第一篇:数字信号处理研究性教学的独特性论文
摘要:随着信号处理应用的日益广泛,工科专业中数字信号处理课程的重要性也日渐凸显.因而,传统的教学方法无法满足该课程教学内容繁杂及实践性强的要求.根据数字信号处理课程的特点,将研究性教学引入到课程的理论与实践教学环节,同时结合综合设计性实验和大学生全程实践,全面提升学生的理论水平及实践创新能力.
关键词:数字信号处理;研究性教学;实践教学
随着语音信号及图像信号处理技术的快速发展,数字信号处理技术得到了广泛的应用.同时,数字信号处理课程作为工科专业一门非常重要的专业基础课程,上承高等数学、信号与系统等基础课程,下接语音信号处理、图像信号处理等专业课程,在学生构建专业知识体系的过程中起到非常重要的作用[1].但是,由于该课程理论性与实践性并重、数学公式繁多,学生学习起来难度较大,尤其是在一些应用型本科院校中,学生基础较差,学习能力不强,更容易出现学生怕学、学不好,教师怕教、教不好的怪象.在数字信号处理的教学过程中,如何做到既让学生掌握基本概念和原理,又能帮助学生将所学知识应用于解决实际问题,从而使学生体会到学习的乐趣而激发学生学习兴趣.这一问题的解决必须从实践环节入手,将理论与实验合理结合,帮助学生构建完备的知识体系,使学生学以致用,用以助学.
1研究性教学理论介绍
近年来,研究性教学成为了国内外高校大力倡导的一种教学模式,在高校本科教学中得到了广泛的应用[2].该方法通过在教学过程中引导学生研究特定选题,实现对所学知识的掌握和提高,并在这一过程中培养学生的创新能力及研究品格[3].因而,研究性教学不是简单的“填鸭式”教学,而是学生必须在教师引导下对知识进行反思、批判和探究的过程.在研究性教学过程中,教师的作用不再局限于传授学生知识,而要以学生为中心设计教学过程,为学生提供所需的教学资源[4].在教师讲授过程中,侧重于学习方法的介绍及学生创新思维的培养,同时教师作为主导者控制学生的整个学习过程,对学生的学习效果进行恰当的评价.
2数字信号处理研究性教学的独特性
本文所提出的数字信号处理的研究性教学方法不同于常规课程的研究性教学方法,它特别侧重实践动手能力的提高和创新思维的培养.在该课程中实施的研究性教学要将理论课教学与实践教学结合起来,利用综合设计性实验及大学生全程实践活动来提升理论教学水平,培养学生实践应用能力.
2.1数字信号处理内容体系的独特性
数字信号处理作为电类专业一门非常重要的专业课程,它的重要地位毋庸置疑.但是由于其理论性与实践性要求都很高[5],而且与信号处理类课程群内其他课程联系紧密等特点,其内容体系具有一定的独特性.
2.1.1学生能力培养的二重性
数字信号处理对于学生能力培养具有二重性,其一是培养学生数学思维能力,利用工程数学相关理论分析信号的生成及变换过程,这有利于培养学生严谨的逻辑思维能力;其二是鼓励学生学以致用,将理论课所学知识应用到解决信号处理实际问题中,如FIR滤波、语音信号采集等.
2.1.2理论教学与实践教学的并重性
数字信号处理课程理论课概念繁多、公式推导复杂[6],学时紧张(仅为51学时)而内容多的矛盾比较突出.实践教学作为理论课的合理补充及有效升华,其地位显而易见,但其学时数仅为15学时,还承担DSP器件的基本技能训练.所以,二者在教学中的并重地位和学时紧张的问题都同时存在.
2.2研究性教学与数字信号处理结合的独特性
在数字信号处理的研究性教学过程中,必须将理论课与实践课紧密结合,课内学时与课外活动结合起来,这是其他课程的研究性教学中很少采用的方法.这种教学方法的独特性在于对教师的理论与实践教学水平的要求都比较高,要求在教学过程中博采工程数学、信号与系统、DSP和EDA等多门课程知识,帮助学生在学习本门课程的同时开拓视野.
3理论与实践并重,课内与课外结合的研究性教学实施
以FIR滤波器的设计为例,展开研究性教学过程.
3.1理论课教学过程
在理论课上,教师首先为学生传授数字滤波器,特别是FIR滤波器的理论和设计方法.其次,向学生提出一些具有实际意义的滤波器设计要求.让学生分别从理论与实践的角度设计数字通信系统中常见的截止频率为8000Hz的低通滤波器.学生按照学习小组的模式,多人合作设计该滤波器.设计过程要求学生采用数学推导、查表法及MATLAB软件实现FIR滤波器的仿真设计[7],最后要求学生形成设计报告.最后教师利用课堂时间,对比分析学生的不同设计方案,指出学生在设计过程中的可取之处及待改进的地方.同时,为学生进一步利用DSP实验系统设计该滤波器做知识上及思路上的铺垫.
