立完成第二个题目;在完成第一个和第二个题目的基础上。又能独立完成第三个题目。

3。变式练习是在探究题目的基础上,通过改编得到的,着重体现了以探究为依据,以变式为重点。

三、2个感悟

1、在“情景诱导”中,激发学生兴趣。教师要通过智慧和艺术,充分展示数学的亲和力,拨动学生的好奇心,激发学生学习数学的原动力。结合授课内容,凭借图画、音乐、表演等手段,使学生有感、所悟、所惑、所想、所动。

2、在“探究”中,引发学生数学思考。给学生充足的时间和和空间经历观察、实验、探究、猜想、验证和推理,积累多样化的数学经验,引发学生思考,提出问题。反思问题,解决问题。

四、3个优化构想

1、设计时充分考虑师生互动性。

2、注重知识生成过程的教学,提高学生学习能力。

3、评价要客观全面,面向全体,注重全程,以达到了解,促进,激励学生的作用。

方程教学反思2

课后反思本节课的教学过程,我总结以下几点:

一、本节课的复习重点在于找准数量关系式,在课堂上大量提问了学生应用题的数量关系式是什么,并进行了专项训练,不断地对学生加以引导、启发,努力使学生理解掌握解题的基本思路和方法,但学生在学习的过程中还是不能很好地掌握这一要领,这也是学生解答应用题的一个突出弱点,还是出现了许多错误,如找等量关系中的第5题,有的学生两根铁丝做了两个正方形,没有重点理解“分别”两个字,我在反馈时虽然说到不可以学生自己增加条件,没有深入地帮助指出错误的根源。同样的,在只列方程的这道练习中第3题很多学生没有仔细审题,3.5倍变成了3.5(有十来个同学是这样错的)有的学生就直接变成整个积的3.5倍,没有抓住重点的字,是“它的3.5倍”,课堂中强调了“它”指的就是“一个数”也就是“这个数”,如果把三者再拎出来强调三个量其实是同一个量,可能效果会更好一些。

很多学生的等量关系是 6×瓶数+14=总朵数,或是8×瓶数=总朵数,两个数量关系都没有错,但在这道题中并没有告诉我们总的朵数,我通过两个错例的对比让学生去发现总朵数是一样的,可以作为一个中间量把两个算式连接起来即6×瓶数+14=8×瓶数,这样的过渡让学生感到不会那么突然,分析时讲清不变的是花的总朵数,只是在分的时候采用了不同的方法。不过讲过之后还有几个学生还不是很明白。在进行列方程时,只满足了让学生说出数量关系式是什么,应该让中下学生再说说关键句是什么,是根据哪句话找出来的,要让他们知道怎样去找,这样学生可能更有的放矢。

二、在本课中,我注重练习的设计,充分体现练习的针对性、层次性、综合性。如在找等量关系这一专项训练中,我设计了五道基本类型的问题,使学生较系统地掌握找等量关系的几种方法,又突出了本节课的重点。紧接着,安排了两道综合型练习。通过这环节的训练,切实提高学生的综合应用能力。在学生解答的过程中,我及时捕捉学生的解法,允许学生出错,并利用学生生成的错误资源,引发学生积极思考,在相互交流、相互评价的过程中,学生的潜能得以充分地挖掘,使不同的学生得到不同的发展。

三、每个环节及时进行小结,在复习了一般的等量关系之后回顾列方程解应用题的一般步骤,这并不是让学生背出这些步骤,而是为了勾起学生对列方程解应用题的回忆,通过知识的再现,让学生的思维很快地投入专项的复习中。重点强调列方程解应用题的关键是第二步找等量关系并列方程。在第二次练习之后小结寻找等量关系的策略与方法。由于时间的关系有点急,没有让学生自主去归纳老师自己进行总结。这就提醒我在今后的教学中要更加重视学生的学习能力的培养,要学会随机应变灵活运用多样的教学方法,切实提高学生的学习水平和能力。

方程教学反思3

《一元一次方程的应用》是数学教学中的一个重点,而对于学生来说它却又是学习的一个难点。在教学中应如何突出重点,特别是要突破学生学习的难点,这是我们数学教师不断研究和探讨的问题。

一、成功之处:

1、能创设一个有趣的问题情境,与学生日常生活有关的问题切入,七年级的学生好奇心比较强,可以用计算年龄的引入是学生积极参与到今天的学习中去。充分调动学生的积极性。

2、能进行发散思维的培养,从例题的不同设法、列方程的解法中逐步培养学生从不同的角度去分析问题、解决问题的能力。

3、恰当的使用了多媒体设备,设置一些卡通画面和声音的播放,带动学生使用眼、手、耳、及大脑等器官进行全方位的接受信息和发出信息。

4、营造了一种非常宽松、愉悦的课堂气氛,让学生在高兴的情绪下积极和老师互动,和同学互动、讨论。

二、不足之处:

1、七年级的学生分析问题、寻找数量关系的能力较差,在一元一次方程的应用这几节课中,我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。但学生在学习的过程中,却不能很好地掌握这一要领,会经常出现一些意想不到的错误。如,数量之间的相等关系找得不清;列方程忽视了解设的步骤等。

2、本节课的教学中,我忽视了学生的活动和交流,新课程标准下的教学,是要让学生有更多的机会进行探究、发现。让学生自己分析,相互探讨,哪怕是错了再进行纠正,学生对知识的掌握也会更牢固。在以后的教学中我要注重对学生这方面能力的培养,让学生逐渐掌握分析问题的方法,从而达到解决问题的目的。这使我深刻体会到:课前备课除了要认真研究教材和设计好教学内容外,还要研究学生,研究教学方法与手段,创设情景让学生主动参与、自主探究,真正促进师生的共同发展。

