概率论第一章习题解答(推荐5篇)

时间:2019-05-15 10:10:25下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《概率论第一章习题解答》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《概率论第一章习题解答》。

第一篇:概率论第一章习题解答

1.写出下列随机试验的样本空间:

1)记录一个小班一次数学考试的平均分数(以百分制记分);

2)一个口袋中有5个外形相同的球,编号分别为1、2、3、4、5,从中同时取出3个球;

3)某人射击一个目标,若击中目标,射击就停止,记录射击的次数; 4)在单位圆内任意取一点,记录它的坐标.解:1)设小班共有n个学生,每个学生的成绩为0到100的整数,分别记为x1,x2,xn,则全班平均分为xxi1nin,于是样本空间为

12100niS{0,,,}={|i0,1,2,3,100n}

nnnn32)所有的组合数共有C510种,S{123,124,125,134,135,145,234,235,245,345} 3)至少射击一次,S{1,2,3,}

4)单位圆中的坐标(x,y)满足x2y21,S{(x,y)|x2y21}

2.已知AB,P(A)0.3,P(B)0.5,求P(A),P(AB),P(AB)和P(AB).解 P(A)1P(A)10.30.7 P(AB)P(A)0.3(因为AB)

P(AB)P(BA)P(B)P(A)0.2

P(AB)P(B)0.5(因为AB,则BA)

3.设有10件产品,其中6件正品,4件次品,从中任取3件,求下列事件的概率:

1)只有一件次品; 2)最多1件次品; 3)至少1件次品.12C4C解 1)设A表示只有一件次品,P(A)36.C102)设B为最多1件次品,则表示所取到的产品中或者没有次品,或者只有一件次312C6C4C品,P(B)336.C10C103)设C表示至少1件次品,它的对立事件为没有一件次品,3C6P(C)1P(C)13

C10

4.盒子里有10个球,分别标有从1到10的标号,任选3球,记录其号码.(1)求最小号码为5的概率.(2)求最大号码为5的概率.解1)若最小号码为5,则其余的2个球必从6,7,8,9,10号这5个球中取得。C521则它的概率为3.C10122)若最大号码为5,则其余的2个球必从1,2,3,4号这4个球中取得。

2C41则它的概率为3.C1020

5.有a个白球,b个黑球,从中一个一个不返回地摸球,直至留在口袋中的球都是同一种颜色为止.求最后是白球留在口袋中概率.解 设最后留在口袋中的全是白球这一事件为A,另设想把球继续依次取完,设

a取到最后的一个球是白球这一事件为B,可以验证A=B,显然P(B).ab

6.一间学生寝室中住有6位同学,求下列事件的概率: 1)6个人中至少有1人生日在10月份; 2)6个人中有4人的生日在10月份; 3)6个人中有4人的生日在同一月份.(假定每个人生日在同各个月份的可能性相同)

解 1)设6个人中至少有1人生日在10月份这一事件为A;它的逆事件为没

11有一个人生日在10月份,生日不在10月份的概率为,则

1211P(A)1P(A)1()6

121112)设6个人中有4人的生日在10月份这一事件为B,则P(B)C64()4()2.12123)设6个人中有4人的生日在同一月份这一事件为C.则

111P(C)12P(B)12C64()4()2

12127.甲乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被击中,问由甲射中的概率为多少?

解 设A和B分别表示甲和乙射中。C表示目标被射中,则P(C)P(AB)P(A)P(B)P(AB)0.60.50.30.8.P(AC)0.6P(A|C)0.75

PC)0.8

8.某商店出售的电灯泡由甲、乙两厂生产,其中甲厂的产品占60%,乙厂的产品占40%.已知甲厂产品的次品率为4%,乙厂产品的次品率5%.一位顾客随机地取出一个电灯泡,求它是合格品的概率.解 设A和B分别表示电灯泡由甲厂和乙厂生产,C表示产品为合格。则P(C)P(A)P(C|A)P(B)P(C|B)0.60.960.40.950.956

9.已知男子有5%是色盲患者,女子有0.25%是色盲患者.今从男女为数相等的人群中随机地挑选一人,恰好是色盲患者,问此人是男性的概率多少? 解 设挑选到的人为男性和女性分别为A和B。另设某人是色盲患者为C。由已

1,P(C|A)0.05;P(C|B)0.0025.2P(A)P(C|A)0.50.05则P(A|C)0.952

P(A)P(C|A)P(B)P(C|B)0.50.050.50.0025

10.甲、乙、丙三人独立地向一敌机射击,设甲、乙、丙命中率分别为0.4,0.5,0.7,又设敌机被击中1次,2次,3次而坠毁的概率分别为0.2,0.6,1.现三人向敌机各射击一次,求敌机坠毁的概率.解 设敌机被击中1次,2次,3次的事件分别为A,B,C.敌机坠毁的事件为D。则P(D|A)0.2;P(D|B)0.6;P(D|C)1

P(A)0.4(10.5)(10.7)(10.4)0.5(10.7)(10.4)(10.5)0.70.36P(B)0.40.5(10.7)0.4(10.5)0.7(10.4)0.50.70.51 P(C)0.40.50.70.14

P(D)P(A)P(D|A)P(B)P(D|B)P(C)P(D|C)0.360.20.410.60.141知条件,P(A)P(B)0.458

11.三人独立地去破译一份密码,已知各人能译出的概率分别为1/5,1/3,1/4.问三人中至少有一人能将此密码译出的概率是多少?

解 三人译出密码分别记为A,B,C。则ABC即为所求事件(三人中至少有一人能将此密码译出)。它的对立事件为ABC。又因为各人译出密码是相互独立的,则P(ABC)1P(ABC)1(11/5)(11/3)(11/4)0.6

12.甲袋中装有n只白球、m只红球;乙袋中装有N只白球、M只红球.今从甲袋中任意取一只球放入乙袋中,再从乙袋中任意取一只球,问取到白球的概率是多少?

解 设从甲袋中取出白球记为A,从乙取出白球记为B。

nN1mNn(N1)mNP(B)P(A)PB|A)P(A)P(B|A)mnNM1mnMN1(mn)(MN1)

13.做一系列独立的试验,每次成功的概率为p,求在成功n次之前已经失败了m次的概率.解 根据题意,试验在第n+m次是成功的(记为A),前n+m-1次中有m次是失败的(记为B)。而前n+m-1次中有m次失败是一个二项分布B(n+m-1,1-p), 所求概率为

mmn1mmnP(AB)P(A)P(B)pCnCnm1(1p)pm1(1p)p

14.甲给乙打电话,但忘记了电话号码的最后1位数字,因而对最后1位数字就随机地拨号,若拨完整个电话号码算完成1次拨号,并假设乙的电话不占线.(1)求到第k次才拨通乙的电话的概率;(2)求不超过k次而拨通乙的电话的概率.(设k10)解 1)该问题相当于在0~9这十个数字中不放回抽样,第k次正好抽到所需的数字这一个问题。根据抽签与次序无关的结果,第k次抽到的概率为1/10。2)第二个问题相当于一次性地抓了k个数字,所需数字正好在所抓的数字中这样一个问题。由于每个数字都是等可能被抽到,所需数字落在所抓数字中的概率与所抓的数目k成正比。设Ak表示所需数字在所抓的k个数字中,P(Ak)kC,其中C为常数。P(A1)1/10

(或P(A10)1)可得出C=1/10。所以P(Ak)k/10

15.将3个小球随机地放入4个盒子中,求盒子中球的最多个数分别为1, 2, 3的概率.解 3个球随机放入4个盒子共有43种放法。盒子中最多个数为1,相当于4个盒

1子中分别有1,1,1,0个球,这种情形的放法共有C43!种(选一个空盒有4

1C43!3种选法,剩下的每盒有一个球相当于全排列)。故P(A1)3

48盒子中最多个数为3,相当于4个盒子中有一个盒子中有3个球,其它3个盒子

1C411没有球。它的放法共有C4种(选一个盒子,放入3个球)。故P(A2)3

416盒子中求的最多个数为2相当于排除以上2种情况而剩下来的情形。P(A2)1P(A1)P(A3)13/81/169/16

16.设有一传输信道,若将三字母A, B, C分别输入信道, 输出为原字母的概率为, 输出为其它字母的概率为(1)/2, 现将3个字母串AAAA, BBBB, CCCC分别输入信道,输入的分别为p1, p2, p3, 且p1+p2+p3=1,已知输出字母串为ABCA, 问输入为AAAA的概率是多少?

(1)(1)2(1)2解 P(ABCA|AAAA)

224(1)(1)(1)(1)3P(ABCA|BBBB)

2228(1)(1)(1)(1)3P(ABCA|CCCC)

2228

P(AAAA)P(ABCA|AAAA)P(AAAA|ABCA)P(AAAA)P(ABCA|AAAA)P(BBBB)P(ABCA|BBBB)P(CCCC)P(ABCA|CCCC

2p142(1)2(1)3(1)3(31)p1(1)p1p2p3488p12(1)2

17.证明: 若P(A|B)P(A|B), 则事件A与B相互独立.P(AB)P(AB),P(A|B),所以P(AB)P(B)P(B)P(AB)P(B)P(B)即P(AB)[1P(B)]P(B)[P(A)P(AB)] 即P(AB)P(A)P(B)

18.某地区约有5%的人体内携带有乙肝病毒, 求该地区某校一个班的50名学生证明:P(A|B)中至少有一人体内携带有乙肝病毒的概率.解 设A为学生携带有乙肝病毒,P(A)0.05.不携带有乙肝病毒为A,P(A)0.95,50名学生中至少有一人体内携带有乙肝病毒的对立事件是50名学生都不携带有乙肝病毒,P(50名学生都不携带有乙肝病毒)=0.9550。所以P(50名学生中至少有一人体内携带有乙肝病毒)=1-0.9550

