教学公式法的教学反思

时间:2019-05-15 10:56:46下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《教学公式法的教学反思》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《教学公式法的教学反思》。

第一篇:教学公式法的教学反思

公式法包括平方差公式和完全平方公式,它是华东师大版八年级上册第12章整式乘除的教学内容,它是初中代数学习的重要组成部分。公式法的学习是在学生学习了幂的运算,整式乘法运算的基础上学习的一节内容,通过对前面内容的学习为学生进一步学习后续知识做好了辅垫,它是学生学习因式分解,乃至解一元二次方程的基础。为了能较好的组织学生开展学习,我课前认真阅读了教材,精心设计了课堂教学设计,精选了练习题,教学效果基本满意,为了能更好的促进教育教学工作,现关公式法的教学做如下反思。

一、利用问题,巧妙导入,激发兴趣。教学中我能够将生活中的问题与数学知识有机结合,通过实际问题的探索引入新授内容,由于这一部分知识多为计算类的知识,学生对这些大量的计算感到反感,通过这些问题的引入即能让学生感到新鲜,而且还能让学生感受到数学来源与生活,体验学习数学的乐趣和学好数学的重要性。

二、合理迁移,及时总结。教学中通过学生对多项式乘法运算设计与公式法教学相关的内容,通过学生的计算,学生观察所得结果合理引导学生发现规律,分小组讨论并总结计算公式,进而明确公式法的重要作用。教学中应加强对公式结构的分析,尤其两个公式之着的区别,完全平方公式的变形做为重点、难点知识教学,通过对公式应用,公式变形的强化加深对公式的认识。

三、数形结合。在教学公式法时利用几何图形进一步加深学生对公式结构及其意义的理解,通过这种方法即可以提高学生的认识能力,更能开拓学生的眼界,引导学生解决问题方法的多样性,同时也为代数与几何的相互关联提供了感性的认识。

四、精练精讲。这一部分知识是初中阶段计算最多,也是学生最易出错的,针对这一现状,我在教学中注重学生课堂练习题的设计,练习题不易过多,但要有针对性,方法学生基本都能掌握,重要的是学生找不到合理的计算方法,导致无法正确的运用公式法解决问题。运用公式的变形解决问题就是一个难点,通过近五咱不同类型题目的训练,学生开拓了思维也感受了公式的重要性,为后期的学习奠定良好的学习基础,提了升学生数学思维和解决问题的能力。

五、少讲多学。教学中我注重学生主观能动性的培养,以学习小组为单位,明确学习任务,合理分工,形成小组互帮互学,小组比学,学生自学的积极性较高,形成了良好的自主学习的氛围。

第二篇:《14.3.2公式法》教学反思

14.3.2公式法》教学反思

在数学教学过程中,知识的传授不应只是教师单纯地讲解与学生简单的模仿,而应通过教学活动,让学生经历知识的形成与应用过程,从而使学生更好的理解知识的意义,掌握必要的技能,发展应用数学的意识,增强学好数学的愿望与信心。根据新课程标准要求和学生的起点能力,本节课的具体目标有两个:一个是会用完全平方公式分解因式,一个是会综合运用提取公因式法、公式法分解因式。

在新课引入的过程中,我以“问题情境——建立数学模型——解释、应用与 拓展”的模式组织课堂教学。可以说,对新问题的引入,我是采取了由浅入深的方法,使学生对新知识不产生任何的畏惧感。接下来,通过例题的讲解、练习的巩固 让学生逐步掌握了运用完全平方进行因式分解。整堂课教下来我觉得自己做的比较好的几点是:

1、突显特点。这节课的重点是运用完全平方公式 分解因式,而完全平方式的判定是关键。所以我比较重视完全平方式特点分析,应用。尤其强调完全平方式标准模式的书写,这也是学生思维过程的暴露,有利于中 等及中等以下学生对新知识的掌握,提高学生解题的准确率,对提高那些拐脚的偏理科的数学尖子生的表达能力也有好处。对以后灵活掌握用配方法解一元二次方 程,求代数式最值等知识有正向迁移作用。有利于学生思维能力的发展。