3、在本节课的教学中我以师生共同探究为主线进行了教学,课堂上大部分学生积极参与,表现出学习的欲望和热情,但还有一部分同学学习的积极性不高,可能是课堂对他缺乏吸引力,这是值得我深思的,通过本节课,我对怎样激发学生的学习兴趣,让学生的思维动起来有了更深刻的体会。在今后的教学中,我要努力给学生充分的思考交流的时间,鼓励学生提出有价值的问题,抓住他们思维的闪光点。

4、教学内容量偏大,没有正确的分配时间,以致没有时间让学生进行自我归纳和总结。没有达到应有的学习效果,教学效果不佳。

三、改进方法:

作为教师,要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,在课堂教学中始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂的组织者、引导者和合作者。因此,课堂教学过程的设计,也必须体现学生的主体性。在以后的教学中,我会继续发扬我的成功之处,逐步完善我的不足之处,我将尽自己最大的能力,上好每一堂课。

方程教学反思4

在以前人教版教材中,学习解方程之前首先要求学生掌握加、减、乘、除法各部分之间的关系,然后利用加减乘除各部分之间的关系来求出方程中的未知数,而今的人教版教材的设计打破了传统的教学方法,而是借用天平使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样就能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。在这节课的教学中,我从以下几个方面入手:

一、感受天平的平衡现象,悟出等式的性质变化。

1、在学习中,我以天平的平衡来呈现等式的性质,学生能直观形象的理解性质,平衡的条件是两边同时加上、或减少相同的重量,才能保持平衡。但具体到方程中应用起来学生感觉比较抽象,我引导学生在反复操作中理解加、减一个数的目的和依据。

我在天平的左侧放5克砝码,右侧也放5克砝码。(抛砖引玉)

2、学生亲自动手反复不断的进行操作。(学生动手操作)

在此基础上,我再做进一步的引导。

活动是获取真知的有效途径,通过以上的活动,学生可以很顺利地得出结果:天平的两侧都加上相同的质量,天平仍平衡。

3、教师:请同学们都想一想,如果天平两侧都减去相同的质量,天平会出现什么现象?你能列出几个这样的方程吗?(学生同桌之间通过充分地交流,反馈交流结果,学生得知,如果我们把天平作为一个等式(当天平平衡时)的话,等式的两边都减去同一个数,等式仍然成立。通过引导,学生能完全得出了等式的性质。最后我们通过学生自己的整理和总结,把以上发现的性质合二为一。得出:等式的两边都加上(或减去)同一个数,等式仍然成立。

二、利用等式性质解方程——初步感悟它的妙用

在课堂上学生对用等式的性质来解方程感到很陌生,在他们原有的经验中更喜欢用加减法各部分的关系来解,所以我们要特别注意引导学生认识到用等式的性质来解方程的优越性,从而养成用等式的性质来解方程的习惯。

在整节课的教学中,其实学生是非常主动的,他们总觉得天平能启发着他们去解决这么神奇的方程,孩子们对方程都有一种难以割舍的好奇心。

告诉学生利用等式的性质来解方程熟练以后特别快。同时强调书写格式。通过教学,学生利用等式的性质学生能解决简单的方程,但我认为利用等式性质解方程的方法单一化,内容虽少问题很多。其表现在:

1、从教材的编排上,整体难度下降,有意避开了形如:66—2方程=30等类型的题目。把用等式解决的方法单一化了。在实际教学中我们要求学生较熟练地利用等式的方法来解方程,但用这样的方法来解方程之后,书本不再出现方程在后面的方程题了,学生在列方程解实际应用时,我们并不能刻意地强调学生不会列出方程在后面的方程吗?我们更头痛于学生的实际解答能力。在实际的方程应用中,这种情况是不可避免的。很显然这存在着目前的局限性了。对于好的学生来说,我们会让他们尝试接受——解答方程在后面这类方程的解答方法,就是等号二边同时加上方程,再左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。

2、内容看似少实际教得多。难度下降后,看起来教师要教的内容变得少了,可实际上反而是多了。教师要给他们补充方程在后面的方程的解法。要教他们列方程时怎么避免方程在后面这样方程的出现等等。因此,我干脆就又把原来的老方法交给同学们,以便备用或请他们根据具体情况选择适当的解题方法。

3、我个人认为:现行教材的某些地方还有待于进一步的改进与完善。

方程教学反思5

一、教材分析: 1、教材的地位和作用

《利用化学方程式的简单计算》是人教版九年级化学上册第五单元的内容,上承质量守恒定律及化学方程式,是化学中定量研究的真正体现和具体应用,也是化学计算的重要组成和基础,并为后面有关含杂等计算做好准备,故学好本节内容知识极为重要。

2、教学目标分析

根据学生的实际情况和已有基础,结合教材和课标,确定本课教学目标如下:

(1)知识与技能

①初步掌握利用化学方程式计算的步骤和方法;

②通过化学方程式中物质之间的质量比,初步理解反应物与生成物间的质和量的关系。

(2)过程与方法

通过对具体题目的计算,培养学生进行化学计算和解决实际问题的能力。

(3)情感态度与价值观 ①培养学生的爱国主义情感;