19.两人相约于7点到8点之间在某地见面,求一人要等另一人半小时以上的概率.解 设X和Y分别为两人的到达时刻。显然,0X60;0Y60。

3030P(|XY|30)0.25

6060

20.从区间(0,1)内任取两个数,求这两数的和小于1.2概率.解 设X和Y分别为两个所取的数。显然,0X1;0Y1。

110.80.8/2P{XY1.2}0.68

11

第二篇:概率论第五章习题解答

第五章习题解答

1.设随机变量X的方差为2,则根据车比雪夫不等式有估计

PXE(X)2 1/2.PXE(X)2D(X)2212

2.随机变量X和Y的数学期望分别为-2和2,方差分别为1和4,相关系数为-0.5,则根据车比雪夫不等式有估计PXY6 1/12.PXY6P(XY)[E(X)E(Y)]6D(X)62112

3.电站供应一万户用电.设用电高峰时,每户用电的概率为0.9,利用中心极限定理,(1)计算同时用电的户数在9030户以上的概率;(2)若每户用电200 w,电站至少应具有多大发电量才能以0.95的概率保证供电? 解:⑴ 设X表示用电户数,则

X~B(10000,0.9),n10000,p0.9,np9000,npq900

由中心定理得

X~N(9000,900)近似

PX90301PX9030X9000903090001P

9009001(1)10.84130.1587⑵ 设发电量为Y,依题意

P200XY0.95

X9000Y9000200即 P0.95

9009009000200()0.95900Y9000200 1.65900Y1809900 4.某车间有150台同类型的机器,每台机器出现故障的概率都是0.02,设各台机器的工作是相互独立的,求机器出现故障的台数不少于2的概率. 解:设X表示机器出故障的台数,则XB(150,0.02)Ynp3,npq2.94 由中心定理得

X~N(3,2.94)近似

PX21PX223X31P2.942.941PX0.5832(0.5832)0.7201 5.用一种对某种疾病的治愈率为80%的新药给100个患该病的病人同时服用,求治愈人数不少于90的概率.

解:设X表示治愈人数,则XB(100,0.8)

其中n100,p0.8,np80,npq16

PX901PX90X8090801P 16161(2.5)0.0062 6.设某集成电路出厂时一级品率为0.7,装配一台仪器需要100只一级品集成电路,问购置多少只才能以99.9%的概率保证装该仪器是够用(不能因一级品不够而影响工作). 解:设购置n台,其中一级品数为X,XB(n,0.7)

p0.7,np0.7n,npq0.21n PX1001PX100X0.7n1000.7n1P0.21n0.21n1000.7n1()0.21n0.999故(1000.7n0.21n)0.999

有 1000.7n0.21n3.1n121(舍)或n170

7.分别用切比雪夫不等式与隶莫弗—拉普拉斯中心极限定理确定:当掷一枚硬币时,需要掷多少次才能保证出现正面的频率在0.4~0.6之间的概率不小于90%. 解:设掷n次,其中正面出现的次数为X,XB(n,p),p⑴由切贝雪夫不等式,要使得P0.412

X0.60.9成立 nD(X)XXXX25n由于P0.4 0.6Pp0.1PE()0.1112nnnn0.1n只要125X0.60.9成立

0.9,就有P0.4nn从而n250

⑵中心极限定理,要使得P0.4X0.60.9成立 n由于XN(0.5n,0.25n)近似

X0.4n0.5nX0.5n0.6n0.5nP0.40.6P0.4nX0.6nP

n0.25n0.25n0.25nX0.5n0.1nP0.25n0.25n所以(0.1n0.1n0.1n0.1n()()2()10.90.25n0.25n0.25n0.25n0.1n0.25n)0.95

查表0.1n0.25n1.65n68

8.某螺丝钉厂的废品率为0.01,今取500个装成一盒.问废品不超过5个的概率是多少? 解:设X表示废品数,则XB(500,0.01)

p0.01,np5,npq4.95

55X5PX5P(0)0.5

4.954.95

第三篇:公关习题解答

公关是指社会组织运用信息传播沟通的手段处理自身的公众问题,以达到组织与公众相互了解、相互适应、优化组织的生态环境目的的管理活动。

特征;

1、维护公众利益,谋求与公众利益一致的共同发展是公关管理的伦理前提。

2、建立、维护组织的“公众关系”是组织公关管理的核心内容。

3、信息传播沟通是公关管理的基本手段。

4、公众舆论、组织的品牌、形象与信誉是公关管理的工作重点。

5、构建有利于组织生存的社会生态环境是公关管理的目标。

学科特点:

从学科的性质、学科所反映内容、所包含的知识、学科的结构体系及学科的研究倾向看,有3个特点:

1、具有突出的实践性、应用性特点;

2、具有典型的多学科交叉渗透的综合性学科特点;

3、具有内核小、外延大的学科结构特点。

其形成与公关学科的研究历史特点及公关研究对象的特点密切相关。

历史数据:

1906年,艾维·李发表《原则宣言》――最早的公关研究

1923年,爱德华·伯内斯发表《舆论明鉴》――公关学科研究的开始 1947年,波士顿大学公关专业的设置――公关学科的形成 50年代以来,公关教育在全世界普遍开展

我国现阶段发展公关的意义:

1、更好地适应我国现行的市场经济体制及商品经济社会的环境,适应全球化环境下国际竞争新形势的需要;

2、适应我国政治体制改革,促进社会主义政治文明建设的需要;贯彻“以人为本”的治国方针、构建和谐社会的需要;

3、提高我国国际地位、改善我国国际形象,优化我国发展的国际环境的需要。

公关学科的发展

公共关系学是一门以管理学、传播学等学科的理论和研究方法为基础,研究公关的社会现象和活动规律的综合性学科。

学科史不长但发展很快。是随着公关职业的兴起,为适应公关实践活动不断深化的需要,对公关研究的基础上逐步发展起来的。

1906年,艾维·李发表《原则宣言》――最早的公关研究 1923年,伯内斯发表《舆论宣言》――公关学科研究的开始

30年代以来美国大学公关教育的兴起,各类公关研究刊物、专著的出版,推动了学科研究的迅速发展。

1947年,波士顿大学公关专业的设置――公关学科的形成

50年代以来,公关教育在全世界普遍开展,数以千计的公关著作的出版,显示出这一新生

学科正从不断地自我跨越、自我完善走向成熟。

不同学术视野中的公关定义 管理学:关注公关这种管理行为在组织中所起作用及其管理职能。着眼点是揭示公关区别于其他管理职能所具有的独特性质特征。

美社会学家莱克斯·哈罗博士;公关学者卡特里普

传播学:关注公关作为一种管理行为本身区别于其他管理行为的本质特征。从公关实现管理目标的过程和手段的独特性来界定公关。公关是一个组织与其公众之间的传播沟通管理。格鲁尼格;亨特

弗兰克·杰弗金斯(英):《实用公共关系学》,把公共界定为“传播方式”。

社会学:关注公共管的社会关系情况及其对组织的意义。探寻揭示公关不同于其他社会关系的独特性质特征入手,进而对这种关系的本质进行探讨。美国哈伍德教授;台湾祝振华教授

现代公共发端于有一定目标、计划和规模的经常性的公关活动的出现。萌芽标志:

1、北美独立革命活动中政治宣传运动;

2、美国近代政治竞选方式的确立;

3、企业界的新闻宣传代理活动的出现和发展。

公关的产生是人类社会的经济、制度、科技发展到一定历史阶段的必然产物。诞生标志:20世纪初,现代公关咨询代理公司在美国的产生。产生的直接原因: 1、20世纪初,爆发“扒粪运动”;

2、新闻代理业暴露出自身的严重缺陷,已不能满足社会发展需要。

产生的历史原因:

1、从经济发展看,是近代商品经济和社会化大生产的产物;

2、从人类社会制度发展看,是社会民主化发展的必然产物;

3、从科学技术的发展看,是传播科技发展的必然产物。

艾维·李的主要贡献

1、首创现代公关事业的模式;

2、改变新闻代理人只注重新闻界关系的偏颇;

3、倡导以事实为根据进行客观报道;

4、通过积极沟通,促进企业的改革,达到改善企业形象的目的;

5、提出“说真话”的思想和“公众应当被告知”的原则,奠定早期现代公关理论的基础。

二战以来国际公关的发展趋势

1、快速发展

2、确立公关管理的战略习惯地位

3、不断强化“平等、互动”的传播关系

4、公关管理日益全球化、国际化

5、强调公关管理的科学性

6、强调公关管理的伦理标准

中国大陆公关事业发展的三个阶段:

1、引进拓展阶段:1980-1985

2、蓬勃崛起阶段:1986-2000

3、持续发展阶段:2000年至今

公关的功能

1、守望:监察社会环境变化,确保组织决策适应社会变化,反映社会发展变化趋势。

依靠日常公关信息收集、舆论监测分析等日常公关工作职责来实现。

2、协调:协调各种力量,协助决策层解决经营管理中遇到的问题,消除偏见与误解,为组

织的生存与发展构建和谐的社会环境。

依靠提供公关咨询建议、传播沟通管理、关系协调管理扥更具体公关工作职责来实现。

3、教育:将组织的管理制度、行为规范、组织文化、优良传统、先进思想、科学知识贯彻

传承、发扬光大。

依靠公关传播沟通、员工公关教育、公关市场教育等具体公关工作职责来实现。

4、效益:增进组织经营管理活动的经济效益,确保组织经营管理活动的社会效益最大化。

依靠做好公关管理的每个环节,以及公关策划、形象管理、品牌管理、信誉管理等具体公关工作职责来实现。

公关的基本观念:

人们在公关实践中逐渐丰富、不断完善形成的,对社会组织如何处理与公众关系的基本认识,是如何开展公关工作的基本指导思想。

公关工作的基本原则: 在公关基本观念的指导下,根据公关活动客观规律和要求而提出的基本工作方法和准则。是公关基本观念在公关实践中具体化。

主要内容:

1、树立公开性的观念,坚持提高透明度的工作原则;

2、树立珍视信誉的观念,坚持公关传播工作的真实性原则;

3、树立制度化的观念,坚持立足平时的工作原则;

4、树立平等沟通的观念,坚持双向交流的工作原则;

5、树立注重行为的观念,坚持首先自我完善的工作原则;

6、树立科学的观念,坚持以调查研究为基础的工作原则;

7、树立公众利益的观念,坚持公关工作的互惠原则。

社会组织:

公关活动的主体,是一个群体,是人们按照一定的目标、任务和形式建立起来的协调力量和行动的合作系统。

组织的特点:

1、具有能动的目标导向特性;

