第一篇:能被253整除的数教学反思
《数学课程标准》指出:“学会与人合作,并能与他人交流思维和结果。”合作交流似乎成为一种时尚,在每节课中,我也总是追赶时髦似的让学生来那么一次合作,进行一次交流。但对于这种交流,我一直是不抱有什么希望的。因为我发现在交流合作后的反馈中,代表小组回答或汇报的学生总是用“我怎么怎么认为”“我觉得怎样怎样”“我的看法是什么什么”,在几次纠正无效后,我放弃了进一步的指导,没从根源上去认真组织和指导。因此,这样的合作学习失去了原本的面目,也不会产生合作的效应。
在能被3整除的数的特征这节课中,我在复习了能被2、5整除的数的特征后,让学生猜想能被3整除的数的特征是什么?学生提出了两种想法:
(1)、看个位上的数;
(2)、不一定是看个位上的数。
紧接着我布置了小组讨论的具体要求。由于合作的内容有利于产生争论,让学生在独立思考的基础上再交换意见。学生们都在大量举例的前提下说明自己的结论,有些小组在组内交流时还从正反两方面加以说明。由于有了讨论的巨大空间,学生讨论时主题明确、集中。反馈时得出了一致的结论:判断一个数能不能被3整除不能看个位上的数。随着第一个结论的出现,我提出了本节课的课题:能被3整除的数的特征。合作交流切实地落实在了实处,发挥了作用。
第二篇:能被3整除的数的特征教学反思
“能被3整除的数的特征”,是在学生已学过能被2、5整除的数的特征的基础上进行教学的。学生自己发现规律比较困难,容易受原来思维定势的影响。需要教师适时加以引导。
在教学中,我根据本班学生的实际,采取这样的教学形式:
一、根据学生好奇的特点,以奇引趣,促使学生乐学。
课一开始,教师请学生报数,老师迅速判断出它能否被3整除,学生对老师的判断半信半疑,也被老师料事如神的本领所折服,大脑中便产生“老师为什么能这样快地判断出来”的疑问,使学生萌发强烈的求知欲望,迫切想知道这种判断方法,从而激发了学生的学习热情。
二、打破常规,引导学生从多角思考问题,培养创新意识。
学生容易受以前学过知识影响,马上说出个位上是3、6、9的数能被3整除,而这个发现不攻自破,学生会马上列举出13、26、49等好多这类数不符合该发现。学生此时感觉问题不是这么简单,老师适时引导:你们能不能从其他角度想一想、试一试,到底能被3整除的数有什么特点呢?学生被老师的启发所感染,积极地参与到讨论之中去。
三、鼓励学生,放飞自己的思维,会有异想不到的收获。
在学生已经总结出能被3整除的数的规律时,我让学生再想一想,看有没有更好的途径,能快速判断一个比较大的数能否被3整除,因为老师判断的都是较大的数,为什么速度那样快呢?一定有更快的办法。经过一番实践,新的方法很快问世:可以先去掉3的倍数,再加其它的数字,看和能否被3整除;或在加的过程中,加出3的倍数就把该数扔掉,再继续加,看最后结果能否被3整除。没想到孩子们愿意做的事,你给他们充足空间,会收到异想不到的收获。
四、和学生和睦相处,更有利于学生参与学习活动。
本节课的最大特点是,师生配合密切,教师与学生平等相处,学生无拘无束,他们可以任意地想,尽情地说,思维不受任何羁绊,能够轻松愉快地投入到学习过程中来。从课的一开始,到探讨规律,到练习发展,师生配合得恰到好处。
第三篇:《能被3整除的数的特征》教学反思
本课的教学内容,是在教学“能被2、5整除的数的特征”后进行的。由于判断一个数能否被2、5整除,只要看这个数的个位即可;而判断一个数能否被3整除,则要看这个数各个数位的数字之和能否被3整除,与前面的有所不同,要使学生理解并掌握它,还是有难度的。可以说是一个难点。本节课教学时,主要从以下几点进行:
一、激趣、育智