②培养学生严谨求实、勇于创新、敢于实践的科学精神。

二、教学重点和难点

(1)重点:根据化学方程式计算的步骤; (2)难点:物质之间量的关系。

三、教法分析

好的教学方法能使学生易于接受,乐于学习,能有效地提高教学质量,可达到事半而功倍的效果。因此,选择好的教法是我们教师所不懈追求的目标。本节课采用的教法是:以学生的主动探究为主,教师的引导点拨为辅,让学生在对例题进行自我解答,经过讨论、对比、辨析、交流和总结的基础上完成教学,使学生在整个教学过程中不知不觉地获取了新知并掌握了新的技能,并且利用多媒体展示出具体的情景素材激发学生的求知欲,再用学生竞赛的形式来充分调动学生的学习积极性,使学生变“要我学”为“我要学”。这既符合了新课改的理念和要求,还有效地提高了课堂效果和教学质量。

四、学法指导分析

教学矛盾主要是学生的学。学是中心,会学是目的。教会学生如何学是教师的职责,是培养学生能力的关键。本节课应充分让学生动手、动口、动脑,让他们通过自己的观察、讨论、比较、分析、表达、交流、反思等,培养其自主学习能力和勇于探索、创新的精神。这既增加了学生的参与机会,增强了学生的参与意识,又教给学生获取知识的途径和思考问题的方法,让学生获得成功的喜悦,从而提高学生学习化学的兴趣。

五、教学实施

1、情境激趣,温故知新

(利用多媒体显示“神舟八号”升空视频):“神舟八号”用长征系列火箭发射升空时,若火箭燃料是液氢,助燃剂是液氧,当火箭被点火时会发生什么反应,请写出化学方程式。

(说明:用我国发射“神舟八号”的真实情境进行教学,既可提高学生的学习兴趣,同时又可增强学生的爱国情感。)

2、设疑解惑,引入新课

(师):若你是火箭推进器的设计师,当确定升空的火箭需要液氢100Kg时,你会在火箭助燃剂仓中填充多少千克的液氧来满足这些液氢完全燃烧的需要?请把你的解题依据、思路、过程等表达出来。

(生):思考、讨论、交流、表达。

(说明:根据情境素材提出相关问题,能使学生体验到知识与技能的实用性,同时很好地激发学生的求知欲;并且利用上面化学方程式信息过渡到利用化学方程式进行计算,顺理成章,学生易于接受,同时培养学生的自动探究能力。)

3、阅读比较,自主探究

(师):如何完整地表达你的解题过程?并引导学生阅读课本P100例题1和例题2,再比较你上面解题的思路、过程跟例题1是否一致?有哪些不足之处?请改正并按例题2的格式书写出来。

(生):分组讨论,进行交流,并改正解题过程及格式。

(师):你清楚了解题步骤和要求,是否就能将题目解答正确呢?在书写步骤之前应将重点放在什么地方?如何做到?

(生):讨论、回答。

(说明:充分发挥学生的主体地位和作用,让学生通过自己动手动脑去探索学习获取知识会比教师的说教式的教学更加深刻和牢固,对知识的理解、掌握得更加全面。)

4、改错辨析,加深认识

(师):(多媒体显示)中国登山协会为纪念我国首次攀登珠穆朗玛峰成功50周年,再次组织攀登珠峰活动,阿旺扎西等一行登山运动员冲顶时消耗自带的液氧4.8kg。求:若这些氧气用高锰酸钾为原料制取,需多少千克高锰酸钾?

解:制取4.8kg氧气需要完全分解x千克KMnO4。 2KMnO4== K2MnO4+MnO2+O2↑ 316 32 X 4.8kg 316/x=32/4.8kg x=47.4kg

答:需要47.4kg KMnO4。

(生):小组竞赛:看谁找得错误多、快、准,更正的快。

(说明:用竞赛形式改正错误之处,可加强学生对解题过程规范性的认识和理解,同时增加学习乐趣。)

5、检测反馈,加强应用。 (多媒体显示练习):

1、登山运动员能用 KMnO4为原料制取氧气吗?请说明理由。

2、某地工业电解铝厂,利用氧化铝制取单质铝的化学方程式为2Al2O3 =通电= 4Al + 3O2↑,电解10t Al2O3最多可生产多少吨Al?同时生产多少吨O2? (说明:通过练习加强学生对知识的应用,使学生学以致用,有利于提高学生应用所学知识解决实际问题的能力。)

6、评价小结,提高认识。

请学生谈一谈学完本节课后的收获和启示。 7、拓展创新,巩固新知

(1)、已知Zn、Mg与稀H2SO4 反应化学方程式为:Zn + H2SO4 == ZnSO4 + H2↑、Mg + H2SO4 == MgSO4 + H2↑,相同质量的锌和镁分别与足量的稀H2SO4充分反应,生成的H2 质量比是多少?(有何规律?)

(2)、饲养观赏鱼可陶冶人的情操,增进人们对生活的热爱。空运观赏鱼必须密封,为解决鱼的吸氧问题,可在水中加入过氧化钙(化学式CaO2),它与水的反应是:2Ca+2 H2O ==2Ca(OH)2+ O2↑。一位养鱼爱好者欲测定所用过的过氧化钙样品中过氧化钙的质量分数,做了如下实验:称取样品2.0g加到足量水中,生成了0.224L氧气(密度为1.43g/L)。试计算:①所用样品中过氧化钙的质量。②样品中过氧化钙的质量分数。

8、作业布置,自我评价 完成课本P101习题中的练习。

六、板书设计

本节所设计的板书力求一目了然,重点突出,能使学生留下深刻的印象,便于记忆,且能给人一种美感。板书设计如下:

课题3 利用化学方程式的简单计算 一、步骤: 范例:(例题1)