3.2课内实验教学过程
由于课内实验仅有15学时,其中前6学时用于CCS3.3软件及TI公司5416芯片系统的学习.因而,留给理论知识点的实践反馈学时很少,但诸如快速傅里叶变换、圆周卷积、FIR滤波器及模拟信号数字化等知识点都需要在实践环节加以巩固.所以,常规的基础验证类实验项目无法达到全面培养学生实践能力的目的.采用综合设计类实验代替原有实验项目,力争一个实验项目能从多方面培养学生动手能力,提升理论知识掌握程度.如FIR滤波器的设计要求学生完成语音信号的采集、模/数转换、低通滤波和数/模转换等工作,而不局限于滤波的实现[8].同时,为了激发学生的学习兴趣,增加实验项目的生动性,实验项目选择一些流行乐曲作为语音材料,要求学生经过实验设计完成乐曲的重低音化,滤掉高频分量.
3.3全程实践教学活动过程
为了弥补课内实践学时的不足,充分利用学校开展大学生全程实践活动的有利契机,在学生的全程实践环节开设“基于EDA技术的FIR滤波器的设计”这一实践题目.学有余力的学生可以利用前续课程EDA相关知识在实验室SOPC1C12的平台上实现FIR滤波器的设计.同时,鼓励学生将所设计滤波器应用于程控交换系统中说话人语音的提纯过程.
4结语
数字信号处理是电子信息类专业非常重要的专业课程,本文依据数字信号处理理论与实践并重的特点,将研究性教学方法引入到教学中,并且提出了一些独特的教学方法.这类理论与实践并重、课内与课外结合的方法,符合工科类专业实践性和创新能力培养要求高的特点.在2012—2015年的3个学年,针对电子信息科学与技术和通信工程2个专业开设的数字信号处理课程进行了教学实践,通过学期末教学反馈及毕业设计检验得到了比较满意的教学效果.实践证明,研究性教学方法能充分调动学生的学习积极性,引导学生带着问题学习,提高学生学习效果的同时培养学生创新能力及团队协作精神.同时,通过研究性实验报告及小论文的撰写,为学生后续毕业论文的撰写及研究生学习奠定良好的基础.
参考文献:
[1]杨智明,彭喜元,俞洋.数字信号处理课程实践型教学方法研究[J].实验室研究与探索,2014,3(9):180-183
[2]毛伊敏,钟文涛.《数字信号处理》课程研究型教学方法研究[J].中国电力教育,2008(11):79-80
[3]肖江,张鸿存,费诺,等.数字信号处理实验系统的结构与应用[J].实验室研究与探索,2001,20(4):36-38
[4]杨文龙.虚拟仪器及其在信号处理教学实验中的应用[J].实验室研究与探索,2007,26(12):297-300
[5]林连冬.数字信号处理研究型实训课程的教学探索与实践[J].实验室研究与探索,2014,33(6):219-222
[6]马永奎,高玉龙,张佳岩,等.“数字信号处理”课程设计导向型教学初探[J].电气电子教学学报,2012,34(4):96-97
[7]FinderS,PetreM.Project-BasedLearningPracticesinComputerScienceEducation[J].FrontiersinEducationConferences,1998,28:1185-1197
[8]FelderD,MansonC.EfficientDual-ToneMulti-frequencyDetectionUsingtheNon-uniformDiscreteFournierTransform[J].IEEESignalProcessingLetters,1998,5(7):160-163
第二篇:数字信号处理应用论文
摘要:介绍了DSP技术(器件)的主要特点.总结了DSP在家电、办公设备、控制和通信领域的主要应用及其发展趋势。
关键词:数字信号处理;音频/视频;控制;通信
DSP数字信号处理技术(Digital Signal Processing)指理论上的技术;DSP数字信号处理器(Digital Sig—hal Processor)指芯片应用技术。因此,DSP既可以代表数字信号处理技术,也可以代表数字信号处理器,两者是不可分割的,前者要通过后者变成实际产品。两者结合起来就成为解决实际问题和实现方案的手段DsPs一数字信号处理解决方案。DSP运用专用或通用数字信号处理芯片,通过数字计算的方法对信号进行处理,具有精确、灵活、可靠性好、体积小、易于大规模集成等优点。DSP芯片自从1978年AMI公司推出到现在,其性能得到了极大的提高。DSP的特点
1.1 修正的哈佛结构
DSP芯片采用修正的哈佛结构(Havardstructure),其特点是程序和数据具有独立的存储空间、程序总线和数据总线,非常适合实时的数字信号处理口]。同时,这种结构使指令存储在高速缓存器中(Cache),节约了从存储器中读取指令的时间,提高了运行速度。如美国德州仪器公司——TI(Texas Instruments)的DSP芯片结构是基本哈佛结构的改进类型。1.2 专用的乘法器
一般的算术逻辑单元AI U(Arithmetic and Logic Unit)的乘法(或除法)运算由加法和移位实现,运算速度较慢。DSP设置了专用的硬件乘法器、多数能在半个指令周期内完成乘法运算,速度已达每秒数千万次乃至数十亿次定点运算或浮点运算,非常适用于高度密集、重复运算及大数据流量的信号处理。如MS320C3x系列DSP芯片中有一个硬件乘法器:TMS320C6000系列中则有两个硬件乘法器。1.3 特殊的指令设置