2、具有与环境、目标向适应的结构特性;

3、其能量需要输入与输出,反馈是其固有的特性。

社会组织的类型:

营利性的组织:工商企业、金融机构、旅游服务业等

互利性的组织:各党派团体、职业团体、群众社会团体、宗教团体等 服务性的组织:公共学校、医院、社会福利工作机构等

公益性的组织:政府部门、公共安全机关、消防队、公共事业管理机构等

公众:

公关工作的对象,客体,“任何面临着某个问题而形成的社会群体”。同质性 群体性 可变性

初级社会群体:

人们在面对面交往中形成的具有亲密性的人际关系群体。

公众的分类

1、横向分类:按公众对象的性质特征划分

2、纵向分类:按面临某个公关问题时公众的状态及其可能的发展过程划分

非公众/潜在公众/知晓公众/行动公众

3、其他分类:

1)按公众组织构成特点划分:组织型公众/初级社会群体组合型公众/非组织的同质公众

2)按公众稳定程度的特点划分:临聚型公众/周期性公众/稳定性公众 3)按公众对解决公关问题的重要程度划分:首要公众/次要公众 4)按公众对组织的态度划分:顺意公众/逆意公众/边缘公众 5)按组织对公众的评价划分:受欢迎公众/不受欢迎公众

公众心理:

公关活动中所面对的一种普遍存在的群体或个体心理现象,是在特定环境中公众对某一对象所具有的心理反应与行为倾向。

影响公众行为的心理因素:

1、需要

2、知觉

3、价值观

4、态度

5、性格和气质

6、兴趣和能力

心理定势:

由一定的内外因素所形成的某种心理准备状态,决定着同类后继心理活动的趋势。是一种内在思维过程。深潜在人们意识中。具有一定的动力性。

公关传播的四种模式: 宣传型 公共信息型 双向非对称型 双向对称型

公关传播的目的: 在分享信息、传播沟通的基础上,促进组织与公众的相互了解,促使公众改变其原有的态度,促使公众采取与组织的公关目标一致的行动。

公关传播的原则:

1、坚持公关信息传播的真实性原则;

2、符合公众利益、注重社会效益的公关传播伦理原则;

3、符合公关活动总目标的原则;

4、自觉尊重传播的科学性原则。

组织机构的主要公众关系:

1、员工关系:组织的内部关系

2、股东关系

3、顾客关系;组织在充分尊重顾客的合法权益的前提下,以健全的管理政策、良好的服务行为、持续不断的双向沟通、建立起顾客对组织的信赖与支持的活动。

4、社区关系:组织机构在所在地的全体居民和各种社会组织、团体的关系。

5、媒介关系:组织与媒介公众的关系,是组织与新闻媒介及其工作人员的关系。

6、政府关系:组织与国家管理机构及其人员的关系。

7、国际公众关系:一个社会组织与其他国家的社会组织以及相应的公众之间利益而产生的非国家的、非官方的、民间性质的关系,是社会组织走向世界的过程中必然要遇到和处理的一种特殊的公众关系。

公关整合传播

1、横向整合:在某一阶段对各种传播工具、媒介的整合;

2、纵向整合:对不同阶段的信息主题、形式进行整合。

公关状态:

在某一时期内社会组织与公众所形成的关系情况。主要通过公众对组织整体形象和具体行为所持态度的评价不判断。

消极型公关状态:各方无意识中形成的公关状态

积极型公关状态:组织机构有目的、有计划地实施各种活动之后所形成的公关状态。

公关活动:

组织有意识策划、实施的活动,目的在于影响、改变公关状态。

公关活动类型:

1.宣传性公关活动:

2.交际性公关活动: 3.服务性公关活动: 4.公益性公关活动: 5.征询性公关活动: 6.建设型公关 7.维系型公关 8.防御型公关 9.进攻型公关 10.矫正型公关

公关活动模式:

1、轮盘模式(纳格和阿伦)

2、螺旋模式(马斯顿)

3、环状结构模式(柯特利普和森特)

公关策划类型:

1、某一时期的战略规划

2、公关工作计划

3、公关战役计划

4、公关活动项目实施的计划

公关传播的战略:

1、信息战略

2、媒介战略

公关调研的内容:

1、组织基本状况的调查

2、组织公众基本状况的调查

3、组织开展公关活动基本状况的调查

4、组织目前开展公关工作条件的调查

公关调研的程序

确定调研方案-数据收集-数据处理与分析-展示调研成果-作出判断

公关调研原则:

1、扩大看问题的视野

2、由表及里,透过表象看本质

3、分清问题的轻重缓急

制定公关策略方案:

1、确定公关活动的目标:建立起一套以公关活动的结果为标准的管理体系

2、确定与分析对象公众:直接卷入组织所面临问题,或对这一问题能产生影响,或将受到这一问题影响的公众

3、制定公关行动战略:常规/非常规策划

4、制定公关传播战略:信息战略;媒介战略

5、编制公关活动执行计划:甘特时间表;项目流程表;工作程序表

6、编制公关计划方案的预算、成本-收益分析:把公关活动的过程目标和结果目标结合起来考虑

公关实施的具体内容:

1、由经理层执行的有关加强或调整组织的政策、行为的活动;

2、有公关部门执行的公关的传播活动。

公关实施管理要则:

1、统筹管理和分权管理配合;

2、组织行为和组织传播配合;

3、注意对信息制作质量的管理;

4、注意对媒介购买的管理。

公关效果评估的5个内容:

1、组织采取的新政策、新措施的落实情况;

2、组织的新闻和传送出的信息为媒介所采用的数量;

3、调查分析接收到信息和注意到信息公众数量;

4、调查分析公众对信息的了解程度、态度变化、行为变化情况;

5、评估达到的预定目标和解决问题的水平。

组织形象:

社会公众心目中对一个社会组织机构的总印象和总评价。个人或群体对组织机构的整体观念。

良好组织形象的作用:

1、拓展市场

2、吸引更多优秀人才

3、吸引更多资金

4、有助于建立与原料供应部门及销售系统的稳定供销关系,使组织占有原料和销售渠道等

方面的优势

5、使组织受到社区邻里的支持与爱戴,减少纠纷和摩擦

6、使组织在危机中得到各方及时的帮助或谅解,顺利渡过难关

企业形象识别系统(CIS)

一种通过规范组织、企业在传播中所运用的组织形象符号显征系统,如标志、色彩、字体、口号、行为等,从而使组织、企业的信息实现统一高效的传递,并在对象公众的心目中形成对组织、企业的形象识别,进而产生心理认同的组织形象管理方法。

CIS的主要内容

1、理念识别系统(MI):是整个CIS的核心,主要负责确立企业的定位、存在的价值等,是属于组织内在的精神实质,是“企业人生观”层面的东西,指导BI、VI两部分作业的开展。

2、行为识别系统(BI):建立在企业的行为规范与制度之上,以具有独特性和符号化的企业行为,动态地彰显组织、企业的理念与内涵,并由此确立区别于其他组织的行为识别。

3、视觉识别系统(VI):整个CIS中与公众关系最为直接、接触最为普遍的部分。它是CIS作业完成后最明显的成果,也是直接帮助公众识别组织的最具体因素。

危机管理:

组织根据自身情况和外部环境,对可能发生的危机的分析预测、监控预防、干预规避,对已发生的危机的处理、控制、化解、转化等一整套系统管理机制。

危机管理的三个阶段

1、预防阶段

1)强化危机意识,落实全员危机管理 2)建立危机管理状况审查制度 3)建立危机管理组织机构 4)制订危机处理预案

5)建立危机的处理支持网络、预警机制以及风险管理

2、处理阶段

3、重建阶段

风险管理:

组织和个人在对风险进行识别、预测、评价的基础上,优化各种风险处理技术,以一定的风

险处理成本有效地控制和处理风险的过程。主要措施:

1、建立危机预警机制

2、分散转移危机风险

3、确立危机管理的伦理标准

危机处理的基本原则

1、反应迅速

2、坦诚待人

3、人道主义

4、信誉第一

危机传播的基本原则(3T原则)

1、以我为主提供信息

2、尽快提供信息

3、提供全部信息

道德:

一定社会为了调整人们之间以及个人和社会之间的关系所提倡的行为规范的总和。通过各种教育和舆论的力量,使人们具有善与恶、荣誉与耻辱、正义与非正义等概念,逐渐形成一定的习惯和传统,以指导和控制自己的行为。

道德选择的依据:

1、凭直觉:认为某些行为从本质上说是好的,存在着一种理性、抽象的“好”,因此在道德选择是可以找到确定的、绝对的标准。其理论基础是“义务论”(deontology),它认为,有些行为,无论它导致的结果如何,都是正确的和必须执行的。

2、自然主义:主张就事论事、具体情况具体分析,强调造成行为的因素和行为导致的结果。其理论基础是“目的论”(teleology),它认为,一项行为的正确性是由它的原因和结果所决定的。

影响道德选择的因素:

1、宏观的社会、行业的道德氛围;

2、规模因素:雇员数目及组织的资产;

3、不同的工艺和技术;

4、公司制度的文明程度:规章制度、奖惩制度及层级;

不道德行为的个人因素:

1、支配权

2、经济倾向

3、强烈的赚钱欲望

4、政治倾向

5、处事哲学

CIPRA的道德规范基本内容(七个方面)

1、信息传播

2、为客户提供专业服务

3、为客户保守机密

4、化解利益冲突,建立信任

5、行业竞争

6、人力资源开发、人才流动

7、维护、提升本行业职业地位

PRSA、IPRA及IABC的职业道德规范内容:

1、从业者与社会文化、价值观的关系;

2、从业者与法律、公共政策的关系;

3、从业者与处在客户控制之外的外部公众关系;

4、从业者与所属企业、客户的关系;

5、从业者与自身的关系,需要对他人及自己的诚实。

两类公关机构的利弊:

1、从看问题的客观性看:

2、从服务的专业水平看:

3、从社会联系的广泛性看:

4、从意见受重视程度看:

5、从管理的灵活性看:

6、从服务的及时性看:

7、从职工的参与感看:

延展应用设计所涉项目:

1、产品

2、办公用品

3、招牌、旗帜和标牌等指示系统

4、制服

5、建筑景观

6、交通工具

7、广告

8、展示与陈列

第四篇:电磁场习题解答

1—2—

2、求下列情况下,真空中带电面之间的电压。

(2)、无限长同轴圆柱面,半径分别为a和b(ba),每单位长度上电荷:内柱为而外柱为。

解:同轴圆柱面的横截面如图所示,做一长为l半径为r(arb)且与同轴圆柱面共轴的圆柱体。对此圆柱体的外表面应用高斯通量定理,得

 DdSl

s考虑到此问题中的电通量均为er即半径方向,所以电通量对圆柱体前后两个端面的积分为0,并且在圆柱侧面上电通量的大小相等,于是

2lrDl

即 Der,Eer

20r2r由此可得 UbabEdrbererdrln

a2r20a0

1—2—

3、高压同轴线的最佳尺寸设计——高压同轴圆柱电缆,外导体的内半径为2cm,内外导体间电介质的击穿场强为200kV/cm。内导体的半径为a,其值可以自由选定但有一最佳值。因为a太大,内外导体的间隙就变得很小,以至在给定的电压下,最大的E会超过介质的击穿场强。另一方面,由于E的最大值Em总是在内导体的表面上,当a很小时,其表面的E必定很大。试问a为何值时,该电缆能承受最大电压?并求此最大电压。

(击穿场强:当电场增大达到某一数值时,使得电介质中的束缚电荷能够

电磁场习题解答

第 1 页

脱离它的分子 而自由移动,这时电介质就丧失了它的绝缘性能,称为击穿。某种材料能安全地承受的最大电场强度就称为该材料的击穿强度)。

解:同轴电缆的横截面如图,设同轴电缆内导体每单位长度所带电荷的电量为,则内外导体之间及内导表面上的电场强度分别为

E而内外导体之间的电压为

UEdrab,Emax

2r2abdrln

a2r2ab或

UaEmaxln()

badUbEmax[ln()1]0

daabb10,a0.736cm aeb5UmaxaEmaxln0.7362101.4710(V)

a即

ln

1—3—

3、两种介质分界面为平面,已知140,220,且分界面一侧的电场强度E1100V/m,其方向与分界面的法线成450的角,求分界面另一侧的电场强度E2的值。

电磁场习题解答

第 2 页

解:E1t100sin450502,E1n100cos450502

D1n40E1n20002 根据 E1tE2t,D1nD2n得

E2t502,D2n20002,E2nD2n1002 2022(502)2(1002)25010(V/m)于是: E2E2tE2n

1—

8、对于空气中下列各种电位函数分布,分别求电场强度和电荷体密度:(1)、Ax2(2)、Azyx

(3)、Ar2sinBzr(4)、Ar2nisocs

解:求解该题目时注意梯度、散度在不同坐标中的表达式不同。

(Ax2)(1)、E(ijk)i2Axi

xyzxExEyEzExD0()00(2Ax)2A0

xyzxx(2)、E(ijk)

xyzAxyzAxyzAxyz

(ijk)

xyzA(yzixzjxyk)

电磁场习题解答

第 3 页

D0[(Ayz)(Axz)(Axy)]0

xyz1(3)、E[erek)

rrz[1(Ar2sinBrz)er(Ar2sinBrz)err

(ArsinBrz)k)]z

[(2ArsinBz)erArcoseBrk)]

11D0[r(2ArsinBz)(Arcos)rrr

(Br)] z1 0[(4ArsinBz)Asin]

rBz0[4Asin)Asin]

r11(4)、E[eree]

rrrnis1[er(Ar2sincos)e(Ar2sincos)rre1(Ar2sincos)]

rsin11[(2Arsincos)er(Ar2coscos)e(Ar2sinsin)e]

rrsin[(2Arsincos)er(Arcoscos)e(Arsin)e]

电磁场习题解答

第 4 页

111D0[2(r2Er)(Esin)(E)]

rsinrsinrr0[113(2Arsincos)(Arcoscossin)

rsinr2r 1(Arsin)]

rsinAcosAcos(cos2sin2)]sinsin 0[6Asincos1—4—

2、两平行导体平板,相距为d,板的尺寸远大于d,一板的电位为0,另一板的电位为V0,两板间充满电荷,电荷体密度与距离成正比,即。(x)0x。试求两极板之间的电位分布(注:x0处板的电位为0)解:电位满足的微分方程为

0d2x 20dx其通解为: 03xC1xC2 60定解条件为:x00; xdV0 由x00得 C20 由xdV0得 于是 03VdC1dV0,即 C100d2 60d6003V002x(d)x 60d601—4—

3、写出下列静电场的边值问题:

电磁场习题解答

第 5 页

(1)、电荷体密度为1和2(注:1和2为常数),半径分别为a与b的双层同心带电球体(如题1—4—3图(a));

(2)、在两同心导体球壳间,左半部分和右半部分分别填充介电常数为1与2的均匀介质,内球壳带总电量为Q,外球壳接地(题1—4—3图b));(3)、半径分别为a与b的两无限长空心同轴圆柱面导体,内圆柱表面上单位长度的电量为,外圆柱面导体接地(题1—4—3图(c))。

电磁场习题解答

第 6 页

解:(1)、设内球中的电位函数为1,介质的介电常数为1,两球表面之间的电位函数为2,介质的介电常数为2,则1,2所满足的微分方程分别为

211,222 12选球坐标系,则

111211121(r)(sin)r1r2rr2sinr2sin2221221122(r)(sin)r2r2rr2sinr2sin2由于电荷对称,所以1和2均与、无关,即1和2只是r的函数,所以

11211222,(r)(r)22rrrrrr21定解条件为:

分界面条件: 1ra

2电位参考点: 2

附加条件:1r0;

1ra1r2ra2r

rarb0;

为有限值

(2)、设介电常数为1的介质中的电位函数为1,介电常数为2的介质中的电位函数为2,则

1、2所满足的微分方程分别为

211,222 12选球坐标系,则

电磁场习题解答

第 7 页

11211121(r)2(sin)20 22rrrrsinrsin21221122(r)2(sin)20 22rrrrsinrsin由于外球壳为一个等电位面,内球壳也为一个等电位面,所以1和2均与、无关,即1和2只是r的函数,所以

121122(r)0(r)0,rrr2rr2r2

2分界面条件: 12

由分解面条件可知12。令 12,则在两导体球壳之间电位满足的微分方程为

12(r)0

rr2r

电位参考点: rb0;

边界条件:2a2(1Er2Er)raQ,即

2a2(12)()Q rra(3)、设内外导体之间介质的介电常数为,介质中的电位函数为,则所满足的微分方程分别为

20,选球柱坐标系,则

1122

(r)20

rrrr2z

2电磁场习题解答

第 8 页

由于对称并假定同轴圆柱面很长,因此介质中的电位和及z无关,即只是r的函数,所以

1(r)0 rrr

电位参考点: rb0;

边界条件:2aEr

2a(

1-7-

3、在无限大接地导体平板两侧各有一个点电荷q1和q2,与导体平板的距离均为d,求空间的电位分布。

ra,即

) rra

解:设接地平板及q1和q2如图(a)所示。选一直角坐标系,使得z轴经过q1和q2且正z轴方向由q2指向q1,而x,y轴的方向与z轴的方向符合右手螺旋关系且导体平板的表面在x,y平面内。计算z0处的电场时,在(0,0,d)处放一镜像电荷q1,如图(b)所示,用其等效q1在导体平板上的感应电荷,因此

1q111()

22240x2y2(zd)2xy(zd)计算z0处的电场时,在(0,0,d)处放一镜像电荷q2如图(c)所示,用

电磁场习题解答

第 9 页

其等效q2在导体平板上的感应电荷,因此

2q211()

22222240xy(zd)xy(zd)1-7-

5、空气中平行地放置两根长直导线,半径都是2厘米,轴线间距离为12厘米。若导线间加1000V电压,求两圆柱体表面上相距最近的点和最远的点的电荷面密度。

解:由于两根导线为长直平行导线,因此当研究它们附近中部的电场时可将它们看成两根无限长且平行的直导线。在此假定下,可采用电轴法求解此题,电轴的位置及坐标如图所示。

126cm 由于对称 h2而 bh2R2622242cm

设负电轴到点p(x,y)的距离矢量为r2,正电轴到点p(x,y)的距离矢量为r1(p点应在以R为半径的两个圆之外),则p点的电位为

r2(xb)2y2ln()ln (x,y) 2220r120(xb)y1两根导体之间的电压为U,因此右边的圆的电位为U,即

2τ(hRb)2U(hR,0)ln 2202(hRb)

电磁场习题解答

第 10 页

由此可得 20Uh-Rb2lnh-R-b25010004ln(12)250ln(12)

(xb)2y2ln于是 (x,y) 22(xb)yln(12)Egrad

(xb)[(xb)2y2](xb)[(xb)2y2]{ex2222[(xb)y][(xb)y]ln(12)250 y[(xb)y]y[(xb)y]ey}[(xb)2y2][(xb)2y2]2222

由于两根导线带的异号电荷相互吸引,因而在两根导线内侧最靠近处电场最强电荷密度最大,而在两导线外侧相距最远处电荷密度最小。

max(xb)[(xb)2y2](xb)[(xb)2y2]0{ex 2222[(xb)y][(xb)y]ln(12)250( ex)xhRy0y[(xb)2y2]y[(xb)2y2] ey}2222[(xb)y][(xb)y] 011)1.770107C/m2

ln(12)hRbhRb(250min(xb)[(xb)2y2](xb)[(xb)2y2]0{ex2222[(xb)y][(xb)y]ln(12)250y[(xb)2y2]y[(xb)2y2]ey}[(xb)2y2][(xb)2y2] ex xhRy0

电磁场习题解答

第 11 页

011)8.867108C/m2

ln(12)hRbhRb(250

1—9—

4、一个由两只同心导电球壳构成的电容器,内球半径为a,外球壳半径为b,外球壳很薄,其厚度可略去不计,两球壳上所带电荷分别是Q和Q,均匀分布在球面上。求这个同心球形电容器静电能量。

解:以球形电容器的心为心做一个半径为r的球面,并使其介于两导体球壳之间。则此球面上任意一点的电位移矢量为

DQe 2r4rDQ电场强度为

Eer

4r21Q2而电场能量密度为

weED 24232r球形电容器中储存的静电场能量为

b2Q22WewedVrsindddr

Va00322r4b2Q2sindddr a00322r2b1Q2Q2b10(cos0cos)(20)2drdr 22aa8r32rQ211Q2ba()= 8ab8ab

1-9-

5、板间距离为d电压为U0的两平行板电极浸于介电常数为ε的液

电磁场习题解答

第 12 页

态介质中,如图所示。已知液体介质的密度是m,问两极板间的液体将升高多少?

