第一篇:《利用三角形全等测距离》的教学反思
本节课的教学重点是能利用三角形全等的条件解释生活中的实际问题。教学中先让学生充分发表意见,并给予激励性的评价,培养学生主动运用所学知识寻求发现问题和解决问题的能力。同时适当地把教育激励策略运用于教学活动中,唤起学生扬长避短的内在要求,是一种较好的育人艺术。在这堂课里,首先创设了一个“现实情境”,使学生的练习具有“真实”地解决问题的意味,然后用角色模拟的方法进行自由而舒畅的交流活动。通过这样的交流,可以激发学生的好奇心和求知欲,刺激他们思维的多向性与逻辑性,同时也培养了学生倾听别人思路、拓展自己思维、修正自己不足的良好习惯,使他们在积极的互动中掌握知识,发展分析问题、解决问题的能力。同时,教师对学生的思维严密性和表达书写能力又有明确的要求。注重教学中师生间的对话、教师对学生的引导,以及及时的反馈与评价。
第二篇:《利用三角形全等测距离》教案
《利用三角形全等测距离》教案
教学目标
一、知识与技能
1.能利用三角形的全等解决“测量不可到达的两点间的距离”的实际问题; 2.能在解决实际问题的过程中进行有条理的思考和说理表达;
二、过程与方法
1.经历探索设计构造全等三角形测距离的过程中,培养学生思维的逻辑性和发散性; 2.掌握利用三角形全等“测距离”的延长全等法、垂直全等法;
三、情感态度和价值观
1.通过故事,激发学生的积极性,感受数学与生活的密切联系;在小组合作交流; 2.解决问题的过程中,培养学生的合作精神;
教学重点 能利用三角形的全等解决实际问题;
教学难点
如何灵活多样地构造全等三角形;
教学方法
引导发现法、启发猜想
课前准备
教师准备 课件、多媒体; 学生准备 练习本;
课时安排
1课时
教学过程
一、导入 请你在下列各图中,以最快的速度画出一个三角形,使它与△ABC全等,比比看谁快!
二、新课
一位经历过战争的老人讲述了这样一个故事:
在一次战役中,我军阵地与敌军碉堡隔河相望.为了炸掉这个碉堡,需要知道碉堡与我军阵地的距离.在不能过河测量又没有任何测量工具的情况下,一个战士想出来这样一个办法:为成功炸毁碉堡立了一功.这位聪明的八路军战士的方法如下:
他面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部;然后,他转过一个角度,保持刚才的姿态,这时视线落在了自己所在岸的某一点上;接着,他用步测的办法量出自己与那个点的距离,这个距离就是他与碉堡间的距离.
(1)战士所讲述的方法中,已知条件是什么?
由战士所讲述的方法可知:战士的身高AH不变,战士与地面是垂直的(AH⊥BC);视角∠HAC=∠HAB,战士要测的是敌碉堡(B)与我军阵地(H)的距离,战士的结论是只要按要求
(如图)测得HC的长度即可.(即BH=HC)
让学生说明“战士的测量方法”,并演示了“利用战士的方法”在教室中找到了与自己距离相等的两个点(他用书本当作简易的帽檐演示了一番),并说明:这一过程中,人的身高没变、人与地面垂直没变、俯视角没变。满足“角边角”条件,所以战士是利用三角形全等,根据“全等三角形的对应边相等”解决问题.战士很聪明,我要向他学习,碰到问题要多动脑,总会找到解决的办法.教师总结:用数学知识解决实际问题一定要从实际出发,将其构造为确实可行的全等三角形,而不能脱离实际,穿墙测量.想一想
如图,A,B 两点分别位于一个池塘的两端,小明想用绳子测量 A,B 间的距离,但绳子不够长,一个叔叔帮他出了这样一个主意:
先在地上取一个可以直接到达 A 点和B点的点C,连接 AC 并延长到 D,使CD= CA;连接
BC并延长到E,使CE= CB,连接DE并测量出它的长度,DE的长度就是 A,B 间的距离.小明是这样想的:
在△ABC 和△DEC 中,因为AC = DC,∠ACB = ∠DCE,BC = EC,所以△ABC ≌ △DEC,所以 AB = DE.针对池塘问题:各组竞争展示了以下五种设计方案,其他组对其方案过程,说理进行评价,补充.三、习题
1.如图,小明家有一个玻璃容器,他想测量一下它的内径是多少?但是他无法将刻度尺伸进去直接测量,于是他把两根长度相等的小木条AB,CD的中点连在一起,木条可以绕中点O自由转动,这样只要测量A,C的距离,就可以知道玻璃容器的内径,你知道其中的道理吗?请说明理由.
