《球的体积和表面积》教学设计

时间:2019-05-15 11:21:20下载本文作者:会员上传
简介:写写帮文库小编为你整理了多篇相关的《《球的体积和表面积》教学设计》,但愿对你工作学习有帮助,当然你在写写帮文库还可以找到更多《《球的体积和表面积》教学设计》。

第一篇:《球的体积和表面积》教学设计

一、教学目标

知识与技能

⑴通过对球的体积和面积公式的推导,了解推导过程中所用的基本数学思想方法:“分割——求和——化为准确和”,有利于同学们进一步学习微积分和近代数学知识。

⑵能运用球的面积和体积公式灵活解决实际问题。

⑶培养学生的空间思维能力和空间想象能力。

过程与方法

通过球的体积和面积公式的推导,从而得到一种推导球体积公式V=

πR3和面积公式S=4πR2的方法,即“分割求近似值,再由近似和转化为球的体积和面积”的方法,体现了极限思想。

情感与价值观

通过学习,使我们对球的体积和面积公式的推导方法有了一定的了解,提高了空间思维能力和空间想象能力,增强了我们探索问题和解决问题的信心。

二、教学重点、难点

重点:引导学生了解推导球的体积和面积公式所运用的基本思想方法。

难点:推导体积和面积公式中空间想象能力的形成。

三、学法和教学用具

学法:学生通过阅读教材,发挥空间想象能力,了解并初步掌握“分割、求近似值 的、再由近似值的和转化为球的体积和面积”的解题方法和步骤。

教学用具:投影仪

四、教学设计

创设情景

⑴教师提出问题:球既没有底面,也无法像在柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?引导学生进行思考。

⑵教师设疑:球的大小是与球的半径有关,如何用球半径来表示球的体积和面积?激发学生推导球的体积和面积公式。

探究新知

1.球的体积:

如果用一组等距离的平面去切割球,当距离很小之时得到很多“小圆片”,“小圆片”的体积的体积之和正好是球的体积,由于“小圆片”近似于圆柱形状,所以它的体积也近似于圆柱形状,所以它的体积有也近似于相应的圆柱和体积,因此求球的体积可以按“分割——求和——化为准确和”的方法来进行。

步骤:

第一步:分割

如图:把半球的垂直于底面的半径OA作n等分,过这些等分点,用一组平行于底面的平面把半球切割成n个“小圆片”,“小圆片”厚度近似为,底面是“小圆片”的底面。

如图:

第二步:求和

第三步:化为准确的和

当n→∞时,→0(同学们讨论得出)

所以

得到定理:半径是R的球的体积

练习:一种空心钢球的质量是142g,外径是5cm,求它的内径(钢的密度是7.9g/cm3)

2.球的表面积:

球的表面积是球的表面大小的度量,它也是球半径R的函数,由于球面是不可展的曲面,所以不能像推导圆柱、圆锥的表面积公式那样推导球的表面积公式,所以仍然用“分割、求近似和,再由近似和转化为准确和”方法推导。

思考:推导过程是以什么量作为等量变换的?

半径为R的球的表面积为 S=4πR

2练习:长方体的一个顶点上三条棱长分别为3、4、5,是它的八个顶点都在同一球面上,则这个球的表面积是。(答案50元)

典例分析

课本P47 例4和P29例

5巩固深化、反馈矫正

⑴正方形的内切球和外接球的体积的比为,表面积比为。

(答案: 3 :1)

⑵在球心同侧有相距9cm的两个平行截面,它们的面积分别为49πcm2和400πcm2,求球的表面积。(答案:2500πcm2)

分析:可画出球的轴截面,利用球的截面性质求球的半径

课堂小结

本节课主要学习了球的体积和球的表面积公式的推导,以及利用公式解决相关的球的问题,了解了推导中的“分割、求近似和,再由近似和转化为准确和”的解题方法。

评价设计

作业 P30 练习1、3,B(1)

第二篇:圆柱体表面积和体积复习教案教学设计

圆柱体表面积和体积复习教案教学设计(北师大版六年级下册)教学内容:

教科书第98页例4及做一做。教学目标:

1.学生在整理、复习的过程中,进一步熟悉圆柱体的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强知识之间的内在联系,将所学知识进一步条理化和系统化。2.在学生对圆柱体的认识和理解的基础上,进一步培养空间观念。