1、设:(未知量) 解:设可得氧气的质量为x 。 2、写:(化学方程式) 2KMnO4=△= K2MnO4+MnO2+O2↑ 3、标:(质量比、已知量、未知量) 316 32 4、列:(正比例式) 6 g x 5、解:(求解) 316/ 6 g = 32/x 6、答:(写答) x = 0.6 g 答:可得0.6 g氧气。

七、教学反思

本节课学生参与的程度不太高,出现眼高手低的现象。在教学中要注意学生参与学习的状态,努力让学生在课堂上人人参与,全程参与。课下注意让学生多练习,且经常强调格式。

《二氧化碳的实验室制法》的设计与反思

作者:程绪琼 文章化学教学 20xx年第9期 点击数:

12889 更新时间:20xx-12-10

程绪琼 新建县第三中学,江西新建330103

1、教学目标:

1.学习探讨实验室制取二氧化碳的反应原理,探究实验室制取二氧化碳的装置、收集方法和检验方法。

2.学习通过对新旧知识关系的认识,主动建构新知识。

方程教学反思6

学生在解方程的基础上进一步学习《用方程解决实际问题》,通过我的教学实践和教学反思,我觉得学生在学习这个单元的过程中,教师还要着重注意以下几个方面的问题:

一、重视关键句分析训练,让学生感悟方程的思想。

解决实际问题首先要引导学生分析题目的条件和问题,找出题目中的关键句,根据关键句找出题目中的直接的相等关系,这样可以便于学生列出方程,解答问题。由于我知道我们现在的数学课堂教学对等量关系式的训练不够重视,于是我课前谈话中用了很多时间对等量关系式的写法进行了训练。先从倍数关系,再到相差关系,然后两种关系合并,要求学生分别写出等量关系式,为本节课的教学打下良好的基础。为了突出根据关键句写等量关系式,我出示例题后,直接问:“三句话中你觉得哪一句最重要,为什么?”让学生根据“20xx年的东北虎只数比20xx年的3倍还多100只,写出三种等量关系,有三种关系式就对应着三种解法,哪一种关系式最容易想到。让学生感受到要提高正确率,我们可以从最容易的入手,学生已经掌握了“求一个数比另一个数的几倍多几(或少几)”的实际问题,我们就要引导学生,充分利用已有的知识经验解决新的问题。学生是学习的主体,出示问题后让学生尝试解决问题,教师通过巡视,充分了解学生的困难以及想法,然后才能很好的组织交流。为了使学生认识到方程的思想,我故意让学生先交流用倒推策略解决问题,当交流完列式后让学生说出每一步所表示的意识时,学生感到困难,再次问学生用倒推策略解决时,还可能出现什么错误,这样从两个方面让学生认识到用倒推策略解决的不足,才能更好的让学生主动愿意来学习用方程来解。方法的优劣是比较出来的,当然也是因人而异的。方程为什么要写设语,方程是怎样列出来的,把未知转化为已知条件,才能更好的利用我们最容易想到的等量关系式列出方程才能大大提高正确率。解完例题再次比较总结,列方程是怎样想的,而倒推策略是怎样想的。然后再总结列方程解决问题的一般步骤,只有让学生充分感受到方程的作用和价值,学生才会自愿用列方程来解决新的问题。

二、重视解方程的技巧训练,让学生知其所以然。

前面学生已经接触过用等式的性质解一种关系的方程,而今天第一次要解答两种关系的方程,这里学生必然会产生较大的障碍。这种技能技巧的训练与获得也要体现教学的开放性。当学生尝试解答完了,在交流的时候我是有策略的。我让学生说出列出的方程与最后的结果,让学生比较说出方程的左边有什么变化。这样让所有的学生明确了解方程的目标,也就是要抵消掉“乘2”和“减22”。要达到目的有几种方式,先消“乘2”再消“减22”,或者反之,当然一起消也是一种选择。我通过巡视发现也前两种选择,哪种对哪种错,我们教师只是学生学习的组织者、引导者、合作者。我认为最高明的做法就是让学生自主的去发现,去否定自己,寻找正确的做法。于是我把两种做法都板书在黑板上,并予以充分肯定。那两种都对吗?这是学生也想弄清楚的事情,怎么办?检验,第一种对的,我让学生一起来口答检验,第二种错的我故意自己来检验,把“X=54代入原方程,54减22等于32,再乘2得64,所以X=54是原方程的解”。这时,学生产生异议,然后引导学生认识到解方程也要符合混合运算顺序。接着我再乘热打铁,如果把写关系式比作穿衣服,那么解方程就相当于脱衣服,和X先有关系的是2,那就是X的内衣,“减22”就是外衣,脱衣服能先脱内衣再脱外衣吗?通过这样的比喻让学生印象更加深刻。这样也方便解释解方程的过程书写:把2X当做一个整体。内衣还没脱,所以要照抄。

总之,一堂课要上得精彩,教师在课前要多做准备工作,教材钻研得透彻,当然还得学会进行取舍。本节课我对等量关系式的时间花得太多了一些,这样就会影响到学生对方程的思想体验得不够充分。

方程教学反思7

本节课由一道著名的求未知数的问题,得到方程,这个方程的特点就是有些系数是分数,这时学生纷纷用合并同类项,把系数化为1的变形方法来解,但在合并同类项时几个分数的求和,有相当一部分学生会感到困难且容易出错,再看方程怎样解呢?学生困惑了,不知从何处下手了,此时,需要寻求一种新的变形方法来解它求知的欲望出来了,想到了去分母,就是化去分母,把分数系数化为整数,使解方程中的计算方便些。 在解方程中去分母时,我发现存在这样的一些问题:

1、部分学生不会找各分母的最小公倍数,这点要适当指导。

2、用各分母的.最小公倍数乘以方程两边的项时,漏乘不含分母的项。

3、当减式中分子是多项式且分母恰好为各分母的最小公倍数时,去分母后,分子没有作为一个整体加上括号,容易错符号。如解方程方程两边都乘以10后,得到5×3x+1-10×2=3x-2-2×2x+3其中3x+1,2x+3没有加括号,弄错了符号对解题步骤的归纳说法基本一致。就学生的表达能力还有些欠佳,需要提高语言组织能力。

本节课习题设计的不够充分,学生在上课的过程中训练强度达不到,当分母是小数时,找最小公倍数是困难的,我们要引导学生:

1、把小数的分母化为整数的分母。如把方程中的前两项分子、分母同乘以10,或前两项分母同乘以 ,则两项的分母分别成为2和5,即原方程变形为整数。

2、想办法将分母变为1。等式两边同乘以分母的最小公倍数10。

3、学生有疑惑的是先去括号呢,还是先去分母,怎样计算会简便些呢?

在本节课的教学过程中,我发现学生对以上活动都比较感兴趣,特别是对讨论的环节每个学生都想发表自己的看法。对解题步骤的归纳说法基本一致,就学生的表达能力还有些欠佳,需要提高语言组织能力。只要我们善于引导学生认真观察,多思考多练习,抓住特点,就能找到一些解方程的技巧方,在以后的教学中要给学生准备一部分提高能力的题,达到检测和拓展数学思维的目的。

另外,从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生摸棱两可,真真自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题。备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美。

但我还是感觉到:我讲的太多;主动权还没有放心大胆地交还给学生,否则情况会可能会更好。这也是我的缺点,应该化大力气来调整自己。另外也应该不断地充实自己其他方面地知识,把数学课上地生动活泼。

方程教学反思8

1、常态课,没有太多的做作。

没有制作课件。但若是把要让学生回答的各种性语言,制作成PPT。若用上这种课件,效果应当会更好一些。

2、在一个班讲,变成了两个班合班上。

造成我展示中等生学习情况的不太明显。原第一节课,我是要设计板书和教学环节。可是,因为语文老师不在,我只好合班上课,给学生讲解二次函数的应用题。没有时间多考虑我第二节的公开课了。

3、课越想,越复杂。

这一点可能与上面的矛盾,但还是想把自己的感觉说出来。因为要公开,因为要让别人来看我的课,星期六日,我又在脑子中过了几次教学环节,重点是总结二次函数与一元二次方程的关系,难点是当二次函数与x轴的有交点时,交点的横坐标等于令y=0得一元二次方程的根。

4、越俎代庖的地方还比较多,即:能让学生自己处理的地方,没有让学生来处理。

本节课只让8个学生回答了问题。从观念上说,我还是不相信学生,认为学生没有自我教育的能力。第一个地方:让江紫露、陈俣希、陈晓娜,解三个方程,江紫露忘了公式了,我赶快板书了公式。实际上,我可以让优生给予帮助,而我却越俎代庖了。第二个地方:总结一元二次方程的根有____种情况时,我怕学生忘了,不会写。更怕公开课怕丢人,也为了节约时间,没有先问学生,就顺手标出。实际上这也是另一种形式的丢丑。今后应相信学生,毕竟学习是他们自己的事。第三个地方:学生用几何画板画三个函数时,陈俣希一个,江紫露则画了两个。我原来设计的应当是三个学生。我为了省事儿,就让一个学生做了两个。没有给哪些会画的差生任何机会。

5、语言的规范、简洁与手语的准确到位还有待提高。

在总结一元二次方程解法时,我临时没计了一个问题,“解一元二次方程________法最好。”显然这是错误的表达,不成熟。应改正:“一元二次方程的解法有哪些?你喜欢哪一种,为什么?”

6、出现了一次较为成功的教学机智。

在总结三个函数与x轴交点的情况时。我写了第一个范式,让张晓青填空。和其他学生讨论这个问题。后来派刘彦涵第二个,郭伟第三个。这两个学生则出现了错误,第一个学生把与x轴的交点、与y轴的交点,给混淆了。第二个学生把方程的无解,直接抄到了函数中,说无解。我抓住了这两点,即时讲解了本节的难点,这样也就较为容易的突破了它,又补充了求函数与y轴的交点的情况,算是一种延伸。

方程教学反思9

利用一元一次方程解应用题是第六章的一个重点,而对于学生来说又是学习的一个难点。我对应用题的题型给学生做了归纳并且每种题型都出一道题目与学生一起探讨:1比例问题2调配问题3行程类问题4工程类问题5商品价格折扣及商品利润类问题6数字问题7按比例分配问题8等体积问题9利息问题。在教学中我始终把分析题意、寻找数量关系为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法。针对学生在学习过程中不重视分析等量关系的现象,在教学过程中我要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出相等关系,分析的过程可以让学生只写在草稿上,在写解的过程中,要求学生先设未知数,再根据相等关系列出需要的代数式,再把相等关系表示成方程形式,然后解这个方程,并写出答案。并加以检验。在讲解相等关系比较简单明显,可通过启发式让学生自己找出来。同时让学生巩固解一元一次方程应用题的六个步骤。

在设元的过程中又存在在直接设元和间接设元的方法,引导学生进行正确地设未知数。

方程教学反思10

《解简易方程》教学反思数学课程标准(实验稿)》改变了小学阶段解方程方法的教学要求,采用了等式的性质来教学解方程。现将解方程的新旧方法举例如下:

老方法:

x + 4 = 20

x = 20-4

依据运算之间的关系:一个加数等于和减另一个加数。

新方法:

x + 4 = 20

x + 4-4=20-4

依据等式的基本性质1:等式两边加上或减去相等的数,等式不变。

改革的原因(摘自教学参考书):

新教材编写者如此说明:长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数。到了中学又要另起炉灶,引入等式的基本性质或方程的同解原理来教学解方程。小学的思路及其算法掌握得越牢固,对中学代数起步教学的负迁移就越明显。因此,现在根据《标准》的要求,从小学起就引入等式的基本性质,并以此为基础导出解方程的方法。这就较为彻底地避免了同一内容两种思路、两种算理解释的现象,有利于加强中小学数学教学的衔接。

从这我们不难看出,为了和中学教学解方程的方法保持一致,是此次改革的主要原因。

那么,小学生学这样的方法,实际操作中会出现什么样的情况?这样的改革有没有什么问题? 在我的教学过程中真的出现了问题 。

1.无法解如a-x=b和ax=b此类的方程

新教材认为,利用等式基本性质解方程后,解象x+a=b与x-a=b一类的方程,都可以归结为等式两边同时减去(加上)a;解如ax=b与xa=b一类的方程,都可以归结为等式两边同时除以(乘上)a。这就是所谓相比原来方法,思路更为统一的优越性。然而,它有一个相应的调整措施值得我们注意,那就是它把形如a-x=b和ax=b的方程回避掉了。原因是小学生还没有学习正负数的四则运算,利用等式的基本性质解a-x=b,方程变形的过程及算理解释比较麻烦;而ax=b的方程,因为其本质是分式方程,依据等式的基本性质解需要先去分母,也不适合在小学阶段学习。

我认为为了要运用等式基本性质,却回避掉了两类方程,这似乎不妥。更重要的是,回避这两类方程,新教材认为并不影响学生列方程解决实际问题。因为当需要列出形如a-x=b或ax=b的方程时,总是要求学生根据实际问题的数量关系,列成形如x+b=a或bx=a的方程。但我认为,这样的处理方法,有时更会无法避免地直接和方程思想发生矛盾。

如3千克梨比5千克桃子贵0.5元。梨每千克2.5元,桃子每千克多少元?

合理的做法应是设桃子每千克X元,从顺向思考,列出方程为2.53-5X=0.5。然而,按新教材的编排,因为学生现在不会解这样的方程,所以要根据数量关系,转列成5X+0.5=2.53之类的方程。又如:课本第62页中的爸爸比小明大28岁,小明Х岁,爸爸40岁。很多学生根据爸爸比小明大28岁列出40-Х=28,可是无法求解,所以又转成Х+28=40。

很明显,第二个方程是和方程思想的基本理念相违背的。我们知道,方程最大的意义,就是让未知数参与进式子,使考虑问题更加直接自然。为实现这个目标,很重要的一点,就是列式时应尽量顺向思考,以降低思考的难度。这是体现方程方法的优越性必然要求。事实上,如果学生能够列成5X+0.5=2.53 Х+28=40那就说明他已经非常熟悉其中的数量关系了,此时,用算术方法即可,哪还有列方程来解的必要呢?我们又怎谈引导学生认识方程的优越性呢?

我们不难看出,根据现实情境列方程解决问题,X当作减数、当作除数,应当是很常见、很必要的现象。要学生学会解这些方程,是正常的教学要求,这是不应该回避的,否则,我们的教学就会显得片面和狭隘。

2.解方程的书写过程太繁琐

教材要求,在学生用等式基本性质解方程时,方程的变形过程应该要写出来,等到熟练以后,再逐步省略。这样的要求,在实际操作中,带来了书写上的繁琐。

因为用等式基本性质解方程,每两步才能完成一次方程的变形。这相对于简单的方程,尚没什么,但对一些稍复杂的方程,其解的过程就显得太繁琐了

从这两个方面来看,小学里学习等式的基本性质,并运用它来解方程,在实际操作中,也存在许多的现实问题。那么,如果说用算术思路解方程对初中学习有负迁移,需要改革,现在改成用等式基本性质解方程,同样出现问题,那我们又如何是好呢?

方程教学反思11

本节课是人教版上册第三章第四节的内容,教学目标是使学生学会对一元一次方程进行简单的应用,将实际问题抽象为数学问题,通过找相等关系列出方程解决问题。通过前几节课的学习,学生已初步尝试了列方程解应用题,但本节内容对学生来说是个难点,相对更加生活化,富有挑战性。通过学习本节内容,学生更深刻地认识到方程与现实生活的密切联系,感悟“方程”的数学思想方法。本节内容充分体现了新课程所倡导的“从生活走向数学,从数学走向生活”的理念。基于以上认识,感觉本节课的引入还是比较成功的,通过生活情景,既加强了学生的文化情感教育,又让学生感受到数学来源于生活,而又服务于生活。在本次教学中我能以学生为主体,以探究为主线,采取合作交流的探究式进行学习,使学生在现实富有挑战性的问题情境中经历多角度认识问题。多种策略思考问题。课堂上学生积极主动,不断出现学习的欲望和热情,使学生的知识得到巩固的同时使生活经验、学习方法等得到提高也形成正确的价值观。