解:如图所示:连接AC,BD,在△ODB和△OCA中,AO=BO,∠AOC=∠BOD,CO=DO ∴△ODB≌△OCA(SAS),∴BD=AC.
故只要测量A,C的距离,就可以知道玻璃容器的内径.
四、拓展
课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图,求证:△ADC≌△CEB.
证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°
∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,∵ ∠ADC=∠CEB,∠DAC=∠BCE,AC=BC ∴△ADC≌△CEB(AAS).
五、小结
通过本节课的内容,你有哪些收获? 1.知识
利用三角形全等测距离的目的:变不可测距离为可测距离.依据:全等三角形的性质.关键:构造全等三角形.2.方法
(1)延长法构造全等三角形;
(2)垂直法构造全等三角形.
第三篇:全等三角形教学反思
初中一年级数学(北师版)(下)《全等三角形》
教学反思
涪阳中学:张长城
一、教学细节方面
1、在字体大小上,以前自己亲手制作的几何图形在字母大小的表示很小,学生看起来肯定是比较吃力;这样不利于学生对知识的阅读与理解。
2、在概念关键字上,比如能够重合的两个图形称为全等图形,全等图形的形状和大小都相等;上课的时候学生是直接给出,没有对概念的中关键词“形状”、“大小”加以强调,在课上学生是用声音重和慢来突出关键词“形状”、“大小”,并追问:“判断两个图形是不是全等图形关键是看这两个图形的什么?”提高学生对知识的理解深化。
二、课后反思
1、在上全等三角形这节课中,全等指的是两个图形之间的关系,直接给出两个图形,这样学生对全等图形是指两个图形之间的关系很模糊,而逐步呈现,这样有利于学生的理解全等图形是两个图形之间的关系有了更加深刻的认识。我认为在基本概念分析透彻上是非常有必要的。
2、拿出两个全等三角形纸片,当这两个全等三角形独立的时候,让学生找它们对应顶点、对应边、对应角;如果将两个全等的三角形摆放的位置发生变化:这时在课堂上呈现两个全等三角形摆放成“蝴蝶型”、“Z字型”等,让学生感受,进行分析;在最后增加利用全等三角形对应边相等、对应角相等练习。
3、练习部分的内容在课堂的时间上一般是后半部分,练习部分的题目设计上我认为最好的是既能将各个练习之间内在的关系挖掘出来,给学生呈现内在的美与气质,更需要将有气质的题目以新颖的形式呈现出来,;这样能够有效调动学生各方面的感官为学习服务。就能有效地提高教学的效率。
三角形全等判定(SSS)课后反思
三角形全等的判定方法一:边边边公理,是判定方法研究的第一课时,本课在教学时有三个难点:1.体会有一组量、两组量对应相等的两个三角形不一定全等;2.三组量对应相等的各种情况的分类;3.利用“边边边”判定全等推理的书写格式;
有学生前置学习的优势,难点1的突破还是可以很快进行的,但是反例的列举还是略显单薄。难点2是学生分类解决问题能力的检验,可以预料:学生能够很顺利地分成四类:三条边、两边一角、两角一边、三个角,但是两边一角和两角一边中,由于相互位置的不同学生不能更加细致地分类,不能进一步把两边一角分为两边及其它们的夹角、两边及其中一边的对角;不能把两角一边进一步分为两角及其夹边、两角及其中一角的对边。从课上的实施看,四种情况的分类基本做得比较好,进一步的分类有教者强加的影子,课后细想,进一步的分类,本课也可以不再进行,可以到下一课再细化。理由是:学习是一个循序渐进的过程,没有必要每一次的新知引进都要一步到位,况且本课要处理的问题还是挺多的,课堂教学要有所侧重。难点3的处理不较好,间接条件要推理到直接条件(如例1中由AD是中线,证得BD=CD),这在写两个三角形中的前面就要做好书写说明;直接条件直接写(如例1中AB=AC);隐含条件要挖掘(如例1中,公共边AD=AD)。
从本课的教学情况看,学生的前置学习还需指导,学生对课本上探究2的操作比较粗糙,课堂上需要教者认真示范引领,传给学生的不只是尺规作图的方法,更是严谨认真的精神;课堂容量的把握要一有度,本课我安排了两个例题,一个开放型填空题和四个解答证明题,学生的思维训练是充分的,四个证明题也是有学生上黑板板演的,多数同学是能够全部完成,但是不可否认,还是有同学没有来得及,作一个角等于以知角的教学还不很充分,全面提高学生的教学质量要真正得到保证。