2、课堂组织严密,无论是习题的设置还是语言的导入,努力做到了环环 相扣,逐步深入,便于学生理解和接受。自主训练,我以先引导学生分析多项式特点,再让学生尝试分解因式的方式完成例题教学。对课本上的练习题放手让学生自 己完成,体现了以教师为主导,以学生为主体,及时反馈,及时巩固教学方式。

3、及时归纳。根据学生认知特点,教学中我给予学生及时的多归纳,总结,使学生掌握一定的条理性和规律性,有利于学生的创新和发展。如完全平方式特

点形象概括(口诀记忆法,结构的对称美),因式分解步骤概括以及换元思想,配方法的提出。

4.能够恰当的使用激励性语言,帮助学生树立自信,激励学生踊跃发言。课堂气氛活跃,真正做到了“人人参与,主动思考,积极发言,大胆展示”,的课堂效果。

5、重视动态生成。教学中我发现学生们思维很活跃,接受能力比较强,我对例题教学作了及时调整,由师生合作完成改为先引导学生观察、分析多项式特点,再让学生自主完成解题过程。

6、根据学生的心理特点和实践认知水平,努力为他们创造成功的条件。在教学过程中采用类比、探索式教学,辅以讲练结合,师生互动,总而言之,努力营造出平等、轻松、活泼的教学氛围。从新课标评价理念出发,抓住学生语言、思想等方面的亮点给予帮助、鼓励、提高学生学数学,用数学的信心。

在以后的教学中我会更多的结合学生的学习情况,多发现学生在学习方面的优势和不足,因材施教,更好的提高课堂效率。

第三篇:因式分解----公式法教学反思

教学反思

因式分解这部分的内容是八年级数学第一学期重难点,虽然应用的公式只是三条,但要灵活应用于解题却不容易,所以我在制定这一章书的教学计划时就对教材的教学顺序作出了一些调整。因式分解的公式是乘法公式的逆运算,所以我将因式分解提前学,在学会乘法公式后暂时略过整式的除法直接学习因式分解,我认为这样调整后可以加强公式的熟练使用;另一方面我加强乘法公式的练习巩固,在没有学习因式分解之前,先针对平方差公式以及完全平方公式的应用及逆用作了一个专题训练。

在学习因式分解的这个专题训练的效果是不错的,因为平方差公式以及完全平方公式都是刚刚学习且应用较多的公式。作好这些准备工作之后,便开始学习因式分解。正式提出因式分解的定义的时候,同学们都一副明了的表情。而我也强调的就是因式分解与乘法公式是相反方向的变形,并且在练习中一再将公式罗列出来。然后讲授提公因式法、公式法(包括平方差、完全平方公式),讲课的时候是一个公式一节课,先分解公式符合条件的形式再练习,主要是以练习为重。讲课的过程是非常顺利的,这令我以为学生的掌握程度还好。因为作业都是最基本的公式应用,而提高题一般是特优生才会选择来做。

讲完因式分解的新课,我随堂出了一些综合性的练习题,才发现效果是不太好的。他们只是看到很表层的东西,而对于较为复杂的式子,却无从下手。

课后,我总结的原因有以下四点:

1、思想上不重视,因为对于公式的互换觉得太简单,只是将它作为一个简单的内容来看,所以课后没有以足够的练习来巩固。

2、在学习过程中太过于强调形式,反而如何创造条件来满足条件忽略了。导致他们对于与公式相同或者相似的式子比较熟悉而需要转化的或者多种公式混合使用的式子就难以入手。

3、灵活运用公式(特别与幂的运算性质相结合的公式)的能力较差,如要将9-25x2化成32-(5x)2然后应用平方差公式这样的题目却无从下手。究其原因,和我布置的作业及随堂练习的单一性及难度低的特点有关。

因式分解是一个重要的内容,也是难点,我认为我对教材内容的调整是比较适合的,但是我忽略了学生的接受能力,也没有注意到计算题在练习方面的巩固及题型的多样化。在以后的教学中应该更多结合学生的学习情况去调整教学进度,多发现学生在学习方面的优势和不足之处。