解:两平行板电极构成一平板电容器,取如图所示的坐标,设平板电 容器在垂直于纸面方向的深度为w,则此电容器的电容为

(Lx)w0xw C(x) dd电容中储存的电场能量为

11(Lx)w0xw2)U0

WeCU02(22dd液体表面所受的力为

2 We12 C(x)U0wU0(0)

fx x2 x2d此力应和电容器中高出电容器之外液面的液体所受的重力平衡,由此

可得

2U0w(0)mgdwh

2d2(0)U0即 h 22mgd2—

5、内外导体的半径分别为R1和R2的圆柱形电容器,中间的非理想介

电磁场习题解答

第 13 页

质的电导率为。若在内外导体间加电压为U0,求非理想介质中各点的电位和电场强度。

解:设圆柱形电容器介质中的电位为,则

20

选择圆柱坐标,使z轴和电容器的轴线重合,则有

1122

(r)0

rrrr22z2假定电容器在z方向上很长,并考虑到轴对称性,电位函数只能是r的函数,因此所满足的微分方程可以简化为

1(r)0 rrrC1 C1,rrr两边再积分得电位的通解

C1lnrC2 定解条件:rRU0,rR0 即

r12将电位函数的通解带入定解条件,得

C1lnR1C2U0 C1lnR2C20

由上述两式解得

电磁场习题解答

第 14 页

U0U0,C2U0lnR1

R1R1lnlnR2R2U0U0U0r于是

lnrlnR1U0lnU0

RRRR1ln1ln1ln1R2R2R21而

E[ereez]

rrzU0U01r(lnU0)er

er

RRrR1rln1ln1R2R2

2—

7、一导电弧片由两块不同电导率的薄片构成,如图所示。若

C116.5107西门子/米,21.2107西门子/米,R245厘米,R130厘米,钢片厚度为2毫米,电极间的电压U30V,且电极1。求:

⑴、弧片内的电位分布(设x轴上电极的电位为0);

⑵、总电流I和弧片的电阻R;

⑶、在分界面上D,,E是否突变? ⑷、分界面上的电荷密度。

解:(1)、设电导率为1的媒质中的电位为1,电导率为2的媒质中的电磁场习题解答

第 15 页

电位为2,选取柱坐标研究此问题。由于在柱坐标中电极上的电位和r及z无关,因而两部分弧片中的电位也只是的函数,即

1  1121 21 121 1(r)22 222r r rr  zr 21  2122 22 122 2(r)22 222r r rr  zr 2由上边两式可得

1、2的通解分别为

1C1C

22C3C4 此问题的定解条件是:

200

……(a)

1U

……(b)

212……(c)

144 1 24 2 4……(d)

根据上述四式可得

C40,C1C1C2U 2C2C3C4,1C12C3 44联立以上四式解得

C14U2U(12),C2UC1

(12)21214U1,C40 C12(12)4U2U(12)(5.9520.65)V

(12)124U132.26 V

(12)C3于是

12

电磁场习题解答

第 16 页

(2)、根据 E得

4U25.95

E1ee

(12)rr又E,因此

4U125.953.8681087e)e

11E1e6.510(rr(12)r R23.868108而

I 1dS(e)(0.002)edr

S R1rR

7.736105ln(2)3.14105A

R1U305R9.5510 

5Ι3.1410(3)、由于电流密度的法向分量在分界面上连续,且在此题目中电流密度只有法向分量,因此 12。分界面处的电场强度等于分界面处的电流密度与电导率的比值,又12,因此 E1中的电流场,媒质的介电常数一律为0,因此D1(4)、(D10(44444E2D24。对于导电媒质。

D244) e

4U04U24U1ee) e(12)

(12)r(12)r(12)r

2—

11、以橡胶作为绝缘的电缆的漏电阻通过下属办法测定:把长度为l的电缆浸入盐水溶液中,然后在电缆导体和溶液之间加电压,从而可测得电流。有一段3米长的电缆,浸入后加200V的电压,测得电流为2109A。已知绝缘层的厚度和中心导体的半径相等,求绝缘层的电阻率。

解: 设导体的电位高于盐水的电位,则绝缘层中的漏电流密度为:

Ier

2lr而绝缘层中的电场强度为:

I

Eer

2lr设导体的半径为R1,电缆绝缘层的外半径为R2,则导体和盐水之间的电压为:

电磁场习题解答

第 17 页

R2IIUererdrdr

R1R12lrR12lrR21R2II  drln2lR1r2lR1RI即

ln2

2UlR1将已知数据代入上式,得

2R12109109 lnln23.6771013S/m

22003R160012.7271012/m R2R2Edr3-2-

1、一半径为a长圆柱形导体,被一同样长度的同轴圆筒导体所包围,圆筒半径为b,圆柱导体和圆筒导体载有相反方向电流I。求圆筒内外的磁感应强度(导体和圆筒内外导磁媒质的磁导率均为0)。

解:求解此问题可将圆柱导体和圆筒导体视为无限长。在垂直于z的平面上以z轴和此平面的交点为心做一半径为r的圆l,设l的方向和z符合右手螺旋关系。

由安培环路定律得:

HdlI l

电磁场习题解答

第 18 页

式中I为l中包含的电流,其方向与l符合右手螺旋关系时为正,否则为负。考虑到在l上H的大小相等,方向为l的切线方向,则有

2rHI

I0IIe,Be 即

H,而 H2r2r2r当0ra时,有

Ir22I2r2I

aa0r2r2Ie02Ie

B2ra2a当arb时,有 II

 而

B0Ie

2r当rb时,有

I0  因而

B0

3-3-

3、在恒定磁场中,若两种不同媒质分解面为xoz平面,其上有电流线密度k2exA/m,已知H1(ex2ey3ez)A/m,求H2。

电磁场习题解答

第 19 页

解:设y0的区域中的磁导率、磁场强度、磁感应强度分别为

2、H2、B2;y0的区域中的磁导率、磁场强度、磁感应强度分别为

1、H1、B1。

由已知条件得:

H1z3;

H1x1;

B1yH1y1 由分解面条件得:

H2zH1z2;

H2xH1x0;B2yB1y

将已知条件代入,得:

H2z2H1z5;

H2xH1x1;

B2y1H1y21

H2yB2y221 2于是

H2H2xexH2yeyH2zez(ex21ey5ez)A/m

2

3-4-

3、已知电流分布为

JJ0rezra

。J0为常数,求矢量位A和磁感应强度B(注A的参考点选为rr0a处)



解:设r0的区域中的矢量磁位为A1,r0的区域的矢量磁位为A2,则A1、A2所满足的微分方程分别为:

A10J0rez

ra 2

A20

ra 2考虑到电流密度只有z分量,矢量磁位也只能有z分量,上两可改写为

2A1z0J0r

ra

电磁场习题解答

第 20 页

2A2z0

ra 选圆柱坐标系,上两式变为

A1z112A1z2A1z

(r)20J0r 22rrrrzA2z112A2z2A2z

(r)20

rrrr2z2由于电流密度不随z和变化,所以矢量磁位也不随z和变化,因此上述两式可简化为

A1z1(r)0J0r

(1)rrrA2z1(r)0

(2)rrr

(1)、(2)两式的通解分别为

A1z0J03rC1lnrC(3)9A2zC3lnrC(4)

定解条件:

附加条件:当r0时,A1z应为有限值;参考点处矢量磁位为0,即A2zrr00

分解面条件:A1zra11(A2)A2zra;(A1)rara00根据定解条件,得:

C10

(5)

C3lnr0C40

(6)

电磁场习题解答

第 21 页

0J03aC1lnaC2C3lnaC4

(7)9J111C(8)(00a2C1)03a0a即

C3lnr0C40

0J03aC2C3lnaC4

90J02C3a 3a联立上述三式解得:

C30J03Ja;

C400a3lnr0; 33C20J03ra[13ln0] 9aJJr于是

A1[00r300a3(13ln0)]ez

99a0J0r[r3a3(13ln0)]ez 9aJJA2[00a3lnr00a3lnr0]ez

33[0J03r0aln]ez 3r由柱坐标中的旋度公式

1AzAArAz1(rA)ArAer()e()er()

rzzrrr

电磁场习题解答

第 22 页

可得:

JA1zB1A1e()00r2e

r30J0a3A2zB2A2e()e

r3r

3-6-

1、在磁导率70的半无限大导磁媒质中距媒质分界面2cm有一载流为10A的长直细导线,试求媒质分界面另一侧(空气)中距分界面1cm处p点的磁感应强度B。

解:此题如图1所示,图中h2cm,h11cm,I10A(设其方向和正z轴的方向一致)求空气中的磁场的等效模型如图2所示。图中的

I而

Hp2701407III

0708047875I1iIii(A/m)2(hh1)42(0.010.02)3

42Bp0Hp1.1610i(Wb/m)

3—7-

2、有一截面为正方形的铁磁镯环,均匀绕有500匝导线,镯环内外

电磁场习题解答

第 23 页

半径分别为R16cm和R27cm,高h1cm,8000,求线圈的自感系数。

解:做一个半径为r的圆,使此圆所在的平面在正方形铁磁镯环的两个端面之间,且与端面平行,圆心在铁磁镯环的轴线上。

设线圈的匝数为n,根据安培环路定理,得



HdlnI

l对于此题,在上述所做的圆上磁场强度的大小处处相等,方向沿圆的切线方向,于是上述积分的结果为

2rHnI

nInI即

He,Be

2r2rR2nI磁通为

BdseedsSS2rR1nI02rdzdr

h

nI2R1R2h0nIhR21dzdr lnr2R1n2IhR2线圈的磁链为

n ln2R1再由LI,得

n2hR2500280000.017

Llnln

I2R126

电磁场习题解答

第 24 页

500280041070.017ln0.0616H

26

3—7-

3、如图所示,求真空中:(1)、沿Z轴放置的无限长直线电流和匝数为1000的矩形回路之间的互感;(2)、如矩形回路及其它长度所标尺寸的单位,不是米而是厘米,重新求互感。