DSP在指令系统中设置了“循环寻址”(Circular addressing)及“位倒序”(bit—reversed)等特殊指令,使寻址、排序及运算速度大大提高 引。另外,DSP指令系统的流水线操作与哈佛结构相配合,把指令周期减小到最小值,增加了处理器的处理能力。尽管如此,DSP芯片的单机处理能力还是有限的,多个DSP芯片的并行处理已成为研究的热点。DSP在家电、办公设备中的应用
2.1高清晰度电视
传统电视采用线性扫描的信号处理方式,画面像素最高仅4O~5O万个,会带来画质的损失,而DSP数字超微点阵(Digital SuperMicro Pixe1)技术,超越传统的线性扫描,进入由“点”组成的微显示数字技术层面,从模拟的“线”飞跃到数字的“点”。DSP是逐点优化的。它运用全新的逐点扫描技术,修复并优化每一个点的质量,消降图像边缘模糊现象,细节部分的锐利度成倍提高。
2.2 A/V(Audio/Video)设备
家庭影院主要由数字化A/V(Audio/Video)设备组成,DSP不仅带来环绕声,而且提供虚拟各种现场效果。VCD(VideoCompact Disc)、DVD(Digital Video Disc)、MD(Minidiskette)、DAB(Digital Audio Brod—casting)、DVB(Digital Video Box)等数字音视频产品中,DSP的价值主要体现在音频的Hi—Fi(HighFideli—ty)处理上。目前,对MPEG(Moving Picture Expe Group)音频Layer2、I ayer3等用c语言仿真研究,在此基础上用 C549实现了MP3解码器的采样;用’C6201和’C6701分别实现MP3编码器和MPEG一2AAC编解码器。MPEG一2AAC重建的音质超过MP3和AC一3将成为直播卫星、地面DAB和SW、Mw、AM 广
播数字化的首选标准。2.3 照(摄)相机
照相机的说明书常在“XXX万像素”加前缀“插值”,而实际上像素没有这么多。插值就是通过DSP芯片计算,人为地放大图片。就好像是把一张800×600的照片人为放大到1 600×1 200。因此,购买相机时也要注意实际能提供的像素是多少。2.4 打(复)印机、扫描仪
DSP在这些设备中所起的作用不仅仅是控制,还担负着繁重的信号处理任务,如字符识别、图象增强、彩色调整等。高速率、高分辨率、彩色、低成本的复印、扫描和打印正是由于DSP性能的不断提高而逐步变成现实。DSP可以使办公室的复印机智能化,使激光打印机将数据文件打印在纸上,使扫描仪将文本(包括文字和图象)读人并变成有效数据文件。DSP在控制系统中的应用
3.1 马达控制
基于DSP的智能控制器逐步提高马达伺服驱动器的控制器性价比。首先,DSP增加了计数能力,能够实施性能更高的控制算法。如磁场定向控制;其次,利用计算强度更高的算法使用更高效的马达。如可用永磁马达替代AC感应马达,进一步提高效率与动态性能;此外,性能也有助于去除机械组件,采用适当的马达大小,并在控制器上集成诸如速度、定位、转矩断面生成、功率因数校正等更多功能的能力,使设计人员能够以更低的成本做更多的事情[3]。基于DSP的32位控制器能够处理复杂的运算。DSP就马达控制应用进行了优化,片上集成脉宽调制器PWM(Pulse Width Modulator)、编码器接口、通信端口以及模数转换器ADC(Analog—to—Digital Converter)等功能。其中还包括了大量的快闪存储器和RAM(Random Access Memory),这就消除了对外部存储器设备的需求。3.2 网络控制
视频信箱、虚拟现实、交互式电视的实现要求网络有更灵活的传输带宽。ISDN和多媒体网络必须在同一个传输线上同时传输需要不同带宽的信号。异步传输模式ATM{Asynchorous Transfer Mode)正在成为高速数据通信的国际标准,而DSP可为ATM交换提供多种实现方案。DSP在通信中的应用
4.1 多媒体通信
多媒体通信的日益增长使得图像、语音、视频业务的实时传输和处理越来越依赖于DSP技术及相应的软件算法;多媒体通信终端设备中的语音、图像的压缩与还原及传输所需的高速调制解调器普遍都采用了DSP器件。在语音压缩编解码方面,DSP能实时地实现大部分已形成的国际协议,如运用最广泛的语音编码标准:64kb/s的A律、S律的脉冲编码调制PCM(Pulse Code Modulation)和自适应差分脉冲编码调制ADPCM(Adaptive Differential PCM)等,还有基于线性预测编码I PC(I inear Predictive Coder)技术的低码率编码协议。DSP与专用编译码芯片相比具有无法替代的优势,可以通过软件的方式适应不同的算法从而实现对 不同协议的兼容和支持。在图像压缩编码方面,DSP也表现出了强大的数字信号处理能力。如符合公众电话网上低比特率多媒体通信H.324协议中的H.263图像编解码得到实时实现;用’C542实现的脱机便携式彩色静止图像传输系统,分辨率有576×480、352×288CIF(Common Intermediate Format)、176×144QCIF(Quarter CommonInntermediate Format)等可选择,发送端图像压缩终端如一般的Modem 大小,可通过Modem 在PSTN(Public Switched Telephone Network)上拨号传输图像,也可通过无线Modem 在CDPD(Cellular DigitalPacket Data)中传输,适用于远程监控、彩色文件传送。4.2 移动通信