第四篇:公式法教学设计

第二章

一元二次方程

3.公式法

杜寨初级中学 九年级

一、学生知识状况分析 学生的知识技能基础:学生通过前几节课的学习,认识了一元二次方程的一般形式:ax2+bx+c=0(a≠0),并且已经能够熟练地将一元二次方程化成它们的一般形式;在上一节课的基础上,大部分学生能够利用配方法解一元二次方程,但仍有一部分认知较慢、运算不扎实的同学不能够熟练使用配方法解一元二次方程.学生活动经验基础:学生已经具备利用配方法解一元二次方程的经验;学生通过《规律的探求》、《勾股定理的探求》、《一次函数的图像》中一次函数增减性的总结等章节的学习,已经逐渐形成对于一些规律性的问题,用公式加以归纳总结的数学建模意识,并且已经具备本节课所需要的推理技能和逻辑思维能力.二、教学任务分析

公式法实际上是配方法的一般化和程式化,然后再利用总结出来的公式更加便利地求解一元二次方程。所以首先要夯实上节课的配方法,在此基础上再进行一般规律性的探求——推导求根公式,最后,用公式法解一元二次方程。其中,引导学生自主的探索,正确地导出一元二次方程的求根公式是本节课的重点、难点之一;正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力是本节课的另一个重点和难点。为此,本节课的教学目标是: ①在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。

②能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.③通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。④通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力

三、教学过程分析

本课时分为以下五个教学环节:第一环节:回忆巩固;第二环节:公式的推导;第三环节:看一看、练一练,巩固新知;第四环节:收获与感悟;第五环节:布置作业。

第一环节;回忆巩固 活动内容:

①用配方法解下列方程:(1)2x2+3=7x(2)3x2+2x+1=0 全班同学在练习本上运算,可找两位同学上黑板演算 ②由学生总结用配方法解方程的一般方法: 第一题: 2x2+3=7x 解:将方程化成一般形式: 2x2-7x +3=0 两边都除以一次项系数:2 x27x30 1 配方:加上再减去一次项系数一半的平方 x27x(7)24930

24162即:(x7)2250

416725(x)2416两边开平方取“±” 得:

x75 44x75 44 写出方程的根 ∴ x1=3 , x2=1

2第二题: 3x+2x+1=0 解:两边都除以一次项系数:3 x22x10

332 配方:加上再减去一次项系数一半的平方 x22x(1)2130

3392即:(x1)2250

318125

(x)2318∵250

18∴原方程无解 活动目的:(1)进一步夯实用配方法解方程的一班步骤.在这里相对于书上的解题方法作了小小的改动:没有把常数项移到方程右边,而是在方程的左边直接加上再减去一次项系数一半的平方,这样做的目的是为了与以后二次函数一般式化顶点式保持一致。

(2)选择了一个没有解的方程,让学生切实感受并不是所有的一元二次方程在实数范围内都有解。

(3)教师还可以根据上节课作业情况,选学生出错多的题目纠错、练习.活动的实际效果:

通过对旧知识的回顾,学生再次经历了配方法解方程的全过程,由于是旧知识,学生容易做出正确答案,并获得成功的喜悦,调动了学生的学习热情,唤醒学生的思维,为后面的探索奠定了良好的基础。

第二环节 公式的推导 活动内容:

提出问题:解一元二次方程:ax2+bx+c=0(a≠0)学生在演算纸上自主推导、并针对自己推导过程中预见的问题在小范围内自由研讨。最后由师生共同归纳、总结,得出求根公式.解:两边都除以一次项系数:a x2bxc0

aa 2 问:为什么可以两边都除以一次项系数:a 答:因为a≠0 配方:加上再减去一次项系数一半的平方

bb2b2cxx()20a2a4aa2即: b2b24ac

(x)a4a2 b2b24ac(x)0a4a2 问:现在可以两边开平方吗?