3.让学生在解决实际问题的过程中,感受数学与生活的联系,体会数学的价值,进一步培养学生的合作意识和创新精神 重点、难点:

1.灵活运用圆柱体的表面积和体积的计算方法解决实际问题。2.圆柱体表面积和体积计算方法之间的联系。教学准备:课件 教 学 过 程

一、回忆旧知,揭示课题一

1、谈话揭示课题。师:昨天我们对圆柱体的认识进行了整理和复习,今天我们来走入圆柱体的表面积和体积的整理与复习。(板书:圆柱体表面积和体积的整理与复习)

2、看到课题,你准备从哪些方面去进行整理和复习。(板书:意义、计算方法)

二、回顾整理、建构网络

1、圆柱体的表面积和体积的意义。

(1)提问:什么是圆柱体的表面积?你能举例说明吗?(2)提问:什么是圆柱体的体积?你能举例说明吗?

(3)教师小结:圆柱体的表面积就是指一个圆柱体所有的面的面积总和,圆柱体的体积就是指一个圆柱体所占空间的大小。

2、小组合作,整理――圆柱体的表面积和体积的计算方法。(1)独立整理。

刚才我们已经对圆柱体的表面积和体积的意义进行了整理。下面,请同学们用自己喜欢的方式,将对圆柱体的计算方法进行整理。

(2)整理好的同学请在小组中说一说你是怎样进行整理的?

3、汇报展示,交流评价

哪一个同学自愿上讲台展示、汇报你的整理情况。其余的同学要注意认真地看,仔细地听,待会对他整理情况说说你的看法或者有什么好的建议。(注意计算公式与学生的评价)

4、归纳总结,升华提高(1)公式推导。

刚才,我们已经对圆柱体表面积和体积的计算公式进行了整理。那么,这些计算公式是怎样推导出来的?

(2)教师小结:从圆柱体的表面积和体积计算公式的推导过程中,我们不难发现有一个共同的特点:就是把新问题转化成已学过的知识,从而解决新问题,这种转化的方法、转化的思想,是我们数学学习中一种很常见、很重要的方法。(3)整理知识间的内在联系 ①同学们。我们已经对圆柱体的表面积和体积计算公式进行了整理,并且也知道了这些公式的推导过程。那么,这些圆柱体的表面积计算公式之间有什么内在联系?体积计算公式之间又有什么内在联系?对照自己整理的公式,想一想,然后把你想的法说给同桌听听。②反馈学生交流情况,明确其内在联系:

a、圆柱体的表面积计算公式的内在联系:圆柱体的侧面积就是长方形的面积,它的表面积都可以用侧面积加两个底面积;

b、圆柱体的体积计算公式的内在联系:长方体体积计算公式推导出了正方体和圆柱的体积计算公式,也就是说正方体、圆柱的体积计算公式都是在长方体体积计算公式的基础上推导出来的;长方体、正方体、圆柱的体积都可以用底面积乘高来计算;等底等高的圆柱体的体积是圆锥的3倍,等体积等高的圆柱体的底面积是圆锥的,等体积等底的圆柱体的高是圆锥的。

随着学生的回答,展示课件

三、重点复习、强化提高 同学们,我们对圆柱体的表面积和体积的意义和计算方法进行了整理和复习,而整理复习的最终目的就是要运用。(板书:运用)运用相关知识去解决问题。

1、判断。(对的打“√”,错误的打“×”)① 正方体的棱长扩大2倍,体积就扩大6倍。()

② 一个圆柱体底面半径缩小3倍,高扩大9倍,它的体积不变。()

③ 因为求体积与求容积的计算公式相同,所以物体的体积就是它的容积。()

④ 一个正方体与一个圆柱体的底面周长相等,高也相等。那么,它们的体积也相等。()⑤ 圆柱和圆锥等底等高,则圆锥的体积比圆柱少,圆柱的体积比圆锥多200%。()

2、选择正确答案的序号填在括号里。

① 把一个棱长6厘米的正方体切成棱长2厘米的小正方体,可以得到()个小正方体。A、3 B、9 C、12 D、27 ② 一个圆锥和一个圆柱的体积相等,底面积也相等。这个圆锥的高是圆柱的高的()。A、3倍 B、C、D、③ 把两个棱长5厘米的正方体木块粘合成一个长方体,这个长方体的表面积是(),体积是()。

A、250平方厘米 B、200平方厘米 C、250立方厘米 D、200立方厘米

④ 一个圆柱的底面半径是2厘米,高是2厘米,列式为(3.14×2×2×2)平方厘米,是求()。

A、侧面积 B、表面积 C、体积 D、容积

⑤ 681.2用进一法取近似值,得数保留整十数约是()。A、681 B、680 C、690 D、700

3、解决问题。

我朋友买了一套新房,他告诉了我他家客厅的一些数据(长6米,宽4米,高3米)。请同学们帮老师算一算装修时所需的部分材料。

(1)客厅准备用边长是(100×100)平方厘米规格的方砖铺地面,需要多少块?