数字式蜂窝系统使用通用DSP来实现语音合成(Speech Synthesis)、纠错编码(Error—correctionCoding)、基带调制解调器(Baseband Modem)以及系统控制等功能。DSP的实时性、灵活性以及低廉的价格使其在移动蜂窝通信中得到广泛应用,并促进了无线手机和基站的迅速发展。人类从电话发明到5千万电话用户数花了70年时间,模拟蜂窝电话达到5千万用户花了14年,而数字蜂窝电话(GSM 是其中之一)只花了5年就达到相同的用户数。无论3G还是4G,都离不开DSP,DSP作为一种功能强大的特种微处理器将在未来通信领域中起着举足轻重的作用。4.3 软件无线电
软件无线电是一种新的无线电通信的体系结构,其基本思想把硬件作为无线电通信的平台.将A/D.D/A转换靠近射频天线,转换后的所有处理用可编程的DSP等软件实现尽可能多的功能。软件无线电要求在一个开放、模块化的软件平台上实现各种功能,且能够在不同标准之间互联、兼容。DSP芯片必须通过软件完成中频数字变频、滤波、二次抽样、基带处理、信道调制、无线资源管理等过程处理经A/D变换后输出的中频高速数字信号。中频处理对速度的要求大约在500MIPS/MFI OPS~IOGIPS/GFI OPS数量级;基带处理要求大约在10~1O0MIPS/MFI OPS数量级,另外,再加上实现比特流、管理和控制部分的要求,DSP芯片的处理速度至少要在1GFI OPS以上。软件无线电对DSP提出了实时性很高的要求,它将有力地促进着DSP的发展,其中包括单片处理器的性能、多处理器协同工作的能力、DSP软件开发的环境和DSP实时操作系统等方面。我国提出的第三代移动通信系统方案同步码分多址SCDMA(Synchronous CDMA)是一种同步的直接扩频CDMA技术,它结合了DSP、智能天线、软件无线电及话音压缩编码技术等现代通信新技术。结束语
DSP在信息数字化处理领域发挥着重要的作用,随着DSP技术不断完善,低成本、高性能DSP器件的
不断推出,必定会得到更广泛地开发和应用。参 考 文 献
[1] 折学森.软土地基沉降计算[M].北京:人民交通出版社.2000,200—223. [2] 路桥集团第二公路工种局.路基[M].北京:人民交通出版社,2003,886—953. [3] JTJ017-1996.公路软土地基路堤设计与施工技术规范Es]. Analysis of Stabilization and Deformation of Highway Embankment on the Soft Soil Foundation LI Tie—qiang(Highway Construction Administrative Office of Cangzhou,Cangzhou 06i000,China)Abstract:The paper summarizes the theory about analysis of highway embankment on the soft soil foundation,and analyes the law of deformation of highway soft soil foundation.This paper can be used as reference to the design and construction of embankment on the soft soil foundation. Key words:stabilization of foundation;foundation deformation;settlement 参 考 文 献
[1] 张雄伟.DSP芯片的原理与开发应用[M].北京:电子工业出版社,2000. [2] 王念旭.DSP基础与应用系统设计[M].北京:航空航天大学出版社,2001. [3] 宁改娣.DSP控制器原理及应用[M].北京:科学出版社,2002,(2). [4] 章云.DSP控制器及其应用[M].北京:科学出版社,2002.
[5] 乔建良,李鉴.DSP技术在移动通信中的应用[J].信息技术,2003.
[2] 杨小牛,楼才义,徐建良等.软件无线电原理与应用[M].北京:电子工业出版社,2001
Characteristics and Application of DSP LIU Chuan—run ’
(1_Educational Administration Department,Guangzhou M aritime College,Guangzhou 510725,China:
2.Electronic and Information College,South China University of Technology,Guangzhou 510641,China)Abstract:Some main characteristics of DSP are introduced in this paper.It summarizes the application of DSP in the area of home electric appliances,office equipment,controlling,communications and SO on.