答:不可以,因为不能保证 b4ac0

24a2 问:什么情况下 b4ac0 24a2 学生讨论后回答:

答: ∵ a≠0 ∴ 4a2>0 要使b4ac0 24a2只要 b2-4ac≥0即可

∴当b2-4ac≥0时,两边开平方取“±” 得: xbb4ac

2a4a2bb24ac xa2a xbb4ac

2a2abb24ac x2a问:如果b2-4ac<0时,会出现什么问题? 答:方程无解 活动目的:

学生能否自主推导出来并不重要,重要的是由学生亲身经历公式的推导过程,只有经历了这一过程,他们才能发现问题、汲取教训、总结经验,形成自己的认识.在集体交流的时候,才能有感而发。活动的实际效果:

学生的主要问题通常出现在这样的几个地方:(1)

中b2c运算的符号出现错误和通分出现错误 bb2b2cxx()204a2aa2a4aa2(2)不能主动意识到只有当b2-4ac≥0时,两边才能开平方

(3)两边开平方,忽略取“±”。

大部分学生需要在教师的帮助下,才能完善公式的推导。第三环节:练一练,巩固新知 活动内容:

1、判断下列方程是否有解:(学生口答)

22(1)2x+3=7x(2)x-7x=18(3)3x2+2x+1=0(4)9x2+6x+1=0(5)16x2+8x=3(6)2x2-9x+8=0 学生迅速演算或口算出b2-4ac,从而判断是否有根

问第(3)题的判断,与第一环节中的第(2)题对比,那种方法更简捷? 2、上述方程如果有解,求出方程的解 学生口述,教师板书第(1)题 例:解方程 2x2+3=7x 先将方程化成一般形式 解: 2x2-7x+3=0 确定a,b,c的值 a=2, b=-7, c=3 判断方程是否有根 ∵b2-4ac=(-7)2-4×2×3=25>0 ∴bb4ac

2x2a72575224写出方程的根 即x1=3,x2=-1

2问:与第一环节中的第(1)题对比,哪种解法更简捷?

(剩下的题目教师根据时间情况选择使用,个别学生上黑板做题,其他同学在座位上练习)

3、课本随堂练习2.一个直角三角形三边的长为三个连续的偶数,求这个三角形的三条边长。

活动目的:通过让学生或口述交流或上黑板解方程,公示学生的思维过程,查缺补漏,了解学生的掌握情况和灵活运用所学知识的程度。活动实际效果:教师引导学生分析,学生口答、板书,笔答,对比,评价,总结.大部分学生能够正确、熟练的用公式法解方程。

出现的问题

1、对于(1)(2)(5)小题,有个别学生因为没有化成一般形式,从而把a,b,c的符号弄错了;、学生比较容易得出当a,c异号时,方程一定有解。第四环节:收获与感悟 活动内容: 提出问题:

1、一元二次方程ax2+bx+c=0(a≠0)的求根公式是什么?

2、用公式法解方程应注意的问题是什么?

3、你在解方程的过程中有哪些小技巧?

让学生在四人小组中进行回顾与反思后,进行组间交流发言。活动目的:鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,通过回顾进一步巩固知识,将新知识纳入到学生个人已有的知识体系中。

活动实际效果:学生通过回顾本节课的学习,感受到公式推导的全过程,发展了逻辑思维能力,提高了推理技能,在使用公式解方程的过程中,感受到有的一元二次方程的有根,而有的没有根,通过解方程,进一步提高了学生的运算能力。第五环节:布置作业 用公式法解下列方程(教师可根据实际情况选用)2x2-4x-1=0 5x+2=3x2

(x-2)(3x-5)=0 2x2+7x=4 x2-22x+2=0 列方程解应用题

1、已知长方形城门的高比宽多6尺8寸,门的对角线长1丈,那么,门的高和宽各是多少? 2、一张桌子长4米,宽2米,台布的面积是桌面面积的2倍,铺在桌子上时,各边下垂的长度相同,求台布的长和宽

3、某商场销售一批衬衫,平均每天可以售出20件,没见盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,如果每件降价1元,商场每天可以多销售2件,(1)若商场平均每天要盈利1200元,每件衬衫要降价多少元?

(2)选作题(供学有余力的学生选作)每件衬衫降价多少元时,商场平均每天盈利最多?