上课开始,将学号引入课堂,不仅营造了一个轻松、快乐、融洽的课堂氛围,也增强了学生注意听讲、认真学习的动力。现代教学论认为:学习即为知识的同化和异化。通过引入学号、任意摆数,结合了学习和生活实际,使学生能够按照他们喜欢的方式学习知识。本节课通过操作、观察、演示等方式,引导学生进行比较、分析、综合、猜测,逐步培养学生能够有条理地进行思考。
二、猜想、合作探究
小学生受年龄特征和知识水平的影响,猜想和推测更具有偶然性和随意性。学生猜想“失败”,需要教师从感情上予以关注,更重要的是师生互动走出误区,帮助学生利用现实情境“做”数学。本课在学生猜想未果的情况下,教师利用两组由相同数字所组成的不同的三位数,学生通过观察、讨论,终于找到了能被3整除的数的特征,培养了学生的求异性与灵活性。要探索知识的未知领域,合作学习不失为一条有效的途径。在本课中,能被3整除的数的特征,是学生共同合作探究的成果。同时,练习的开放设计也培养了学生的探索意识和分析、概括、协作能力。
第四篇:除数是整十数笔算除法教学反思
除数是整十数笔算除法教学反思:
在本节课中,有许多新的知识点,商的定位,两次试商,竖式的书写等等,除数是整十数笔算除法教学反思。学生对算理的掌握理解有困难,因此,教学时我从学生已有的知识水平出发,组织学生回忆笔算的基本方法,教学反思《除数是整十数笔算除法教学反思》。为探索三位数除以两位数的笔算奠定基础。
在练习过程中,让学生先比较除数和被除数的前两位,让学生自己说出:当被除数前两位数大于或等于除数时,商写在十位上,继续除,这时,商是两位数;当被除数前两位数小于除数时,应该用被除数前三位数除以除数,商写个位上,这时,商就是一位数。
在不同形式的练习中,学生已能掌握除数是整十数的除法笔算的方法。
第五篇:《能被3整除的数》教学设计
教学目标:
1、探索并理解能被3整除的数的特征,并能应用特征判断一个数否能被3整除。
2、培养学生的探索意识和分析、概括、验证、判断及协作的能力。
教学重点:
1、引导学生通过捆绑小棒探索出能被3整除的数的特征。
2、理解并会用特征快速判断一个数能否被3整除。
教具准备:
1、24枝铅笔(10枝一捆,共两捆,零散枝数4枝)。
2、投影(有关练习)。
3、两套(0-----9)磁性数字卡片,及磁性小黑板两块。
教学过程:
一、复习:
1、你能用3、4、5这三个数字组成一个能被2整除的三位数吗?为什么这样组?同样用这三个数字、你们能组成一个能被5整除的三位数吗?为什么这样组?
2、能被2、5同时整除的数的特征是什么?
一、导入新课:
前面我们学习了能被2、5整除的数的特征,今天我们利用这节课共同探讨一下能被3整除的数的特征以及怎样利用该特征又快又准地判断出一个数能否被3整除的方法。
出示课题:能否被3整除的数。
要求学生齐读课题两遍
二、新授:
方法一:
师:同学们,你能随便说一个能被3整除的数吗?
生:9、3、12、15、21┉
师:这些数为什么能被3整除呢?
生:因为这些数都是3的倍数。
师:老师随口说一个数123,大家判断该数能否被3整除?
生:能(通过口算得出)。
方法二:
师:有些较大数我们可利用口算判断。同学们说123能被3整除,那么老师立刻就能说出132、312、231、312、321这些数都能被3整除,你们信吗?
生信。(不信)
师:别老师说什么你们就信什么,快用口算试试。
生:通过口算发现确实能被3整除。
师:为什么会出现这种情况呢?如果出现一个更大的多位数你能快速判断出能否被3整除吗?咱们一块来研究出一个更好的办法来。刚才有同学说12能被3整除,我们就从12入手研究。
师:出示12枝铅笔。同学们,先看这10枝铅笔,如果每三枝一小捆,看看可以分成几捆,还余几枝?
生:分成3捆,还余一枝。
师:也就是说10分成三个3和一个1,也可以看成&
生:一个9和一个1。
师:9能被3整除,可不考虑。(放下9枝铅笔)只考虑这个1,再和零散枝数2合成一个3,3也能被3整除,说明12能被3整除。