解:(1)、在x0,y0的半平面内

B0I2y(i)

设互感磁通m的方向如图中的所示,则

 5 5I0m 2  0 2y dz dy5I02ln52 与线圈交链的总互感磁链为

2500I0mNmln52()而

MmI25000ln(52)9.163104(H)(2)、如图中的尺寸的单位为厘米时

电磁场习题解答

第 25 页

Mm2505ln()9.163106(H)I23-8-

1、求无限长同轴电缆单位长度内导体和外导体之间区域内所储存的磁场能量。设内导体半径为R1,外导体很薄,半径为R2,内导体和外导体之间媒质的磁导率为0,电缆中的电流为I。

解:设同轴电缆的横截面及内导体中电流的方向如图所示,则内外导体之间的磁场强度为(取圆柱坐标,使z轴和同轴电缆的轴线一致,其方向和I的方向相同)

0IIe,而

B0He

H2r2r0I21HB

wm22 由

wm28r而

Wm1002R2R1rdrddzwm2R2R11002R2R10I2drddz 28r0I2820010I21drddzr8201200I2R2R2 lnddzlnR14R13 -8-

2、在题3 -7-2的镯环线圈中,通以电流I1A。求磁场能量:

121(1)、用WmLI求解;(2)、用WmBHdV求解。

22V解: 利用题3 -7-2的一些结果,有

nIn2hR2nI

H e,Be,Lln2r2r2R

1电磁场习题解答

第 26 页

1n2hR22n2hI2R2(1)、Wm

lnIln22R14R1500280041070.01127ln3.08102(J)

4611hR22nInI(2)、WmHBdVeerddrdz

V0R01222r2rn2I21hR22n2I ddrdz20R0124r820R1hR2201ddrdz rhn2I2R2ln3.08102(J)

4R1

4—

1、长直导线中通过电流i,一矩形导线框置于其近旁,两边与直导线平行,且与直导线共面,如图所示。

(1)、设iImcos(t),求回路中的感应电动势(设框的尺寸远小于正弦电流的波长)。

(2)、设iI0,线框环路以速度v向右平行移动,求感应电动势。(3)、设iImcos(t),且线框又向右平行移动,再求感应电动势。

解:取电动势和磁通的方向如图所示,选柱坐标且使z轴与线电流重合,方向与电流的方向一致。

电磁场习题解答

第 27 页

(1)、线圈不动,电流随时间变化:

i0e

B2r

b0caci0ibaceedrdz0ln 2r2c由于e和符合右手螺旋关系,所以

ebImddibacca(0ln)0ln()sin(t)dtdt2c2c

(2)、电流不变,线圈运动:

取积分路径的方向和电动势的方向一致,则

evBdl

l

[(vb0b

(v0cvtaI00Ie)ezdz(v00e)erdr

cvt2(cvt)2rcvtaI00Ie)(ez)dz(v00e)(er)dr]

cvt2(cvta)2rb

(v0bI00I00e)ezdz(ve)(ez)dz

02(cvt)2(cvta)





bvI00vI00ezezdzez(ez)dz

02(cvt)02(cvta)bbvI00vI00dzdz

02(cvt)02(cvta)bvI00b11()2cvtcvta

(3)、电流和线圈的位置都随时间变化:

电磁场习题解答

第 28 页

i0Be

2r



eb0cvtacvti0ibacvteedrdz0ln 2r2cvtbdddibacvtacvt(0ln)0(iln)dtdt2cvt2dtcvt0bdacvt[Imcos(t)ln] 2dtcvt

0bImd{cos(t)ln(acvt)cos(t)ln(cvt)} 2dt0bImv{sin(t)ln(acvt)cos(t)2acvtv} cvt

(t)lnc(vt)cos(t)

sin0bImacvt11{lnsin(t)v()cos(t)} 2cvtcvtacvt

0.02sin(109t)A/m2,4—

2、已知一种有损耗媒质中的电流密度J若媒质c的103S/m,r6.5,求位移电流密度。

解:用相量表示电流密度,则

0.02/00

Jcm00.02/050电场强度为

E 210/0V/mm310JcmEE电位移相量为 Dmmr0m

电磁场习题解答

第 29 页

109132105/001014/00C/m6.53636jDj109131014/00j1.149106/00A/m2 而

Dmm36所以

D1.149106sin(109t900)A/m2

4-

5、由圆形极板构成的平板电容器如图所示,两极板之间充满电导率为、介电常数为、磁导率为0的非理想介质。把电容接到直流电源上,求该系统中的电流及电容器极板之间任意一点的坡印亭向量,并证明其中消耗的功率等于电源供给的功率。

解:忽略边缘效应后有

r2U0UrrE(ez),H(e)e0e

d2r22d电容中任意一点的坡印亭矢量为:

2U0U0rU0rSEHezeer 2d2d2dU电流为:

I0R2

d电源提供的功率为:

2U0PsU0IR2

d电容消耗的功率为:

电磁场习题解答

第 30 页

PcSds{Sdsss1s2Sdss3Sds}

上式中的S,S1,S2和S3分别是电容器的外表面、介质与上极板的分界面、介质与下极板的分界面和电容器的外侧面。由于在介质与导体的分界面处,导体一侧的电场强度为0,所以

222U0U0U02PcSdsR(e)edsRdsR rrs32d2s3s32d2d

4—

7、已知空气中的电场强度为



E0.1sin(10x)cos(6109tz)ey

求相应的H和。

11解: v3108m/s

00109741036610920rad/ m

8v310

Em0.1sin(10x)ejzey

由

EjBjH,得

eeeeeexyzxyz111 HmjEmjj0xyzxzE0E0ymxmEymEzm

EEymymj[exez]zx1j[ex(0.1sin(10x)ejz)ez(0.1sin(10x)ejz)] zx1j[ex0.1sin(10x)(j)ejzez0.110cos(10x)ejz] 00.1[exsin(10x)ejzez10cos(10x)ejzj90] 0.1jzjzj900[esin(10x)20ee10cos(10x)e] xz97610410

1电磁场习题解答

第 31 页

1jzjzj900[exsin(10x)2eezcos(10x)e] 2410211jzjzj900exsin(10x)eecos(10x)e z22121024101H[exsin(10x)cos(6109t20z)21210190cos(10x)cos(610t20z90)]A/m

ez 22410

6-2-

3、已知自由空间中电磁场的电场分量表达式为



E37.7cos(6108t2z)eyV/m

这是一种什么性质的场?试求出其频率、波长、速度、相位常数、传播方向及H的表达式。

解:此场为一种沿负z轴方向传播的均匀平面波。

v31081m f310Hz,v310m/s,8f3100081861082rad/ m

v3108

Z00120 037.7Hcos(6108t2z)ex

120

0.1cos(6108t2z)exA/m

6-2-

4、某电台发射600kHz的电磁波,在离电台足够远处可以认为是平面波。设在某一点a,某瞬间的电场强度为10103V/m,求该点瞬间的磁场强度。若沿电磁波的传播方向前行100m,到达另一点b,问该点要迟多少时间才具有此10103V/m的电场。

电磁场习题解答

第 32 页

解:空气可以视为理想介质,设电磁波沿x方向传播,因此

EEmcos(26105tx)

设电磁波传播到a点的时间为t1,a点的x坐标为x1,则

Emcos(26105t1x1)102

102即

Em 5cos(2610t1x1)1025于是

Ecos(2610tx)5cos(2610t1x1)根据理想介质中磁场强度和电场强度的关系,有

E102Hcos(2610tx)5Z0120cos(2610t1x1)当tt1,xx1时,有

E102Hcos(26105t1x1)5Z0120cos(2610t1x1)1022.65105A/m 120设电磁波传播到b点的时间为t2,b点的x坐标为x2。依据题意可得

10252 cos(2610tx)10225cos(2610t1x1)即

cos(26105t2x2)cos(26105t1x1)将x2x1100带入上式,得

cos(26105t2(x1100))cos(26105t1x1)根据上式,可得

电磁场习题解答

第 33 页

2610510081001631010s

(t2t1)55326102610

6-3-

1、均匀平面波在海水中垂直向下传播,已知f0.5MHz,海水的r80,r1,4S/m,在x0处



H20.5107cos(t350)ey

求:(1)、海水中的波长及相位速度;(2)、x1m处,E和H的表达式;(3)、由表面到1m深处,每立方米海水中损耗的平均功率。

解:由于420.510680103691800,所以此时的海水为良导体。

(1)、22225m;

20.51064107 v22251055106m/ s724104(2)、225105410742.81m1/2



H20.5107e2.81xcos(t3502.81x)ey

2510541070

Z0/45/4500.993/450

4

E20.51070.993e2.81xcos(t3502.81x450)(ez)

20.36107e2.81xcos(t3502.81x450)(ez)

电磁场习题解答

第 34 页

在x1处



E1.226107cos(t1501)(ez)



H1.234107cos(t1960)ey

(3)、SEH20.36107e2.81xcos(t1502.81x)(ez)

20.5107e2.81xcos(t3502.81x)ey

4.171012e5.62xcos(t1502.81x)cos(t3502.81x)ex 

2.0851012e5.62x[cos(450)cos(2t2505.62x)]ex

 SavTT02.0851012e5.62x[cos(450)cos(2t2505.62x)]exdt

2.0851012e5.62xcos(450)ex



P[2.0851012cos(450)ex(ex)ds

s1

2.0851012e5.62cos(450)ex(ex)ds]

s

2s12.0851012cos(450)ds2.0851012e5.62cos(450)ds

s2s1s2

2.08510120.707[ds

e5.62ds]1.471012W/m3

6-3-

3、设一均匀平面电磁波在一良导体内传播,其传播速度为光在自由空间波速的1‰且波长为0.3mm,设煤质的磁导率为0,试决定该平面电磁波的频率及良导体的电导率。

解:

vc0.0013105m/s,而在良导体中:

2由上两式得:

223104,v3105



电磁场习题解答

第 35 页

8 9108

0

291010 0162即

2281100

0441106S/m 7900904109910100而

,29101009101041071106109Hz

f24497—

8、已知传输线在1GHz时的分布参数为:R010.4/m;C08.351012F/m;L01.33106H/m,G00.8106S/m。试求传输线的特性阻抗,衰减常数,相位常数,传输线上的波长及传播速度。

解:特性阻抗

R0jL0Z0G0jC010.4j21091.33106399.1

0.8106j21098.351012衰减常数和相位常数:

j(R0jL0)(G0jC0)

(10.4j21091.33106)(0.8106j21098.351012)

0.01315j20.93

由此可见

0.01315Np/m,20.93rad/m

电磁场习题解答

第 36 页

波速和波长:

vv3108m/, s 0.3m f7—4—

2、特性阻抗Z0100,长度为/8的无损耗传输线,输出端接有负载Zl(200j300),输入端接有内阻为100、电压为50000V的电源。试求:(1)、传输线输入端的电压;(2)、负载吸收的平均功率;(3)、负载端的电压。

解:(1)、传输线的输入阻抗为

22Zlcos(l)jZ0sin(l)

ZinZ022Z0cos(l)jZlsin(l)

(200j300)cos()j100sin()4100100cos()j(200j300)sin()44

50(1j3)

0050005000520

I/45A 1010050j1501502/4530ZI50(1j3)52/450A372.68/-26.5V6

U1in13(2)、负载吸收的平均功率

由于传输线是无损线,所以负载吸收的平均功率等于传输线始端输入的平均功率

P2U1I1cos(26.560450)277.85W(3)、负载端的电压

Ucos2sin2cossin(l)jZI(l)U()jZI()

U210110144

电磁场习题解答

第 37 页

2]2[50(1j3)52/450j10052/450] [U1jZ0I12233250250/450[1j5]5.1/45078.690425/33.690V

337—

17、长度为/4的无损耗线联接如题7—17图。其特性阻抗Z0为50。

若要使电源发出最大功率,试决定集中参数B的值及电源内阻。

Z22解:Zlcos()jZ0sin()Z2025inZ044Zcos(22Z l(14)jZj)0lsin(4)

Y1(1j)inZ in25当 YjB1inR时电源发出的功率最大,由此可得

01j25jB1R

即 B1S,R025 025

电磁场习题解答

第 38 页

第五篇:第1.2章习题解答

第一章习题解答

1.1 如何区分直流电磁系统和交流电磁系统?如何区分电压线圈和电流线圈?

答:直流电磁铁铁心由整块铸铁铸成,而交流电磁铁的铁心则用硅钢片叠成,以减小铁损。直流电磁铁仅有线圈发热,线圈匝数多、导线细,制成细长形,且不设线圈骨架,铁心与线圈直接接触,利于线圈的散热。交流电磁铁由于铁心和线圈均发热,所以线圈匝数少,导线粗,制成短粗形,吸引线圈设有骨架,且铁心与线圈隔离,利于铁心与线圈的散热。1.2 交流电磁系统中短路环的作用是什么?三相交流电磁铁有无短 路环?为什么?

答:交流接触器线圈通过的是交变电流,电流正负半波要经过零点,在电流过零点时线圈电磁吸力接近于零,如此动铁芯会与静铁芯发生振动和噪声。在铁心端面上开槽安放短路环后,交变的磁通使得短路环产生同频交变感应电流,该电流使短路环内产生与铁心磁通变化相反的逆磁通。如此在铁心端面上,短路环内的磁通与环外磁通在时间上错开,避免了吸力过零产生噪声和振动现象。

没有短路环,因为短路环是在电流过零时产生感应电流维持铁芯吸合,三相交流电磁铁一相电流过零时其余两相不为零,铁芯还是吸合的,因此不再需要短路环。第一章习题解答

1.3 交流电磁线圈误接入直流电源、直流电磁线圈误接入交流电 源,将发什么问题?为什么?

答:交流电磁线圈误接入对应直流电源 ,时间长了有可能将线圈烧掉,因为交流线圈的电感一般很大,其电阻阻值较小,所以当通直流电源后,电流会很大,电磁阀不会动作。直流电磁线圈误接入对应交流电源,不会有什么影响,因为直流电磁线圈的阻值大,相应的电感也大,一般比交流电磁线圈的大。

1.4电弧是如何产生的?有哪些危害?直流电弧与交流电弧各有什么特点?低压电器中常用的灭弧方式有哪些?

答:开关触头在大气中断开电路时,如果电路的电流超过 0.25~1A,电路断开后加在触头间的电压超过 12~20V,则在触头间隙(又称弧隙)中便会产生一团温度极高、发出强光和能够导电的近似圆柱形的气体。电弧的危害:(1)延长了切断故障的时间;(2)高温引起电弧附近电气绝缘材料烧坏;(3)形成飞弧造成电源短路事故;(4)电弧是造成电器的寿命缩短的主要原因。

1.4电弧是如何产生的?有哪些危害?直流电弧与交流电弧各有什么特点?低压电器中常用的灭弧方式有哪些?

交流是成正弦变化的,当触点断开时总会有某一时刻电流为零,此时电流熄灭。直流电弧由于其不过零点,导致开关不能断开电弧,与交流电相比,直流电弧不易熄灭。机械性拉弧、磁吹式灭弧、窄缝灭弧、栅片灭弧法、固体产气灭弧、石英砂灭弧、油吹灭弧、气吹灭弧等。1.5 接触器的主要结构有哪些?交流接接触器和直流接触器如何区分?

答:接触器的结构主要由电磁系统,触头系统,灭弧装置和其他部件等组成。直流接触器与交流接触器相比,直流接触器的铁心比较小 ,线圈也比较小 ,交

流电磁铁的铁心是用硅钢片叠柳而成的。线圈做成有支架式 ,形式较扁。因为直流电磁铁不存在电涡流的现象,区分方式如下:(1)铭牌:AC是交流,DC是直流;(2)灭弧罩:交流接触器设有灭弧装置,以便迅速切断电弧,免于烧坏主触头,大的有灭弧栅片。直流接触器由于直流电弧比交流电弧难以熄灭,直流接触器常采用磁吹式灭弧装置灭弧;(3)极数:交流的主极为

三、直流的主极为二;(4)线圈的铁芯和衔铁:交流的为分片硅钢片、直流为整体式)。1.6 交流接触器在衔铁吸合时,线圈中会产生冲击电流,为什么?直流接触器会产生这种现象吗?为什么?

答:交流接触器的线圈是一个电感,是用交流电工作的。吸合前线圈内部没有铁心,电感很小,阻抗也就很小,所以电流大;吸合后铁心进入线圈内部,电感量增大,阻抗增大,所以电流就降下来了。直流接触器工作电流主要取决于其内部电阻,所以不会产生冲击电流。1.7 中间继电器的作用是什么?中间继电器与接触器有何异同?

答:中间继电器的作用是将一个输入信号变成多个输出信号或将信号放大即增大触头容量的继电器。

中间继电器的触头对数多,触头容量较大(额定电流 5A~10A),动作灵敏。其主要用途是当其它继电器的触头对数或触头容量不够时,可借助中间继电器来扩大触头数目,起到中转或变换作用;接触器触点有主触点和辅助触点之分,而中间继电器没有主、辅助触点之分。1.8 对于星形联结的三相异步电动机能否用一般三相结构热继电器作断相保护?为什么?对于三角形联结的三相异步电动机必须使用三相具有断相保护的热继电器,对吗?

答:可以。因为热继电器内部有双金属片。当电机电源缺相时,包括机械方面的原因造成机堵转,电机的电流会增加。电流增加使金属片受热到一定程度,根据热膨胀系数的不同金属片会分开。从而来断开热继电器的辅助触头,被控制的接触器会释放,切断电源,热继电器有过热过载保护,保护电机不会因为电流的增加被烧坏。必须使用三相具有断相保护的热继电器。三角形接法的电动机,线电流是相电流的 1.732倍。当发生断相时,线电流等于相电流。同样的相电流下,断相时的线电流较小,造成普通热继电器在断相时保护灵敏度下降,因此要用断相热继电器才行。

1.9 试比较电磁式时间继电器、空气阻尼式时间继电器、电动式时间继电器与电子式时间继电器的优缺点及应用场合? 答:

1、电磁式时间继电器是根据电磁阻尼原理产生延时的 ,延时时间短(0.3~1.6s),但它结构比较简单,通常用在断电延时场合和直流电路中。

2、空气阻尼式时间继电器又称为气囊式时间继电器,它是根据空气压缩产生的阻力来进行延时的,其结构简单,价格便宜,延时范围大(0.4~180s),但延时精确度低。

3、电动式时间继电器的原理与钟表类似,它是由内部电动机带动减速齿轮转动而获得延时的。这种继电器延时精度高,延时范围宽(0.4~72h),但结构比较复杂,价格很贵。

4、电子式时间继电器又称为晶体管式时间继电器,它是利用延时电路来进行延时的,这种继电器精度高,体积小。

1.10 在电动机的控制电路中,热继电器与熔断器各起什么作用?两者能否互相替换?为什么?

答:热继电器主要是起到过载保护作用还有因三相电流不平衡、缺相引起的过载保护,而保险丝主要起短路保护作用和限流保护。

两者不能互相替换,热继电器内部结构具有热惯性作用,当线路发生短路时热继电器需要内部的保护机构一定时间来发热令原本是常闭的触点断开,响应时间自然要比保险丝要长,起不到及时的保护作用,而且热继电器当常闭触点断开后(令控制回路断开)过来一段时间内部的保护机构慢慢的冷却后原本断开起保护的常闭触点又复位闭合了,此时如果短路还没有解决的,常闭触点又一次的断开,这样如此的循环下去。1.11 在使用和安装 HK系列刀开关时,应注意些什么?铁壳开关的结构特点是什么?试比较胶底瓷盖刀开关与铁壳刀开关的差异及各自用途?