本节课的重点是探索三角形全等的“边边边”的条件;了解三角形的稳定性及其在生活中的应用;运用三角形全等的“边边边”的条件判别两个三角形是否全等,并能解决一些简单的实际问题。
在课堂上让学生参与到探索的活动中,通过动手操作、实验、合作交流等过程,学会分析问题的方法。通过三角形稳定性的实例,让学生产生学数学的兴趣,学会用数学的眼光去观察、分析周围的事物,为下一节内容的学习打下基础
三角形全等判定(ASA)(AAS)
课后反思
本堂课的教学是采用实验的方法进行的,本人认为这样处理教材的好处是:
1、让学生通过实验,自己发现ASA和AAS的识别方法,培养学生实践能力和观察能力。真正让每个学生都参与到学习中来,使数学学习不再单调枯燥,避免了教师讲学生听的机械注入。使学生在探索、发现知识的过程中体验到成功的乐趣,由于是在游戏中学到新知识,学生乐于学,这样有效地激发了学生的学习主动性。同时,使学生认识到生活中处处有数学,树立知识来源于实践又用于实践的观念,提高学习兴趣。这种从形象到抽象,一般到特殊的教学过程更符合学生的认知规律。
2、较好地体现了《新课程标准》的核心思想,符合课改的要求。在传统教材中《全等三角形的识别》是按排在《尺规作图》之后,另外,教师利用《尺规作图法》来解释,也不易于学生理解,因为《尺规作图》本身就是比较抽象的概念。而新教材却把《全等三角形的识别》按排在《尺规作图》之前,显然不适合用《尺规作图法》来解释,通过实验的方法巧妙地避开了这种山穷水尽的困境,开辟了新的教学模式。
3、课中给学生提供了主动探索的时间、空间。在实验的过程中给予了足够的观察思考的时间,拓展了学生研究三角形的空间,初步感知了ASA,揭示出隐藏在数学教材背后的数学概念,把书本上原本凝固的概念激活了,使数学知识恢复到那种鲜活的状态。实现了书本知识与学生发现知识的一种沟通,增强学生对几何图形的敏感性,这也是课改中所倡导的。
通过学生的活动实践,我发现小组活动有如下的优点:
1.小组活动课从课桌椅的布置和学生的座位安排来看,改变传统的“教师高 高在上,学生唯唯诺诺”课堂氛围,拉近师生、同学间的距离,融洽师生、同学感情,有利于调动学生学习的积极性、活跃气氛,让师生在较随和的气氛中传授和接受知识。
2.有利于体现小组成员之间的集体智慧,小组成员之间相互协作,共同完成任务,培养学生团结协作、积极向上,增强学生学习自信心。面向全体学生,让大家都参与,使小组每个成员都有事可做。激发学生的学习热情,使每个学生都能感受成功,体验成功的喜悦,激发学生的求知欲。
3.有利于师生之间和学生之间的互动和沟通。培养在学生交流中寻求帮助,既坚持自己观点、又听取别人建议。建立互相信任、团结互助的关系。这对培养良好的学习品质和良好的思想品质也是大有益处的。小组合作学习的缺点及解决办法:
小组合作学习确实具有上述的许多优点,同时也客观地存在一些不容忽视的缺点。因为,学生之间存在个体差异,好学生参与的机会更多,往往成了主角,困难学生成了配角,这可能导致小组成员间不团结,困难学生渐渐产生自卑感,导致学生间的个体差异更大,加剧了两极分化;也可能出现小组成员间的交流很少,基本上停留在独立学习的层次上,好学生怕该小组的名次落后,往往抢答,没有真正的讨论和合作,没有充分发挥小组合作的优势,其学习结果不能完全代表本小组的水平。
本人认为解决上述问题可采用以下方法:
1教师对全班学生的分组要进行认真的研究设计,最好按照异质分组,就是说每个组中成员的组织能力、学习能力、学习成绩、思维活跃程度、性别等都要均衡。要确定每个成员的分工,可以采取轮换制,如组长、记录员、资料员、报告员等由每个成员轮流做。
2在小组活动过程中,教师要加强对每个小组的监督和指导,尤其关注困难学生在活动中的表现,让他们多一些表现的机会。
三角形全等判定(SAS)
课后反思
本节课探索三角形全等的判定方法一,也是本章的重点也是难点。教材看似简单,仔细研究后才发现对八年级的学生来说有些困难,处理不好可能难以成功。备课时发现本节课的难点就是处理从确定一个三角形到得到三角形全等的判定方法这个环节,让学生动手操作和学生相互交流验证很好地解决了问题,圆满地完成本节课的教学任务。
反思整个过程,我觉得做得较为成功的有以下几个方面:
1、教学设计整体化,内容生活化。在课题的引入方面,然学生动手做、裁剪三角形。既提问复习了全等三角形的定义,又很好的过度到确定一个三角形需要哪些条件的问题上来。把知识不知不觉地体现出来,学得自然新鲜。数学学习来源于生活实际,学生学得轻松有趣。