Meanwhile,the trend of development is given. Key words:digital signal processing(processor);’audio/video;controlling;communications
第三篇:数字信号处理课程设计
目 录
摘要...........................................................................................................................................1 1 绪论..............................................................................................................................................2
1.1 DSP系统特点和设计基本原则......................................................................................2 1.2 国内外研究动态.............................................................................................................2 2系统设计........................................................................................................................................3 3硬件设计........................................................................................................................................5
3.1 硬件结构...........................................................................................................................5 3.2 硬件电路设计...................................................................................................................7
3.2.1 总输入电路...........................................................................................................7 3.2.2 总输出电路...........................................................................................................7 3.2.3 语音输入电路.......................................................................................................9 3.2.4 语音输出电路.......................................................................................................9 实验结果及分析.........................................................................................................................10 4.1 实验结果.........................................................................................................................10 4.2 实验分析.........................................................................................................................12 5 总结与心得体会.........................................................................................................................13 参考文献.........................................................................................................................................14 致谢................................................................................................................................................15
摘要
基于DSP的语音信号处理系统,该系统采用TMS320VC5509作为主处理器,TLV320AIC23B作为音频芯片,在此基础上完成系统硬件平台的搭建和软件设计,从而实现对语音信号的采集、滤波和回放功能,它可作为语音信号处理的通用平台。