四、教学反思

1、要创造性的使用教材

教材只是为教师提供最基本的教学素材,教师完全可以根据学生的实际情况进行适当调整。本节课教师就根据学生实际情况,调整了配方时的个别过程,使之与后续知识学习相一致,添加了例题和练习题。

2、要为学生的终身学习奠基

这节课不能够仅仅让学生背公式、套公式解方程,而应让学生初步建立对一些规律性的问题加以归纳、总结的数学建模意识,亲身体会公式推导的全过程,提高学生推理技能和逻辑思维能力;进一步发展学生合作交流的意识和能力.帮助学生形成积极主动的求知态度.5

第五篇:公式法教学设计

第二章

一元二次方程

3.公式法

一、教学目标

知识技能:在教师的指导下,学生能够正确的导出一元二次方程的求根公式,并在探求过程中培养学生的数学建模意识和合情推理能力。

数学思考:能够根据方程的系数,判断出方程的根的情况,在此过程中,培养学生观察和总结的能力.问题解决:通过正确、熟练的使用求根公式解一元二次方程,提高学生的综合运算能力。

情感态度:通过在探求公式过程中同学间的交流、使用公式过程中的小技巧的交流,进一步发展学生合作交流的意识和能力

二、教学重难点

重点:引导学生自主的探索,正确地导出一元二次方程的求根公式; 难点:正确、熟练地使用一元二次方程的求根公式解方程,提高学生的综合运算能力;

三、教学方法

学生探索教师引导

四、教具准备

活页测试卷

五、教学过程

1、情境创设

①用配方法解下列方程:(1)2x2+3=7x(2)3x2+2x+1=0 全班同学在练习本上运算,可找两位同学上黑板演算 ②由学生总结用配方法解方程的一般方法: 第一题: 2x2+3=7x 解:将方程化成一般形式: 2x2-7x +3=0 两边都除以一次项系数:2

x273x0 22 1 配方:加上再减去一次项系数一半的平方 x27x(7)24930

24162即:(x7)2250

416725(x)2416两边开平方取“±” 得:

x75 4475 442x 写出方程的根 ∴ x1=3 , x2=1 第二题: 3x2+2x+1=0 解:两边都除以一次项系数:3

x22x10

配方:加上再减去一次项系数一半的平方 x22x(1)2130

3392即:(x1)2250

318125(x)2318∵250

18∴原方程无解

(1)进一步夯实用配方法解方程的一班步骤.在这里相对于书上的解题方法作了小小的改动:没有把常数项移到方程右边,而是在方程的左边直接加上再减去一次项系数一半的平方,这样做的目的是为了与以后二次函数一般式化顶点式保持一致。

(2)选择了一个没有解的方程,让学生切实感受并不是所有的一元二次方程在实数范围内都有解。

(3)教师还可以根据上节课作业情况,选学生出错多的题目纠错、练习.2、探索新知

(1)推导公式

提出问题:解一元二次方程:ax2+bx+c=0(a≠0)学生在演算纸上自主推导、并针对自己推导过程中的困难问题在小组内自由研讨。最后由师生共同归纳、总结,得出求根公式.2 解:两边都除以一次项系数:a

问:为什么可以两边都除以一次项系数:a 答:因为a≠0 配方:加上再减去一次项系数一半的平方

bbbc2x2bcx0 aax2ax(2a)24a2a0即:

b2b24ac(x)0a4a2b2b24ac(x)a4a2 问:现在可以两边开平方吗?

答:不可以,因为不能保证 b4ac0

24a2 问:什么情况下 b4ac0

24a2 学生讨论后回答:

答: ∵ a≠0 ∴ 4a2>0 要使b4ac0 24a2只要 b2-4ac≥0即可

∴当b2-4ac≥0时,两边开平方取“±” 得: xbb4ac

2a4a2bb24ac xa2a xbb4ac

2a2abb24ac x2a问:如果b2-4ac<0时,会出现什么问题? 答:方程无解

学生能否自主推导出来并不重要,重要的是由学生亲身经历公式的推导过程,只有经历了这一过程,他们才能发现问题、汲取教训、总结经验,形成自己的认识.在集体交流的时候,才能有感而发。