一、成功之处

1、情景引入具有时效性,能从身边生活出发,激发学习动机,将学生置于问题情景中。比如在引课的时候,通过电话计费,引出问题赵璇同学有一部手机,想去营业厅办一个套餐,营业员问你,你想要通话时长的还是流量多的?你能帮助他选择一个省钱的方案吗?从而启发学生积极思考,让这些连续的阶段性问题持续的激发学生的学习热情和探究知识的兴趣,促使学习达到最佳境界,对于后面的问题和习题我都采用了同样的处理方式。

2、本节课始终以学生为主体,让学生自觉参与到课堂中来。本节课的所有题目均由学生自主探究,教师引导,通过合作独立的写出解题过程。让学生展示,创造机会,鼓励学生动手动口,以达到教学要求并借助多媒体展示来指导学生,发展学生的思维能力,最后再指导学生用简练的语言概括教学问题。增强学生的自主学习能力。

二、不足之处

1、探究的时间还需要考证,时间不易过长,应合理分配。

2、小组讨论的时候,老师一定要落实好任务,不要让讨论流于形式,而是让学生带有目的或者是问题进行讨论

3、过高估计学生,导致学生在课堂上出现了很多小问题,今后应加强细节的设计和全面考虑。

4、有些学生还缺少主动性,还需要老师积极调动学生的积极性。

5、学生展示还比较稚嫩,胆怯,需要后续加强锻炼。

三、需要改进的方面

针对以上的问题,在今后的教学中应该注意以下几个问题:

1、加强课堂教学的驾驭能力,要充分安排时间,有紧有松。

2、多鼓励学生回答问题,并给学生创造机会,即时表扬和鼓励。

3、不断学习充实自己,并与同行交流讨论。

4、创设情景,使学生能置身于熟悉的问题当中,充分调动学习兴趣。

方程教学反思12

新课程要求培养学生应用数学的意识与能力,作为数学教师,我们要充分利用已有的生活经验,把所学的数学知识用到现实中去,体会数学在现实中应用价值。

这节课是“列一元二次方程解应用题(3),讲授在营销问题中以学生熟悉的现实生活为问题的背景,让学生从具体的问题情境中抽象出数量关系,归纳出变化规律,并能用数学符号表示,最终解决实际问题。这类注重联系实际考查学生数学应用能力的问题,体现时代性,体会数学在现实生活中的作用。

通过本节课的教学,总体感觉调动了学生的积极性,能够充分发挥学生的主体作用,以现实生活情境问题入手,激发了学生思维的火花,具体我以为有以下几个特点:

一、课前准备的内容了解一元二次应用题的步骤,本节课的学习需准备的两个关系式。设计三个列代数式的题为学习例题时降低难度。

二、本节课例题,是营销问题中的一个典型例题,我在引导学生解决此题时,不仅关注结果更关注过程,让学生养成良好的解题习惯。

三、通过变式训练,让学生由浅入深,由易到难,也让学生解决问题的能力逐级上升。在讲完例题的基础上,将更多教学时间留给学生,这样学生感到成功机会增加,从而有一种积极的学习态度,同时学生在学习中相互交流、相互学习,共同提高。

四、在课堂中始终贯彻数学源于生活又用于生活的数学观念,同时用方程来解决问题,使学生树立一种数学建模的思想。

五、课堂上多给学生展示的机会,比如我所设计练习题可用不同方法去求解,让学生走上讲台,向同学们展示自己的聪明才智。同时在这个过程中,更有利于发现学生分析问题与解决问题独到见解及思维误区,以便指导今后教学。总之,通过各种启发、激励的教学手段,帮助学生形成积极主动求知态度,课堂收效大。

六、需改进的方面:

1、由于怕完不成任务,给学生独立思考时间安排有些不合理,这样容易让思维活跃的学生的回答代替了其他学生的思考,掩盖了其他学生的疑问。例如练习题1有多种解法,课后一些学生与老师交流,但课上没有得到充分的展示。

2、在激励评价学生方面做胡还不够,例如学生在解决自主探究最后一个题目时,有同学利用第三种方法很巧妙,当时没有给予学生很好的激励及评价

3、下课后很多学生和老师沟通课上一生的错误问题,但他们上课并不敢提出,有点却场,所以平时要培养学生敢想敢说敢于发表

方程教学反思13

今天对五年级上册《解方程》进行了教学。本课主要对教学例一和例二进行了教学。

一、本节课的教学重点和难点是:理解“方程的解”、“解方程”两个概念;会运用天平平衡的道理解简单的方程。在教学环节的设计和安排上,尽量为突破教学重点和难点服务,因此我进行了大胆的尝试,在讲解方程的解时,给学生一个明确的目的,告诉他们:“解方程就是为了求出“方程的解”而“方程的解”是一个神奇的数,由此引起了学生的好奇心,通过练习让学生充分感知“方程的解”的神奇之处。既让学生充分理解“方程的解”是一个数,“解方程”是一个过程,同时又为最后的检验做好充分的准备。每一次的解方程我让孩子们看成是解谜,是寻宝,比一比看谁找的是宝石,谁找的是石头,用你自己的方法就可以验证。孩子们做的是津津有味,寻得异常开心。在不知不觉中学会了本节课的知识。对于概念的理解也很扎实。

二、在练习题的安排上也做了精心的安排,当讲授完利用天平平衡的道理解方程后,马上进行了“填空练习”,这四个练习题的安排也是经过精心考虑的:第一个方程中的数是整数,与例题相符合,较容易。第二个方程中的数变成小数,难度有所提高。第三和第四个方程,又有所变化,但解方程的方法是没有变的。从课堂的教学和课后的练习看,学生对解方程掌握的还不错。

三、本课主要对解方程进行了解题练习。通过抢夺小红花等游戏的形式大大提高了学生学习数学的乐趣和兴趣!