语音是人类相互之间进行交流时使用最多、最自然、最基本也是最重要的信息载体。在高度信息化的今天,语音信号处理是信息高速公路、多媒体技术、办公自动化、现代通信及智能系统等新兴领域应用的核心技术之一。通常这些信号处理的过程要满足实时且快速高效的要求,随着DSP技术的发展,以DSP为内核的设备越来越多,为语音信号的处理提供了良好的平台。本文设计了一个基于TMS320VC5509定点的语音信号处理系统,实现对语音信号的采集、处理与回放等功能,为今后复杂的语音信号处理算法的研究和实时实现提供一个通用平台。
关键词:语音处理;DSP;TMS320VC5509;TLV320AIC23B
1 绪论
语音是人类相互间所进行的通信的最自然和最简洁方便的形式,语音通信是一种理想的人机通信方式。语音通信的研究涉及到人工智能、数字信号处理、微型计算机技术、语言声学、语言学等许多领域,所以说语音的通信是一个多学科的综合研究领域,其研究成果具有重要的学术价值。另外通过语音来传递信息是人类最重要的、最有效、最常用的交换信息的形式。语言是人类特有的功能,声音是人类常用的工具,是相互传递信息的主要手段。同时也是众构成思想交流和感情沟通的最主要的途径。
1.1 DSP系统特点和设计基本原则
DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。其工作原理是接收模拟信号,转换为0或1的数字信号。再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。它的强大数据处理能力和高运行速度,是最值得称道的两大特色。
1.2 国内外研究动态
语音信号处理作为一个重要的研究领域,已经有很长的研究历史。但是它的快速发展可以说是从1940年前后Dudley的声码器和Potter等人的可见语音开始的;20世纪60年代中期形成的一系列数字信号处理的理念和技术基础;到了80年代,由于矢量量化、隐马尔可夫模型和人工神经网络等相继被应用于语音信号处理,并经过不断改进与完善,使得语音信号处理技术产生了突破性的进展。一方面,对声学语音学统计模型的研究逐渐深入,鲁棒的语音识别、基于语音段的建模方法及隐马尔可夫模型与人工神经网络的结合成为研究的热点。另一方面,为了语音识别实用化的需要,讲者自适应、听觉模型、快速搜索识别算法以及进一步的语言模型的研究等课题倍受关注。
在通信越来越发达的当今世界,尤其最近几十年,语音压缩编码技术在移动 通信、IP电话通信、保密通信、卫星通信以及语音存储等很多方面得到了广泛的应用。因此,语音编码一直是通信和信号处理的研究热点,并其取得了惊人的进展,目前在PC机上的语音编码已经趋于成熟,而如何在嵌入式系统中实时实现语音压缩编码则是近些年来语音信号处理领域的研究热点之一。
2系统设计
在实际生活中,当声源遇到物体时会发生反射,反射的声波和声源声波一起传输,听者会发现反射声波部分比声源声波慢一些,类似人们面对山体高声呼喊后可以在过一会儿听到回声的现象。声音遇到较远物体产生的反射会比遇到较近的反射波晚些到达声源位置,所以回声和原声的延迟随反射物体的距离大小改变。同时,反射声音的物体对声波的反射能力,决定了听到的回声的强弱和质量。另外,生活中的回声的成分比较复杂,有反射、漫反射、折射,还有回声的多次反射、折射效果。
当已知一个数字音源后,可以利用计算机的处理能力,用数字的方式通过计算模拟回声效应。简单的讲,可以在原声音流中叠加延迟一段时间后的声流,实现回声效果。当然通过复杂运算,可以计算各种效应的混响效果。如此产生的回声,我们称之为数字回声。
本次实验的程序流程图如下:
图2.1 程序流程图
本次实验的系统框图如下:
图2.2 系统框图
3硬件设计
3.1 硬件结构
图3.1是系统的硬件结构框图, 系统主要包括VC5509和A IC23 两个模块。
图3.1系统硬件结构框图
利用VC5509 的片上外设I2C(Inter-Integrated Circuit, 内部集成电路)模块配置AIC23 的内部寄存器;通过VC5509 的McBSP(Multi channel Buffered Serial Ports, 多通道缓存串口)接收和发送采样的音频数据。控制通道只在配置AIC23 的内部寄存器时工作, 而当传输音频数据时则处于闲置状态。
AIC23通过麦克风输入或者立体声音频输入采集模拟信号, 并把模拟信号转化为数字信号, 存储到DSP的内部RAM中,以便DSP处理。
当DSP完成对音频数据的处理以后, AIC23再把数字信号转化为模拟信号, 这样就能够在立体声输出端或者耳机输出端听到声音。
AIC23能够实现与VC5509 DSP的McBSP端口的无缝连接, 使系统设计更加简单。接口的原理框图, 如下图所示。
图3.2 AIC23与VC5509接口原理图
系统中A IC23的主时钟12 MHz直接由外部的晶振提供。MODE接数字地, 表示利用I2 C控制接口对AIC23传输控制数据。CS接数字地, 定义了I2 C总线上AIC23的外设地址, 通过将CS接到高电平或低电平, 可以选择A IC23作为从设备在I2 C总线上的地址。SCLK和SDIN是AIC23控制端口的移位时钟和数据输入端,分别与VC5509的I2C模块端口SCL和SDA相连。
收发时钟信号CLKX1和CLKR1由A IC23的串行数据输入时钟BCLK提供, 并由A IC23的帧同步信号LRCIN、LRCOUT启动串口数据传输。DX1和DR1分别与A IC23 的D IN 和DOUT 相连, 从而完成VC5509与AIC23间的数字信号通信。
3.2 硬件电路设计
3.2.1 总输入电路
图3.3 总输入电路
从左到右各部分电路为:
话筒,开关,语音输入电路,UA741高增益放大电路,有源二阶带 通滤波器。
3.2.2 总输出电路
图3.4 总输出电路
从左到右各部分电路为:
LM386高频功率放大器及其外围器件连接电路,语音输出电路,开关,扬声器。
3.2.3 语音输入电路
图3.5语音输入电路
3.2.4 语音输出电路
图3.6 语音输出电路
语音信号通道包括模拟输入和模拟输出两个部分。模拟信号的输入输出电路如图所示。上图中MICBIAS 为提供的麦克风偏压,通常是3/4 AVDD,MICIN为麦克风输入,可以根据需要调整输入增益。下图中LLINEOUT 为左声道输出,RLINEOUT为右声道输出。用户可以根据电阻阻值调节增益的大小,使语音输入输出达到最佳效果。从而实现良好的模拟语音信号输入与模拟信号的输出。4 实验结果及分析
4.1 实验结果
按“F5”键运行,注意观察窗口中的bEcho=0,表示数字回声功能没有激活。这时从耳机中能听到麦克风中的输入语音放送。将观察窗口中bEcho的取值改成非0值。这时可从耳机中听到带数字回声道语音放送。