2、把课堂充分地让给了学生。我和学生做了些课前交流,临上课前我先对他们提了四个要求:认真听讲,积极思考,大胆尝试,踊跃发言。其实,这是一个调动学生积极性,同时也是激励彼此的过程。在上课过程中,我尽量不做过多的讲解,通过引导让学生发现问题并通过动手操作、交流讨论来解决问题。
3、在难点的突破上取得了成功。上这堂课前,我一直担心学生在得出三角形全等的判定方法上出现理解困难。课堂上我通过让学生动手制作一个两边长分别为6cm和8cm,并且这两边的夹角为45度的三角形,并要求相互之间互相比 较发现制作的三角形形状和大小完全相同,即三角形都全等,最后同学们都不约而同地得出了三角形全等的判定方法:“边角边公理”,即:如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简称“SAS”。但也有几处是值得思考和在以后教学中应该改进的地方:
1、在课堂上优等生急着演示、发言,后进生却成了观众和听众。如何做到面向全体,人人学有所得,也值得我们数学教师来探讨。
2、课堂学生的操作应努力做到学生自发生成的,而不是老师说“你们比较下三角形的形状和大小”,应换为自发地比较更好。
3、教学细节需进一步改进,教学时应多关注学生,在学习新知后,虽然大部分的学生都掌握了,但有少数后进生任然是不理解。
第四篇:4.5利用全等三角形测距离 同步检测北师大版七年级数学下册(含答案)
北师大版七年级数学下册第四章4.5利用全等三角形测距离
同步测试
一.选择题
1.利用三角形全等测量距离的原理是()
A.全等三角形对应角相等
B.全等三角形对应边相等
C.大小和形状相同的两个三角形全等
D.三边对应相等的两个三角形全等
2.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()
A.带①②去
B.带②③去
C.带③④去
D.带②④去
3.如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=65°,∠ACB=35°,然后在M处立了标杆,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()
A.SAS
B.AAA
C.SSS
D.ASA
4.如图,将两根钢条AA'、BB'的中点O连在一起,使AA'、BB'可以绕着点O自由旋转,就做成了一个测量工件,则A'B'的长等于内槽宽AB,那么判定△OAB≌△OA'B'的理由是()
A.SSS
B.SAS
C.AAS
D.ASA
5.如图,AB⊥BC,OB=OC,CD⊥BC,点A,O,D在一条直线上,通过测量CD的长可知小河的宽AB,由此判定△AOB≌△DOC的依据是()
A.SAS或SSA
B.ASA或AAS
C.SAS或ASA
D.SSS或AAS
6.在测量一个小口圆柱形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,AD=BC,测得AB=a,EF=b,圆柱形容器的壁厚是()
A.a
B.b
C.b﹣a
D.(b﹣a)
7.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是()
A.SAS
B.ASA
C.AAS
D.SSS
8.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()
A.SAS
B.ASA
C.SSS
D.HL
9.如图1,将长方形纸片沿对角线折叠,使点落在处,交AD于E,若,则在不添加任何辅助线的情况下,则图中的角(虚线也视为角的边)的个数是()
A.5个
B.4个
C.3个
D.2
11.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()
A.6cm
B.7cm
C.8cm
D.9cm
12.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()
A.60°
B.90°
C.120°
D.150°
二.填空题
13.如图,测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,这个测量用到判定三角形全等的方法是
.