四、通过本课的作业检测,有少量学生还是对本课的内容练习不是很到位。需要教师在课下不断的指导。

五、学生对于方程的书写格式掌握的很好,这一点很让人欣喜。

总之,“兴趣是学生最好的老师”,只要紧紧抓住这一点,教学质量的提高指日可待。

方程教学反思14

先前认真阅读了这一单元的教材,发现与老教材有较大的变化。又认真阅读了备课手册上侯正海老师的文章《初步体会方程的思想——“方程”教学建议》。于是对方程教材的编排体系有了大致的了解。

昨天让学生预习:数学教材1到2页,并且完成《补充习题》第一页。预习的好处显而易见,我发现:学生对于列方程问题不大(只是少数学生在列方程时写单位),问题大量地出在对“等式”“方程”“式子”的概念的理解和区分上。所以,今天这堂课的难点就是让学生深刻理解和熟悉“等式”和“方程”的概念及其联系和区别。

教学过程简录:口算;教学例1,理解等式;教学例2,理解等式与不等式,把等式分类,分成不含未知数的等式和含有未知数的等式,揭示方程的概念,解释50+50=100,X+50〈200,X+8不是方程的原因;订正〈补充练习〉第一题;揭示等式和方程的区别和联系——等式包括方程,方程是一类特殊的等式;让学生做“试一试”,比较根据第二张图列的方程12+X=20,一位学生补充了20-X=12,我补充了20-12=X,先确定这三个等式都是方程,但第三个方程一般是不列的,因为根据20-12可以直接得出答案,它就相当于算术方法解题了。我强调:看完图,顺向思维,直接得到的方程,一般是最好的——点到位止,我知道学生对于我的话不一定理解的,就给予一定的暗示和渗透吧。完成“练一练”,重点是第一题(我让学生写出来的)。

反思:由于难点吃透,学生对于方程的意义已经掌握了——做到能背能举例能比较能说明,但在“练一练”的回答上我有疑惑。哪些是等式,哪些是方程。我估计教材的意图是指哪些是不包括方程的等式,哪些是方程,我也是按这样的要求让学生写的,但我还是让学生说说方程全部是等式。教学后,总感别扭。“哪些是等式,哪些是方程”的问法是二分法,所以我才让学生写等式时不写方程。如果这样要求,哪些是等式?再把等式中的方程找出来。这样要求,可能更加清楚,不会让我疑惑了。

方程教学反思15

本节课我从生活中的问题引入,列出意义相同的两个式子,一个带有括号一个没有,自然就引出如何去括号。教学中我利用数式同性,引导学生与数的运算作比较,利用数的乘法分配律,接着我将数变成字母,就变成了式子中去括号的问题,让学生看到,式子中的字母表示数,数的运算中去括号的方法在式子的去括号中仍然成立。这样就可以让学生归纳得出去括号时符号的变化规律。但就在这一过程中,出现了很多的遗憾,老师们在评课时都指出了问题所在以及问题存在的原因,我也愿意吸纳老师的建议,在以后的教学中我会做以下的改进:

1、进行备课前,作为教师必须了解学生的认知规律。

2、多关注细节。尤其在解题过程中的解题格式。

3、总结出规律后,教师应该再设计一组习题来巩固规律,利用规律解题时让学生边解题边一起复述规律,这样几遍后才可以加强对规律的记忆。

4、注意利用合适的语言多启发学生回答归纳总结规律。

下载认识方程的教学反思[5篇范文]word格式文档
下载认识方程的教学反思[5篇范文].doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《方程》教学反思

    《方程》教学反思 《方程》教学反思1 三元一次方程组的解法,是学生在具备二元一次方程组解法这一基础知识后的拓展内容。这节课是三元一次方程组的第一节新课,学生刚刚比较熟......

    《方程》教学反思

    《方程》教学反思 《方程》教学反思1 长期以来,小学教学简易方程时,方程变形的依据总是加减运算的关系或乘除运算之间的关系,这实际上是用算术的思路求未知数,解简易方程教学反......

    《认识方程》教学设计

    认识方程 张圣荣 教学内容: 苏教版课程标准实验教科书五年级(下册)第1~2页例1、例2及相应的“试一试”“练一练”,练习一第1~3题。 教学目标 1.理解并掌握等式和方程的意义,体......

    认识方程教学设计

    无棣县埕口镇小学 秦桂华 教学内容: 义务教育课程标准实验教科书青岛版小学数学五年级上册第55--60页。 教材分析: 方程的意义对学生来说是一节全新的概念课,让学生用一种......

    《认识方程》教学设计

    设计理念 “认识方程”是概念的教学,在新课程背景下,学生概念的形成应具有更大的涵盖面、影响力和迁移性,并且通过自我理解、生成、连接,形成自己的知识系统。所以,认识方程应从......

    认识方程教学设计[★]

    《认识方程》教学设计 白庙中心校 王惠民 学习内 容方程 知识与技能 1.初步理解方程的意义。 2.会列方程。 3.培养学生的分析问题的能力 重点初步理解方程的意义 难点......

    认识方程教学设计

    五年级数学下册《认识方程》教学设计 北牌小学 徐方 教学目标: 1、结合天平示意图,在观察、用式子表示数量关系、归纳、类比等活动中,经历认识等式和方程的过程。 2、了解等......

    认识方程 教学设计

    《认识方程》复习课教学设计 教学目标 1、经历回顾和整理式与方程有关知识的过程。 2、会用解决简单问题。 3、感受式与方程在解决问题中的价值,培养初步的代数思想。 重难......