分别调整uDelay和uEffect的取值,使他们保持在0-1023范围内,同时听听耳机中的输出有何变化。
当uDelay和uEffect的数值增大时,数字回声的效果就会越加的明显。
图4.1 修改前程序图
图4.2 修改前程序图
图4.3 频谱分析
图4.4 左声道及右声道波形 4.2 实验分析
所以,从本实验可知当已知一个数字音源后,可以利用计算机的处理能力,用数字的方式通过计算模拟回声效应。简单的讲,可以在原声音流中叠加延迟一段时间后的声流,实现回声效果。当然通过复杂运算,可以计算各种效应的混响效果。
声音放送可以加入数字回声,数字回声的强弱和与原声的延迟均可在程序中设定和调整。5 总结与心得体会
通过本次课程设计,我明白了细节决定成败这句话的道理,在实验中,有很多注意的地方,都被忽视了,导致再花费更多的时间去修改,这严重影响了试验的进度。同时,在本次实验中我了解了ICETEK – VC5509 – A板上语音codec芯片TLV320AIC23的设计和程序控制原理,并进一步掌握了数字回声产生原理、编程及其参数选择、控制,以及了解了VC5509DSP扩展存储器的编程使用方法。
这一学期的理论知识学习加上这次课程设计,使我对DSP有了更加深刻的了解,对数字信号的处理功能,软硬件相结合,语音信号的采集与放送等等方面都有了很深的了解,相信本次课程设计,无论是对我以后的学习,还是工作等方面都有一个很大的帮助。因此,本次课程设计让我受益匪浅。
参考文献
[1]李利.DSP原理及应用[M].北京:中国水利水电出版社,2004.[2]王安民,陈明欣,朱明.TMS320C54xxDSP实用技术[M].北京:清华大学出版社,2007 [3]彭启琮,李玉柏.DSP技术[M].成都:电子科技大学出版社,1997 [4]李宏伟,等.基于帧间重叠谱减法的语音增强方法[J].解放军理工大学学报,2001(1):41~44 [5]TexasInstrumentsIncorporated.TMS320C54x系列DSP的CPU与外设[M].梁晓雯,裴小平,李玉虎,译.北京:清华大学出版社,2006 [6]赵力.语音信号处理[M].北京:机械工业出版社,2003比较图4和图5,可以看到1200Hz以上的频谱明显得到了抑制。
[7]江涛,朱光喜.基于TMS320VC5402的音频信号采集与系统处理[J].电子技术用,2002,28(7):70~72[8]TexasInstrumentsIncorporated:TMS320VC5402Datasheet,2001
致谢
在本次课程设计的即将完成之际,笔者的心情无法平静,本文的完成既是笔者孜孜不倦努力的结果,更是指导老师樊洪斌老师亲切关怀和悉心指导的结果。在整个课程设计的选题、研究和撰写过程中,老师都给了我精心的指导、热忱的鼓励和支持,他的精心点拨为我开拓了研究视野,修正了写作思路,对课程设计的完善和质量的提高起到了关键性的作用。另外,导师严谨求实的治学态度、一丝不苟的工作作风和高尚的人格魅力,都给了学生很大感触,使学生终生受益。在此,学生谨向老师致以最真挚的感激和最崇高的敬佩之情。
另外,还要感谢这段时间来陪我一起努力同学,感谢我们这个小团队,感谢每一个在学习和生活中所有给予我关心、支持和帮助的老师和同学们,几年来我们一起学习、一起玩耍,共同度过了太多的美好时光。我们始终是一个团结、友爱、积极向上的集体。
第四篇:数字信号处理学习心得
数字信号处理学习心得
XXX
(XXX学院 XXX班)
一、课程认识和内容理解
《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。
数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式。这学期数字信号处理所含有的具体内容如下:
第一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理
方法。
第二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。
第三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。
第四单元的课程我们重点理解基2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。
第五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。
第六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。第七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数
二、专业认识和未来规划
通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。
对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的基础知识。
我选择了这个专业,在这里读了
字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器
三年关于通信知识的书,我还是想以后毕业能够从事这个方面的工作,现在学了通信原理、数字信号处理这些很有用的专业课,所以,我在以后的学习中,我会把这些方面的知识学扎实,从事技术这一块要能吃苦,我也做好了准备,现在还很年轻,年轻的时候多吃点苦没什么,为了我自己美好的将来,我会努力学好这个专业的。数字信号处理课程属于专业基础课,所涵盖的内容主要有:离散时间信号与系统的基本概念及描述方法,离散傅立叶变换及快速傅立叶变换,数字滤波器结构及设计等。对于电气信息类专业的学生来说,这些内容是学习后续专业课程的重要基础,也是实际工作中必不可少的专业基础知识。目前几乎所有的高等院校都在电子工程类、信息工程类、通信工程类、电子技术类、自动控制类、电气工程类、机电工程类、计算机科学类等工科电类及其他相关专业的本科生中开设了该门课程。随着计算机技术、微电子技术、数字信号处理理论和方法的发展,半个世纪以来,尤其是最近的三十来年里,数字信号处理的方法
和应用得到了飞跃式的发展,数字信号处理的地位和作用变得越来越重
三、课程评价和建议