14.如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB=
.
15.如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降30cm时,这时小明离地面的高度是
cm.
16.如图,在新建的小区中,有一条“”字形绿色长廓,其中,在,三段绿色长廊上各修一凉亭,,且,点是的中点,在凉亭与之间有一池塘,不能直接到达.要想知道与的距离,只需要测出线段__________的长度.理由是:可以说明__________,从而由全等三角形的对应边相等得出__________.
17.阅读理解题:某校七(1)班学生到野外进行数学活动,为测量一池塘两端A,B的距离,设计了如下两种方案:(Ⅰ)如图1,先在平地上取一个可以直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图2,先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.问:
图1 图2
(1)方案(Ⅰ)是否可行?,理由是;
(2)方案(Ⅱ)是否可行?,理由是;
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是,若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)
(填“成立”或“不成立”).
18.如图1所示的折叠凳.图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,则由以上信息可推得CB的长度也为30cm,依据是
.
三.解答题
19.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得的宽度,他们是这样做的:
①在河流的一条岸边B点,选对岸正对的一棵树A:
②沿河岸直走20m有一树C.继续前行20m到达D处;
③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;
④测得DE的长为5米.
(1)河的宽度是 米.
(2)请你说明他们做法的正确性.
20.如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树C处,接着再向前走了30步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了140步.
(1)根据题意,画出示意图;
(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.
21.如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打出,墙壁厚是35cm,B点与O点的铅直距离AB长是20cm,工人师傅在旁边墙上与AO水平的线上截取OC=35cm,画CD⊥OC,使CD=20cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.
22.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上,这时测得DE的长就是AB的长.为什么?
23.公园里有一条“Z”字形道路ABCD,如图,其中AB∥CD.在AB,BC,CD三段路旁各有一小石凳E,M,F,M恰为BC中点,且E,F,M在同一条直线上,在BE段道路上停放了一排小汽车,从而无法直接测量B,E之间的距离,你能想出解决的方法吗?说明其中的道理.
24.你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′,BB′有何数量关系?为什么?
25.如图,树AB与树CD之间相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,且两条视线的夹角正好为90°,EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,求小华行走到点E的时间.
北师大版七年级数学下册第四章4.5利用全等三角形测距离
答案提示
一.选择题
1.利用三角形全等测量距离的原理是(B)
A.全等三角形对应角相等
B.全等三角形对应边相等
C.大小和形状相同的两个三角形全等
D.三边对应相等的两个三角形全等
2.打碎的一块三角形玻璃如图所示,现在要去玻璃店配一块完全一样的玻璃,最省事的方法是()
A.带①②去
B.带②③去
C.带③④去
D.带②④去
解:A、带①②去,符合ASA判定,选项符合题意;
B、带②③去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;
C、带③④去,仅保留了原三角形的一个角和部分边,不符合任何判定方法,选项不符合题意;
D、带②④去,仅保留了原三角形的两个角和部分边,不符合任何判定方法,选项不符合题意;
故选:A.
3.如图为了测量B点到河对面的目标A之间的距离,在B点同侧选择了一点C,测得∠ABC=65°,∠ACB=35°,然后在M处立了标杆,使∠MBC=65°,∠MCB=35°,得到△MBC≌△ABC,所以测得MB的长就是A,B两点间的距离,这里判定△MBC≌△ABC的理由是()
A.SAS
B.AAA
C.SSS
D.ASA
解:在△ABC和△MBC中,∴△MBC≌△ABC(ASA),故选:D.
4.如图,将两根钢条AA'、BB'的中点O连在一起,使AA'、BB'可以绕着点O自由旋转,就做成了一个测量工件,则A'B'的长等于内槽宽AB,那么判定△OAB≌△OA'B'的理由是()
A.SSS
B.SAS
C.AAS
D.ASA
解:△OAB与△OA′B′中,∵AO=A′O,∠AOB=∠A′OB′,BO=B′O,∴△OAB≌△OA′B′(SAS).