学生的主要问题通常出现在这样的几个地方:(1)

中b2c运算的符号出现错误和通分出现错误 bb2b2cxx()204a2aa2a4aa2(2)不能主动意识到只有当b2-4ac≥0时,两边才能开平方(3)两边开平方,忽略取“±”。

大部分学生需要在教师的帮助下,才能完善公式的推导。(2)公式应用

1、判断下列方程是否有解:(学生口答)

(1)2x2+3=7x

(2)x2-7x=18

(3)3x2+2x+1=0(4)9x2+6x+1=0(5)16x2+8x=3(6)2x2-9x+8=0 学生迅速演算或口算出b2-4ac,从而判断是否有根

问第(3)题的判断,与第一环节中的第(2)题对比,那种方法更简捷? 2、上述方程如果有解,求出方程的解 学生口述,教师板书第(1)题

例:解方程 2x2+3=7x 先将方程化成一般形式 解: 2x2-7x+3=0 确定a,b,c的值 a=2, b=-7, c=3 判断方程是否有根 ∵b2-4ac=(-7)2-4×2×

3=25>0 ∴

bb4acx2a725752242

写出方程的根 即x1=3,x2=-1

2问:与第一环节中的第(1)题对比,哪种解法更简捷?

(剩下的题目教师根据时间情况选择使用,个别学生上黑板做题,其他同学在座位上练习)

3、随堂练习

课本65页,随堂练习第1题、第2题

4、课堂小结

1、一元二次方程ax2+bx+c=0(a≠0)的求根公式是什么?

2、用公式法解方程应注意的问题是什么?

3、你在解方程的过程中有哪些小技巧?

让学生在四人小组中进行回顾与反思后,进行组间交流发言。

鼓励学生回顾本节课知识方面有哪些收获,解题技能方面有哪些提高,通过回顾进一步巩固知识,将新知识纳入到学生个人已有的知识体系中。

5、布置作业

课本第66页,习题2.6

第1、2、3题 5

下载教学公式法的教学反思word格式文档
下载教学公式法的教学反思.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    《公式法解一元二次方程》教学反思

    《公式法解一元二次方程》教学反思在讲解过程中,我没让学生进行(1)(2)步就直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较......

    《公式法因式分解》教学案例及反思

    《公式法因式分解》教学案例及反思 五龙口一中 卫艳艳 一、教学目标分析 1、使学生了解平方差公式的特点。2、使学生运用平方差公式 2、通过对平方差公式的辨析,培养学生的观......

    22.2公式法教学设计

    22.2.2用公式法解 一元二次方程的教学设计 (数学九年级人教版本上册) 一、学生知识水平分析 学生知识技能基础:学生通过前几节课的学习,认识了一元二次方程的概念,一般形式,并且......

    公式法解一元二次方程教学反思[最终版]

    公式法解一元二次方程教学反思 公式法解一元二次方程是学生在学习配方法后,进一步探究学习的一种适用性强,应用较为广泛的解一元二次方程的方法,是每位学生通过学习完全可以掌......

    运用公式法因式分解教学反思(最终定稿)

    运用公式法因式分解教学反思 本节课内容量较少,主要的目标是学生熟练掌握平方差公式并能利用平方差公式分解因式。我通过复习----对比----引入平方差-----练习巩固完成这节......

    乘法公式教学反思

    上周我们学习了“乘法公式”,乘法公式在简化多项式乘法运算、因式分解及以后的数学学习中有着广泛的应用,乘法公式教学反思。根据课标的规定主要学习两个最基本的乘法公式,留出......

    平方差公式教学反思

    平方差公式教学反思 第四中学孙磊 作为年轻教师的我,今年很荣幸在开学初参加学校数学教研组的讲课活动,我讲课的内容是北师大版七年级下册第一章第七节平方差公式,《平方差公式......

    平方差公式教学反思

    12.1.平方差公式教学反思 1.平方差公式的代数形式学生能够利用乘法法则马上推导出来,但是它的几何意义学生较难掌握.因此,在课堂上应该给学生更多的时间,让学生自己动手,亲手拼一......