答:1.电源进线应接在静触点一边的进线端(进线座应在上方),用电设备应接在动触点一边的出线端。这样当开关断开时,闸刀和熔丝均不带电,以保证更换熔丝时的安全。

2.在合闸状态下,刀开关的手柄应该向上,不能倒装或平装,以防止闸刀松动落下时误合闸。特点:(1)设有连锁装置,保证在合闸状态下开关盖不能开启,而开启时不能合闸,以确保操作安全;(2)采用储能分合闸方式,在手柄转轴与底座之间装有速动弹簧,能使开关快速接通或断开,与手柄操作速度无关,这样有利于迅速灭弧。

差异及各自用途:胶底瓷盖刀开关由熔丝、触刀、触点座和底座等组成,结构简单、价格便宜、使用维修方便,得到广泛应用。主要用作电气照明电路和电热电路、小容量电动机电路的不频繁控制开关,也可用作分支电路的配电开关。铁壳刀开关主要由钢板外壳、触刀开关、操作机构、熔断器等组成。刀开关具有灭弧装置,一般用于小型电力排灌、电热器、电气照明线路的配电设备中,用于不频繁地接通与分断电路,也可以直接用于异步电动机的非频繁全压启动控制。

1.12 低压断路器具有哪些脱扣装置?试分别说明其功能。

答:自由脱扣器:靠操作机构手动或自动合闸,将主触头锁在合闸位置上;电磁脱扣器:当回路短路时,电磁脱扣器的衔铁吸合,从而使脱扣机构动作;

欠压脱扣器:当电路失压时,失压脱扣器的衔铁释放,也使自由脱扣机构动作;

热脱扣器:当电路发生短路或严重过载时,过电流脱扣器的衔铁被吸合,使自由脱扣机构动作;

分励脱扣器:作为远距离控制分断电路之用。

1.14 按钮与行程开关有何异同点?什么是主令控制器?作用是什么?

答:按钮与行程开关的工作原理相同,区别在于:行程开关不是靠手的按压,而是利用生产机械运动部件的挡铁碰压而使触头动作。

主令电器是用来接通或分断控制电路,以发出指令或用于程序控制的开关电器。主要有:按钮、行程开关、万能转换开关、主令控制器等。

第二章部分习题解答

1.电气系统图主要有哪些?各有什么作用和特点? 答:电气原理图、电器布置图和电气安装接线图。

电气原理图:根据控制线图工作原理绘制,具有结构简单,层次分明。主要用于研究和分析电路工作原理。电气布置安装图:主要用来表明各种电气设备在机械设备上和电气控制柜中的实际安装位置,为机械电气在控制设备的制造、安装、维护、维修提供必要的资料。

电气安装接线图:是为了进行装置、设备或成套装置的布线提供各个安装接线图项目之间电气连接的详细信息,包括连接关系,线缆种类和敷设线路。

2.电气原理图中电QS、FU、KM、KA、KT、KS、FR、SB、SQ分别代表什么电气元件的文字符号?

答:QS 刀开关、FU 熔断器、KM接触器、KA 中间继电器、KT 时间继电器、KS 速度继电器、FR 热继电器、SB 按钮、SQ 行程开关。

3.电气原理图中,电器元件的技术数据如何标注? 答:可以采用下面两种方法:

(1)电气元件明细表:元器件名称、符号、功能、型号、数量等;(2)用小号字体注在其电气原理图中的图形符号旁边。

4.什么是失电压、欠电压保护?采用什么电器元件来实现失电压,欠电压保护?

答:失电压保护:当电力元件失去电压时执行相应保护动作(如断路器跳闸)的保护方式。主要采用接触器来进行保护。欠电压保护:是指在供电过程中由于某种原因,会出现电网电压急剧降低,此时,开关自动跳闸,切断供电电源。主要采用接触器和电压继电器来进行保护。

5.点动、长动在控制电路上的区别是什么?试用按钮、转换开关、中间继电器、接触器等电器,分别设计出既能长动又能点动的控制线路。

答:点动按钮两端并未并联上能实现自锁功能的接触器常开触点,反之,长动按钮两端并联了自锁按钮。

图自己画

7.在电动机可逆运行的控制线路中,为什么必须采用联锁环节控制?在图2.7(c)中已采用了机械联锁,为什么还要采用电气联锁?若两种触头接错,线路会产生什么现象? 答:(1)联锁控制是在控制线路中一条支路通电时保证另一条支路断电。电气互锁控制过程为从一个运行状态到另一个运行状态必须经过停止既“正-停-反”。双重互锁从一个运行状态到另一个运行状态可以直接切换既“正-反-停”。

(2)机械互锁具有滞后特性,往往在0.1秒之后才会响应。因此,一方面为提高可靠性,机械联锁在一些场合可靠性是无法保证的,如长距离、频繁动作等场合。另一方面为保护元件,如线圈,如误操作,机械部分卡住,线圈长时间带电就会烧坏的。(3)不能正常运转。

8.某机床的主轴和油泵分别由两台笼型异步电动机M1和M2来拖动。试设计控制线路,其要求如下:①油泵电动机M2启动后主轴电动机M1才能启动;②主轴电动机能正反转,且能单 独停车;③该控制线路具有短路、过载、失压欠压保护。

9.什么叫直接启动?直接启动有何优缺点?在什么条件下可允许交流异步电动机直接启动?

答:直接启动:将电动机的定子绕组直接接入电源,在额定电压下起动。

主要优点:简单、方便、经济和启动时间短,其启动电流对电网的不利影响会随着电源容量的增加而减小。

主要缺点:当电动机容量较大(大于10kw),启动时产生较大的启动电流,会引起电网电压下降。交流异步电动机直接启动受到电源容量的限制,一般仅适用于功率在 10kw以下的电动机。

10.什么叫降压启动?有哪几种方法?各有什么特点及适用场合?

答:降压启动:利用起动设备将电压适当降低后加到电动机的定子绕组上进行起动,待电动机起动运转后,再使其电压恢复到额定值正常运行。降压启动方法: 笼型异步电动机:

(1)定子绕组中串接电阻降压起动;特点:起动转矩小,加速平滑,但电阻损耗大。场合:电动机容量不大,起动不频繁且平稳。

(2)Y/△降压起动特点:起动转矩小,仅为额定值的1/3;转矩特性差(起动转矩下降为原来的l/3)。场合:电动机正常工作时定子绕组必须△接,轻 载起动。

(3)自耦变压器降压起动;特点:起动转矩大(60%、80%抽头),损耗低,但设备庞大成本高。场合:重载起动。

(4)延边三角形降压起动。特点:起动时,定子绕组接成延边三角形,以减小起动电流,待电动机起动后,再换接成三角形,使电动机在全压下运行。场合:要求启动转矩较大的场合绕线式异步电动机:(1)转子绕组串电阻降压起动;特点:启动前,启动电阻全部接入电路,随启动过程可将电阻逐段切除。场合:不可逆轧机、起重运输机、高炉料车卷扬等。

(2)转子绕组串接频敏变阻器降压启动。频敏变阻器的特点是其电阻随转速上升而自动减小。特点:结构简单,价格便宜,制造容易,运行可靠,维护方便,能自动操作等。场合:无适用于大、中容量电动机的重载起动。

11.试设计按时间原则控制的三相笼型异步电动机串电抗器降压启动控制线路?

15.设计一个控制线路,三台笼型异步电动机工作情况如下:M1先启动,经10s后M2自行启动,运行30s后M1停机并同时使M3自启动,再运行30s后全部停机?

17.什么叫反接制动?什么叫能耗制动?各有什么特点及适 用场合?

答:反接制动:是利用改变电动机电源的相序,使定子绕组产生相反方向的旋转磁场,从而产生制动转矩的一种制动方法。

特点:制动力强、停转迅速、无需直流电源;缺点是制动过程冲击大,电能消耗多 应用场合:不经常启动,电动机容量不大(10KW以下)的设备。

能耗制动:即在电动机脱离三相交流电源之后,定子绕组上加一个直流电压,即通入直流电流,利用转子感应电流与静止磁场的作用已达到制动的目的。

特点:它比反接制动所消耗的能量小,其制动电流比反接制动时要小得多,而且制动过程平稳,无冲击,但能耗制动需要专用的直流电源。

应用场合:适用于电动机容量较大和起制动频繁的场合。

19.试设计一个按时间原则来实现的电动机可逆运行能耗制动控制线路。

下载概率论第一章习题解答(推荐5篇)word格式文档
下载概率论第一章习题解答(推荐5篇).doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    JSP程序设计习题解答

    习题一 1.运行startup.bat启动Tomcat服务器的好处是什么? 答:确保Tomcat服务器使用的是Java_home环境变量设置的JDK。 2.请在C:下建立一个名字为book的目录,并将该目录设置成一个......

    线性代数习题及解答

    线性代数习题一 说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,||||表示向量的长度,T表示向量的转置,E表示单位矩阵,|A|表示方阵A的行列式. 一、单项选择题(本大题共10小题,每......

    机械设计基础-习题解答

    《机械设计基础》 习题 解 答 机械工程学院 目录 第0章 绪论-----1 第一章平面机构运动简图及其自由度---2 第二章平面连杆机构--------------------------4 第三章......

    《王几何》课后习题解答

    《王几何》课后习题解答 一、快速默读课文,概括文章的主要内容,说说王几何老师给你留下了怎样的印象。 本文写了王几何老师上第一节课时的情形,刻画了一位风趣幽默、教学水平高......

    编译原理 第一章习题解答

    第一章习题解答 2.编译程序有哪些主要构成成分?各自的主要功能是什么? 编译程序的主要构成成分有:词法分析程序、语法分析程序、语义分析程序、中间代码生成程序、代码优化程序......

    C语言习题(详细解答)

    程序设计基础(C语言版)习题 第01章 一.选择题 1.以下叙述中正确的是________。 A)程序设计的任务就是编写程序代码并上机调试 B)程序设计的任务就是确定所用数据结构 C)程序......

    中外教育简史习题解答!!

    教育简史习题解答:! 一、选 择 题 1、为原始教育的产生提供必要性的是(A) A 社会生产与社会生活的需要 B 语言的产生 C 经济的发展 D 生产工具的改进 2、五帝时代的学校中也叫“......

    C语言课后习题解答

    第七章 函数调用 7-1 写两个函数,分别求两个整数的最大公约数和最小公倍数, #include void main { int hcf(int,int); int lcd(int,int,int); int u,v,h,l; scanf("%d......