故选:B.
5.如图,AB⊥BC,OB=OC,CD⊥BC,点A,O,D在一条直线上,通过测量CD的长可知小河的宽AB,由此判定△AOB≌△DOC的依据是()
A.SAS或SSA
B.ASA或AAS
C.SAS或ASA
D.SSS或AAS
解:∵AB⊥BC,CD⊥BC,∴∠ABO=∠OCD=90°,在△ABO和△DCO中,∴△ABO≌△DCO(ASA),则证明△ABO≌△DCO的依据的是ASA,也可以利用AAS得出.
故选:B.
6.在测量一个小口圆柱形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,AD=BC,测得AB=a,EF=b,圆柱形容器的壁厚是()
A.a
B.b
C.b﹣a
D.(b﹣a)
解:连接AB.
在△AOB和△DOC中,∴△AOB≌△DOC,∴AB=CD=a,∵EF=b,∴圆柱形容器的壁厚是(b﹣a),故选:D.
7.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得△ABC≌△ADC,这样就有∠QAE=∠PAE.则说明这两个三角形全等的依据是(D)
A.SAS
B.ASA
C.AAS
D.SSS
8.要测量河两岸相对的两点A、B的距离,先在AB的垂线BF上取两点C、D,使CD=BC,再定出BF的垂线DE,使A、C、E在同一条直线上,如图,可以得到△EDC≌△ABC,所以ED=AB,因此测得ED的长就是AB的长,判定△EDC≌△ABC的理由是()
A.SAS
B.ASA
C.SSS
D.HL
解:∵AB⊥BF,DE⊥BF,∴∠ABC=∠EDC=90°,在△EDC和△ABC中,∴△EDC≌△ABC(ASA).
故选B.
9.如图1,将长方形纸片沿对角线折叠,使点落在处,交AD于E,若,则在不添加任何辅助线的情况下,则图中的角(虚线也视为角的边)的个数是()
A.5个
B.4个
C.3个
D.2
解:由折叠知△BDC
≌△BDC
∴∠C′BD=∠CBD=22.5°
∠C′=∠C=90°
∴∠C′BC=45°
又∵∠ABC=90°
∴∠ABE=45°
易得:∠AEB=45°,∠C′ED=45°,∠C′DE=45°。
综上所述共有5个角为45°,判故选A。
11.已知△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米,则EF边上的高是()
A.6cm
B.7cm
C.8cm
D.9cm
解:设△DEF的面积为s,边EF上的高为h,∵△ABC≌△DEF,BC=EF=6cm,△ABC的面积为18平方厘米
∴两三角形的面积相等即s=18
又S=•EF•h=18,∴h=6
故选:A.
12.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是()
A.60°
B.90°
C.120°
D.150°
解:∵滑梯、墙、地面正好构成直角三角形,∵BC=EF,AC=DF,∴Rt△ABC≌Rt△DEF,∴∠2=∠3,∠1=∠4,∵∠3+∠4=90°,∴∠ABC+∠DFE=90°.
故选:B.
二.填空题
13.如图,测量水池的宽AB,可过点A作直线AC⊥AB,再由点C观测,在BA延长线上找一点B′,使∠ACB′=∠ACB,这时只要量出AB′的长,就知道AB的长,这个测量用到判定三角形全等的方法是ASA.
14.如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB= 20米 .
解:∵点C是AD的中点,也是BE的中点,∴AC=DC,BC=EC,∵在△ACB和△DCE中,∴△ACB≌△DCE(SAS),∴DE=AB,∵DE=20米,∴AB=20米,故答案为:20米.
15.如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD下降30cm时,这时小明离地面的高度是 80 cm.
解:在△OCF与△ODG中,∴△OCF≌△ODG(AAS),∴CF=DG=30(cm),∴小明离地面的高度是50+30=80(cm),故答案为:80.
16.如图,在新建的小区中,有一条“”字形绿色长廓,其中,在,三段绿色长廊上各修一凉亭,,且,点是的中点,在凉亭与之间有一池塘,不能直接到达.要想知道与的距离,只需要测出线段__________的长度.理由是:可以说明__________,从而由全等三角形的对应边相等得出__________.