(2)准备粉刷客厅的四周和顶面,除去门、电视墙等10平方米不粉刷外,实际粉刷的面积是多少平方米?

(3)朋友装修新房时,所选的木料是直径40厘米,长是3米的圆木自己加工,大约需要5根。求装修新房时所需木料的体积?

(板书:认清图形、单位对应、明白问题、认真计算、反复检验)

四、自主简评、完善提高 自主检测

(一)仔细思考、明辨是非

1、一个正方体的棱长扩大2倍,它的体积就会扩大8倍。()

2、长方体比长方形大。()

3、油桶的容积就是油桶的体积()

4、一个正方体和一个圆柱体的底面周长和高都相等,那么它们的体积也相等。()

5、把一个圆柱削成最大的圆锥,圆锥的体积是削去部分的一半。()(二)你能解决下面生活中的问题吗? 一个圆柱形水池,直径是20米,深2米.①这个水池占地面积是多少? ③在池内四周和池底抹一层水泥,水泥面的面积是多少平方米?(三)活用知识、解决问题

一个水池的排水管内直径是2分米,水在管内的流速是每秒4分米。一小时可以排水多少升?(四)我是生活小能手

一个装满稻谷的粮囤,高2米,它的上面是圆锥形,下面是圆柱形,底面半径是3米,圆柱和圆锥一样高,这囤稻谷大约有多少立方米?(得数保留整数)评价完善

1、通过这节课的整理和复习,你最大的收获是什么?

2、关于圆柱体的表面积和体积你还有什么问题? 板书设计:

“圆柱体的表面积和体积”的整理和复习(图形、单位、问题、计算、检验)意义 应用 计算方法 作业设计: 基础: 1.填一填:

(1)如果我想给房屋进行粉刷,需要刷()个面?()面不刷?

(2)甲乙两人分别利用一张长20厘米,宽15厘米的纸用不同的方法围成一个圆柱体,那么,围成的圆柱()一定相等。

(3)把一个圆柱在平坦的桌面上滚动,那滚动的路线是一条()。

(4)把一个边长1分米的正方形纸围成一个最大的圆柱体,这个圆柱体的体积是()。2.选择题。(将错误的答案划掉)。

(1)一只铁皮水桶能装水多少生升是求水桶的(侧面积、表面积、容积、体积)。(2)做一只圆柱体的油桶至少要用多少铁皮,是求油桶的(侧面积、表面积、容积、体积)。(3)做一节圆柱形的铁皮通风管,要用多少铁皮,是求通风管的(侧面积、表面积、容积、体积)。

(4)求一段圆柱形钢条有多少立方米,是求它的(侧面积、表面积、容积、体积)。3.判一判:

(1)两个圆柱体侧面积相等,它们的体积一定相等。()

(2)两个圆柱体底面积和高分别相等,它们的体积一定相等。()(3)圆柱体底面积和高都扩2倍,体积就扩4倍。()(4)一个圆柱底面周长和高都扩2倍,体积就扩4倍。()

(5)一个正方体的棱长是6厘米,它的表面积和体积相等。()

(6)容器的容积和容器的体积大小不一样。()(7)两个圆柱体的侧面积相等,那么,它们的底面周长一定相等。()(8)一个圆柱体,它的高缩小2倍,底面半径扩大2倍,体积不变。()

(9)一段圆柱体木头,把它制成一个最大的圆锥体,削去部分的体积是圆柱体积的2/3,是圆锥体积的2倍。综合:

4.只列式、不计算:

(1)我们学校的一间教室长9米,宽6米,高3米。在四周墙壁和顶部抹水泥,扣除门窗以及黑板面积共20平方米后,需抹水泥的面积是多少平方米?