我们的数字信号处理课是罗老师教的,罗老师有丰富工作的经验,对于这门课的实际用途很了解,另外罗老师本身就很幽默,对于这门课采用多种教学方法,丰富教学内容,偶尔给我们讲些生活上的问题,吸引学生对课程的关注。利用实验课让我们来编程做仿真,体会信号处理课程的乐趣,这样子激发了学生的兴趣、提高了教学的效果。因此,我们班的同学在这一个学期的学习中,我们都感觉比较轻松。另外我个人观点是大学主要是培养自己的自学能力,老师只是个引导者,所以学习效果如何关键看自己的对学习的态度和付出程度。
数字信号处理课程的特点是课程本身理论性强、公式推导较多、概念比较抽象,使我们感到有枯燥难学之感。近年来,国外及国内有些学校对一般电类专业该课程的教学主要强调应用性学习,主要介绍数字信号处理的用途和用法,而对其深奥的理论推导仅做一般介绍,并给学生提供进行实验的机会,以激发学生对该课程的兴趣和学习主动性。
对该课程的改革思想主要是课程
要。因此,加强该课程的建设具有重要的意义。
内容要适应数字信号处理技术的发展现状,淡化枯燥的数学推导,辅助以现代化教学手段,并开设相应的实验课。结合专业现状,将课堂教学一部分变为多媒体教学,尽量将一些理论分析用图形手段展示出来,以增强我们的感性认识。实验课主要是以MATLAB为平台,充分利用MATLAB的数字信号处理各种功能让学生亲自动手将课堂所学进行仿真实现。实验课还可以通过用DSP试验箱实现数字信号处理的功能向学生进行演示。
第五篇:数字信号处理学习心得
数字信号处理学习心得
通信工程 0801 赖立根
《数字信号处理》是我们通信工程和电子类专业的一门重要的专业基础课程,主要任务是研究数字信号处理理论的基本概念和基本分析方法,通过建立数学模型和适当的数学分析处理,来展示这些理论和方法的实际应用。
数字信号处理技术正飞速发展,它不但自成一门学科,更是以不同形式影响和渗透到其他学科:它与国民经济息息相关,与国防建设紧密相连;它影响或改变着我们的生产、生活方式,因此受到人们普遍的关注。信息科学是研究信息的获取、传输、处理和利用的一门科学,信息要用一定形式的信号来表示,才能被传输、处理、存储、显示和利用,可以说,信号是信息的表现形式,而信息则是信号所含有的具体内容。
一单元的课程我们深刻理解到时域离散信号和时域离散系统性质和特点;时域离散信号和时域离散系统时域分析方法;模拟信号的数字处理方法。
二单元的课程我们理解了时域离散信号(序列)的傅立叶变换,时域离散信号Z变换,时域离散系统的频域分析。
三单元的课程我们学习了离散傅立叶变换定义和性质,离散傅立叶变换应用——快速卷积,频谱分析。
四单元的课程我们重点理解基2 FFT算法——时域抽取法﹑频域抽取法,FFT的编程方法,分裂基FFT算法。
五单元的课程我们学了网络结构的表示方法——信号流图,无限脉冲响应基本网络结构,有限脉冲响应基本网络结构,时域离散系统状态变量分析法。
六单元的课程我们理解数字滤波器的基本概念,模拟滤波器的设计,巴特沃斯滤波器的设计,切比雪夫滤波器的设计,脉冲响应不变法设计无限脉冲响应字数字滤波器,双线性变换法设计无限脉冲响应字数字滤波器,数字高通﹑带通﹑带阻滤波器的设计。
七单元的课程我们学习了线性相位有限脉冲响应(FIR)数字滤波器,窗函数法设计有限脉冲响应(FIR)数字滤波器,频率采样法设计有限脉冲响应(FIR)数字滤波器
通信工程是一门工程学科,主要是在掌握通信基本理论的基础上,运用各种工程方法对通信中的一些实际问题进行处理。通过该专业的学习,可以掌握电话网、广播电视网、互联网等各种通信系统的原理,研究提高信息传送速度的技术,根据实际需要设计新的通信系统,开发可迅速准确地传送各种信息的通信工具等。
对于我们通信专业,我觉得是个很好的专业,现在这个专业很热门,这个专业以后就业的方向也很多,就业面很广。我们毕业以后工作,可以进入设备制造商、运营商、专有服务提供商以及银行等领域工作。当然,就业形势每年都会变化,所以关键还是要看自己。可以从事硬件方面,比如说PCB,别小看这门技术,平时我们在试验时制作的简单,这一技术难点就在于板的层数越多,要做的越稳定就越难,这可是非常有难度的,如果学好了学精了,也是非常好找工作的。也可以从事软件方面,这实际上要我们具备比较好的模电和数电的基础知识。
我选择了这个专业,在这里读了三年关于通信知识的书,我还是想以后毕业能够从事这个方面的工作,现在学了通信原理、数字信号处理这些很有用的专业课,所以,我在以后的学习中,我会把这些方面的知识学扎实,从事技术这一块要能吃苦,我也做好了准备,现在还很年轻,年轻的时候多吃点苦没什么,为了我自己美好的将来,我会努力学好这个专业的。
数字信号处理课程属于专业基础课,所涵盖的内容主要有:离散时间信号与系统的基本概念及描述方法,离散傅立叶变换及快速傅立叶变换,数字滤波器结构及设计等。对于电气信息类专业的学生来说,这些内容是学习后续专业课程的重要基础,也是实际工作中必不可少的专业基础知识。目前几乎所有的高等院校都在电子工程类、信息工程类、通信工程类、电子技术类、自动控制类、电气工程类、机电工程类、计算机科学类等工科电类及其他相关专业的本科生中开设了该门课程。随着计算机技术、微电子技术、数字信号处理理论和方法的发展,半个世纪以来,尤其是最近的三十来年里,数字信号处理的方法和应用得到了飞跃式的发展,数字信号处理的地位和作用变得越来越重要。因此,加强该课程的建设具有重要的意义。
我们的数字信号处理课是罗老师教的,罗老师有过实际工作的经验,对于这门课的实际用途很了解,罗老师对于这门课采用多种教学方法,丰富教学内容,吸引学生对课程的关注。利用实验课使学生亲自编程,体会信号处理课程的乐趣,这样子激发了学生的兴趣、提高了教学的效果。因此,我们班的同学在这一个学期的学习中,这门课都学的比较好。
数字信号处理课程的特点是课程本身理论性强、公式推导较多、概念比较抽象,学生常有枯燥难学之感。近年来,国外及国内有些学校对一般电类专业该课程的教学主要强调应用性学习,主要介绍数字信号处理的用途和用法,而对其深奥的理论推导仅做一般介绍,并给学生提供进行实验的机会,以激发学生对该课程的兴趣和学习主动性。
对该课程的改革思想主要是课程内容要适应数字信号处理技术的发展现状,淡化枯燥的数学推导,辅助以现代化教学手段,并开设相应的实验课。结合专业现状,将课堂教学一部分变为多媒体教学,尽量将一些理论分析用图形手段展示出来,以增强学生的感性认识。实验课主要是以MATLAB为平台,充分利用MATLAB的数字信号处理工具箱提供的各种功能让学生亲自动手将课堂所学进行仿真实现。实验课还可以通过用DSP试验箱实现数字信号处理的功能向学生进行演示。