【答案】,≌,17.阅读理解题:某校七(1)班学生到野外进行数学活动,为测量一池塘两端A,B的距离,设计了如下两种方案:(Ⅰ)如图1,先在平地上取一个可以直接到达A,B的点C,再连接AC,BC,并分别延长AC至D,BC至E,使DC=AC,EC=BC,最后测出DE的距离即为AB的长;(Ⅱ)如图2,先过点B作AB的垂线BF,再在BF上取C,D两点,使BC=CD,接着过点D作BD的垂线DE,交AC的延长线于E,则测出DE的长即为AB的距离.问:
图1 图2
(1)方案(Ⅰ)是否可行?可行,理由是SAS;
(2)方案(Ⅱ)是否可行?可行,理由是ASA;
(3)方案(Ⅱ)中作BF⊥AB,ED⊥BF的目的是构造全等三角形,若仅满足∠ABD=∠BDE≠90°,方案(Ⅱ)成立(填“成立”或“不成立”).
18.如图1所示的折叠凳.图2是折叠凳撑开后的侧面示意图(木条等材料宽度忽略不计),其中凳腿AB和CD的长相等,O是它们的中点.为了使折叠凳坐着舒适,厂家将撑开后的折叠凳宽度AD设计为30cm,则由以上信息可推得CB的长度也为30cm,依据是
.
答案:全等三角形对应边相等.解:∵O是AB、CD的中点,∴OA=OB,OC=OD,在△AOD和△BOC中,∴△AOD≌△BOC(SAS),∴CB=AD,∵AD=30cm,∴CB=30cm.
所以,依据是全等三角形对应边相等.
三.解答题
19.某段河流的两岸是平行的,数学兴趣小组在老师带领下不用涉水过河就测得的宽度,他们是这样做的:
①在河流的一条岸边B点,选对岸正对的一棵树A:
②沿河岸直走20m有一树C.继续前行20m到达D处;
③从D处沿河岸垂直的方向行走,当到达A树正好被C树遮挡住的E处停止行走;
④测得DE的长为5米.
(1)河的宽度是 5 米.
(2)请你说明他们做法的正确性.
证明:(1)由题意知,DE=AB=5米,即河的宽度是5米.
故答案是:5.
(2)如图,由题意知,在Rt△ABC和Rt△EDC中,∴Rt△ABC≌Rt△EDC(ASA)
∴AB=ED.
即他们的做法是正确的.
20.如图:小刚站在河边的A点处,在河的对面(小刚的正北方向)的B处有一电线塔,他想知道电线塔离他有多远,于是他向正西方向走了30步到达一棵树C处,接着再向前走了30步到达D处,然后他左转90°直行,当小刚看到电线塔、树与自己现处的位置E在一条直线时,他共走了140步.
(1)根据题意,画出示意图;
(2)如果小刚一步大约50厘米,估计小刚在点A处时他与电线塔的距离,并说明理由.
解:(1)所画示意图如下:
(2)在△ABC和△DEC中,∴△ABC≌△DEC(ASA),∴AB=DE,又∵小刚共走了140步,其中AD走了60步,∴走完DE用了80步,小刚一步大约50厘米,即DE=80×0.5米=40(米).
答:小刚在点A处时他与电线塔的距离为40米.
21.如图,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打出,墙壁厚是35cm,B点与O点的铅直距离AB长是20cm,工人师傅在旁边墙上与AO水平的线上截取OC=35cm,画CD⊥OC,使CD=20cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.
解:∵OC=35cm,墙壁厚OA=35cm,∴OC=OA,∵墙体是垂直的,∴∠OAB=90°且CD⊥OC,∴∠OAB=∠OCD=90°,在Rt△OAB和Rt△OCD中,∴Rt△OAB≌Rt△OCD(ASA),∴DC=AB,∵DC=20cm,∴AB=20cm,∴钻头正好从B点处打出.
22.如图,要测量池塘两岸相对的两点A,B的距离,可以在池塘外取AB的垂线BF上的两点C,D,使BC=CD,再画出BF的垂线DE,使E与A,C在一条直线上,这时测得DE的长就是AB的长.为什么?
解:DE=AB,理由如下:
∵AB⊥BF,DE⊥BF,∴∠B=∠EDC=90°.
在△ABC和△EDC中,∴△ABC≌△EDC(ASA),∴AB=ED.
23.公园里有一条“Z”字形道路ABCD,如图,其中AB∥CD.在AB,BC,CD三段路旁各有一小石凳E,M,F,M恰为BC中点,且E,F,M在同一条直线上,在BE段道路上停放了一排小汽车,从而无法直接测量B,E之间的距离,你能想出解决的方法吗?说明其中的道理.
解:测出CF的长即为BE的长.
由道路AB∥CD可知∠B=∠C.又因为M为BC中点,所以BM=CM.又因为∠EMB=∠FMC,所以△EMB≌△FMC(ASA).
所以BE=CF.24.你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′,BB′有何数量关系?为什么?
解:AA′=BB′.理由:因为O是AB′,A′B的中点,所以OA=OB′,OB=OA′.又因为∠A′OA=∠B′OB,所以△A′OA≌△BOB′(SAS).
所以AA′=BB′.25.如图,树AB与树CD之间相距13m,小华从点B沿BC走向点C,行走一段时间后他到达点E,此时他仰望两棵大树的顶点A和D,且两条视线的夹角正好为90°,EA=ED.已知大树AB的高为5m,小华行走的速度为1m/s,求小华行走到点E的时间.
解:∵∠AED=90°,∴∠AEB+∠DEC=90°.
∵∠ABE=90°,∴∠A+∠AEB=90°.
∴∠A=∠DEC,在△ABE和△DCE中
∵,∴△ABE≌△ECD(AAS),∴EC=AB=5m.
∵BC=13m,∴BE=8m.
∴小华走的时间是8÷1=8(s).
第五篇:全等三角形的教学反思
全等三角形的教学反思
甜水中学中学部
王萍
2014-10-10
一、教学方法:
让学生通过观察体会身边的民族图案和作图,观察体会全等图形的定义,自学全等图形的特征,通过练习总结和强化对应边、对应角的寻找方法。从而体会什么样的两个图形是全等三角形。
二、教学过程设计
1、本节课我本着学生为主,突出重点的意图。在全等图形的定义推导中,我让学生自己动手,通过平移、翻折和旋转的作图,为体会重合的图形全等这一定义提供了分析、思考、发现的依据,把抽象问题转化为具体问题。而全等图形的特征及对应边对应角的寻找这一难点,我通过具体练习让学生总结,并带领学生寻找快速寻找对应元素的方法,练习的设计采用由易到难的手法,符合学生的思维发展,一气呵成,突破了本节课的重点和难点。而在练习中,我创设情境,展示教材上的图案和学生身边所熟悉的民族图案,引导学生读图,激发学生的兴趣,从图中去发现存在形状与大小完全相同的图形。然后我安排学生自己动手随意去做两个形状与大小相同的图形,通过动手实践,直观感知全等形和全等三角形的概念。并且通过让学生找出生活中的全等图形让学生体会数学来源于生活,生活离不开数学,激起学生热爱数学。
2、我在结尾总结全等图形时让学生在生活中寻找实例,体现了数学与生活的联系;渗透美学价值。让学生自己动手随意去做两个形
状与大小相同的图形,通过动手实践,合作交流,直观感知全等形和全等三角形的概念。然后,通过阅读的方法让学生找出全等形和全等三角形的概念。
3、从教学流程来说:情境创设——自学概念与特征——练习与小结——变式练习——应用数学,我创造性调整了教学顺序:在学生掌握了全等图形定义和特征后,增添了书上没有的民族地区常见图形练习,为全等图形的变换奠定了基础。再通过探究实践,将想与做有机地结合起来,使学生在想与做中感受和体验,主动获取数学知识。像采用这种由易到难的手法,符合学生的思维发展,突破了本节课的重点和难点,培养学生做民族文化的传承人。
三、不足之处。
1、没有充分利用好我们身边的民族文化资源调动学生,因为我们这里的民族文化资源丰富,而学生又很熟悉,随处可见,而书上的好多图案学生感知不到的。
2、学生在用数学语言表达时说不清楚,因我们这里是少数民族地区,汉语表达环节薄弱,在今后的讲授过程中注意几何语言的表达事项。