(2)李师傅要做一个无盖的圆柱形铁皮水桶,高6分米,底面半径4分米,做这个水桶至少要用铁皮多少平方分米?(得数保留整十平方分米)

(3)大厅里有十根圆柱形柱子,它的底面直径是10分米,高是6米,在这些柱子的表面涂漆,1千克能涂2平方米,共需油漆多少千克?

(4)一个圆柱的侧面展开图是一个边长6.28厘米的正方形,这个圆柱的表面积是多少?(5)将两个棱长是10厘米的正方体拼成一个长方体,这个长方体的表面积是多少? 拓展提升: 5.解决问题

(1)把一个棱长6分米的正方体木块削成最大的圆柱形,要削去多少立方分米?

(2)一个底面直径是40厘米的圆柱容器中,水深12厘米,把一块石头沉入水中完全浸没后,水面上升了5厘米。这块石头的体积是多少立方厘米?(3)一个酒瓶里面深30厘米,底面直径是8厘米,瓶里有酒深10厘米,把酒瓶塞紧后倒置(瓶口向下), 这时酒深20厘米,你能算出酒瓶的容积是多少毫升来吗?(4)一个圆柱体,底面半径3分米,切拼成一个近似的长方体后,表面积增加了60平方分米,这个圆柱体的高是多少分米?(5)一个长方体,底面是个正方形,高每减少2厘米,长方体的表面积就减少32平方厘米,这个长方体的的底面边长是多少?

(6)一根圆柱体木料,长2米,直径4分米,要把它等分成二份,表面积增加了多少?(7)有一个近似圆锥的小麦堆,测得其底面周长是12.56米,高1.5米。如果每立方米小麦重0.75吨,这堆小麦大约有多少吨?将这些小麦装入底面积是3.14平方米的圆柱形粮囤里能装多高?

(8)一间教室长10米,宽8米,高4米,门窗面积21.5平方米,粉刷教室的四壁和顶面要用水泥多少千克?(按每平方米用水泥15千克计算)

第三篇:1.3.2球的表面积与体积的教案

枣庄三中2012-2013学年第一学期高一数学教学案

1.3.2 球体的表面积与体积

备课人: 编号:

教材分析:本节教材直接给出了球的表面积和体积公式,并用两个例题来说明其应用.值得注意的是教学的重点放在球与其他几何体的组合体的有关计算上,这是高考的重点.课时分配:1课时 教学目标:

1、教学重点:球的表面积和体积公式的应用.2、教学难点:关于球的组合体的计算.3、知识点:球的表面积和体积公式的应用.4、能力点:通过对球体的研究,掌握球的表面积和体积的求法。

5、教育点:培养学生空间想象能力和思维能力。

6、自主探究点:让学生通对照比较,理顺柱体、锥体、台体三间的表面积和体积的关系

7、考试点:能运用公式求解,柱体、锥体和台体的体积,并且熟悉台体与柱体和锥体之间的转换关系。

8、易错易混点:正确运用公式求解,柱体、锥体和台体的体积

9:拓展点:通过让学生感受几何体面积和体积的求解过程,提高自己空间思维能力,增强学习的积极性。

教具准备:

圆规,黑板 引入新课:

思路1.位于香港栈桥回澜阁西部、西陵峡路东端海滨,有一座新异奇秀的半球形建筑.由香港好世界饮食服务(中国)有限公司等三方合资兴建,1996年9月正式开业,既是岛城饮食服务业的“特一级”店,又是新增加的一处景点.酒店的总建筑面积11 380平方米,现酒店管理层决定在半球形屋顶嵌上一层特殊化学材料以更好地保护酒店,那么,需要多少面积的这种化学材料呢?

思路2.球既没有底面,也无法像柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小与球的半径有关,如何用球半径来表示球的体积和面积?教师引出课题:球的体积和表面积.探究新知:

球的半径为R,它的体积和表面积只与半径R有关,是以R为自变量的函数.事实上,如果球的半径为R,那么S=4πR2,V=R.注意:球的体积和表面积公式的证明以后证明.理解新知:

例1 如图1所示,圆柱的底面直径与高都等于球的直径,求证:

433

图1(1)球的体积等于圆柱体积的2; 3(2)球的表面积等于圆柱的侧面积.学生思考圆柱和球的结构特征,并展开空间想象.教师可以使用信息技术帮助学生读懂图形.证明:(1)设球的半径为R,则圆柱的底面半径为R,高为2R.则有V球=R,V圆柱=πR2·2R=2πR3,所以V球=V圆柱.(2)因为S球=4πR2,S圆柱侧=2πR·2R=4πR2,所以S球=S圆柱侧.(设计意图)本题主要考查有关球的组合体的表面积和体积的计算.解决此类问题的关键是明确组合体的结构特征.例2 如图3所示,表示一个用鲜花做成的花柱,它的下面是一个直径为1 m、高为3 m的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花(π取3.1)? 43323

图3

活动:学生思考和讨论如何计算鲜花的朵数.鲜花的朵数等于此几何体的表面积(不含下底面)与每朵鲜花占用的面积.几何体的表面积等于圆柱的侧面积再加上半球的表面积.解:圆柱形物体的侧面面积S1≈3.1×1×3=9.3(m2), 半球形物体的表面积为S2≈2×3.1×(1

2)≈1.6(m2), 2所以S1+S2≈9.3+1.6=10.9(m2).10.9×150≈1 635(朵).答:装饰这个花柱大约需要1 635朵鲜花.(设计意图:本题主要考查球和圆柱的组合体的应用,以及解决实际问题的能力.)运用新知:

练习1.如图2(1)所示,表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.图2

解:设球的半径为R,正四棱柱底面边长为a,则轴截面如图2(2),所以AA′=14,AC=2a,又∵4πR2=324π,∴R=9.∴AC=AC'2CC'282.∴a=8.∴S表=64×2+32×14=576,即这个正四棱柱的表面积为576.练习2.有一个轴截面为正三角形的圆锥容器,内放一个半径为R的内切球,然后将容器注满水,现把球从容器中取出,水不损耗,且取出球后水面与圆锥底面平行形成一圆台体,问容器中水的高度为多少?

分析:转化为求水的体积.画出轴截面,充分利用轴截面中的直角三角形来解决.解:作出圆锥和球的轴截面图如图4所示,图4 圆锥底面半径r=R3R, tan30圆锥母线l=2r=23R,圆锥高为h=3r=3R,∴V水=3r2h434353R·RR,3R2·3R3333球取出后,水形成一个圆台,下底面半径r=3R,设上底面半径为r′,则高h′=(r-r′)tan60°=3(3Rr'), ∴53Rh'(r2+r′2+rr′),∴5R3=3(3Rr')(r'23Rr'3R2), 33∴5R3=3(33R3r'3),解得r′=343R616R, 3∴h′=(3312)R.答:容器中水的高度为(3312)R.(选做题)1.三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的()

A.1倍

B.2倍

C.97倍

D.倍 54分析:根据球的表面积等于其大圆面积的4倍,可设最小的一个半径为r,则另两个为2r、36r293r,所以各球的表面积分别为4πr、16πr、36πr,(倍).2254r16r

222答案:C 2.若与球心距离为4的平面截球所得的截面圆的面积是9π,则球的表面积是____________.分析:画出球的轴截面,则球心与截面圆心的连线、截面的半径、球的半径构成直角三角形,又由题意得截面圆的半径是3,则球的半径为

4232=5,所以球的表面积是4π×52=100π.答案:100π 课堂小结

本节课学习了: 1.球的表面积和体积.2.计算组合体的体积时,通常将其转化为计算柱、锥、台、球等常见的几何体的体积.3.空间几何体的表面积与体积的规律总结:

(1)表面积是各个面的面积之和,求多面体表面积时,只需将它们沿着若干条棱剪开后展成平面图形,利用平面图形求多面体的表面积.求旋转体的表面积时,可从回忆旋转体的生成过程及其几何特征入手,将其展开求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长关系,注意球面不可展开.(2)在体积公式中出现了几何体的高,其含义是: 柱体的高:从柱体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为柱体的高;

锥体的高:从锥体的顶点向底面作垂线,这点和垂足间的距离称为锥体的高; 台体的高:从台体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为台体的高.注意球没有高的结构特征.(3)利用侧面展开图或截面把空间图形问题转化为平面图形问题,是解决立体几何问题的常用手段.(4)柱体、锥体、台体和球是以后学习第二章

点、直线、平面位置关系的载体,高考试题中,通常是用本模块第一章的图,考查第二章的知识.(5)与球有关的接、切问题是近几年高考的热点之一,常以选择题或填空题的形式出现,属于低档题.布置作业:1.课本本节练习1、2、3.2.自主学习丛书1.3.2 教后反思:

本节教学结合高考要求,主要是从组合体的角度来讨论球的表面积和体积.值得注意的是其中的题目没有涉及球的截面问题(新课标对球的截面不要求),在实际教学中,教师不要增加球的截面方面的练习题,那样会增加学生的负担.板书设计:

1.3.2球体的表面积与体积

公式: 例一: 例二: 练习:

第四篇:示范教案(1.3.2 球的体积和表面积)

1.3.2 球的体积和表面积

整体设计

教学分析

本节教材直接给出了球的表面积和体积公式,并用两个例题来说明其应用.值得注意的是教学的重点放在球与其他几何体的组合体的有关计算上,这是高考的重点.三维目标

掌握球的表面积和体积公式,并能应用其解决有关问题,提高学生解决问题的能力,培养转化与化归的数学思想方法.重点难点

教学重点:球的表面积和体积公式的应用.教学难点:关于球的组合体的计算.课时安排

约1课时

教学过程

导入新课

思路1.位于香港栈桥回澜阁西部、西陵峡路东端海滨,有一座新异奇秀的半球形建筑.由香港好世界饮食服务(中国)有限公司等三方合资兴建,1996年9月正式开业,既是岛城饮食服务业的“特一级”店,又是新增加的一处景点.酒店的总建筑面积11 380平方米,现酒店管理层决定在半球形屋顶嵌上一层特殊化学材料以更好地保护酒店,那么,需要多少面积的这种化学材料呢?

思路2.球既没有底面,也无法像柱体、锥体和台体那样展开成平面图形,那么怎样来求球的表面积与体积呢?球的大小与球的半径有关,如何用球半径来表示球的体积和面积?教师引出课题:球的体积和表面积.推进新课 新知探究

球的半径为R,它的体积和表面积只与半径R有关,是以R为自变量的函数.事实上,如果球的半径为R,那么S=4πR2,V=

43R.3注意:球的体积和表面积公式的证明以后证明.应用示例

思路1

例1 如图1所示,圆柱的底面直径与高都等于球的直径,求证:

图1(1)球的体积等于圆柱体积的23;

(2)球的表面积等于圆柱的侧面积.活动:学生思考圆柱和球的结构特征,并展开空间想象.教师可以使用信息技术帮助学生读懂图形.证明:(1)设球的半径为R,则圆柱的底面半径为R,高为2R.则有V球=4332R=2πR,所以V球=R,V圆柱=πR·

323V圆柱.(2)因为S球=4πR,S圆柱侧=2πR·2R=4πR,所以S球=S圆柱侧.点评:本题主要考查有关球的组合体的表面积和体积的计算.解决此类问题的关键是明确组合体的结构特征.变式训练

1.如图2(1)所示,表面积为324π的球,其内接正四棱柱的高是14,求这个正四棱柱的表面积.2

2图2

解:设球的半径为R,正四棱柱底面边长为a,则轴截面如图2(2),所以AA′=14,AC=2a,又∵4πR2=324π,∴R=9.∴AC=AC'CC'82.∴a=8.22∴S表=64×2+32×14=576,即这个正四棱柱的表面积为576.2有一种空心钢球,质量为142 g,测得外径(直径)等于5 cm,求它的内径(钢的密度为7.9 g/cm3,精确到0.1 cm).解:设空心球内径(直径)为2x cm,则钢球质量为

45343()x]=142, 7.9·[323∴x3=()3514237.943.142≈11.3,∴x≈2.24,∴直径2x≈4.5.答:空心钢球的内径约为4.5 cm.例2 如图3所示,表示一个用鲜花做成的花柱,它的下面是一个直径为1 m、高为3 m的圆柱形物体,上面是一个半球形体.如果每平方米大约需要鲜花150朵,那么装饰这个花柱大约需要多少朵鲜花(π取3.1)?

图3

活动:学生思考和讨论如何计算鲜花的朵数.鲜花的朵数等于此几何体的表面积(不含下底面)与每朵鲜花占用的面积.几何体的表面积等于圆柱的侧面积再加上半球的表面积.解:圆柱形物体的侧面面积S1≈3.1×1×3=9.3(m2), 半球形物体的表面积为S2≈2×3.1×(12)≈1.6(m),22所以S1+S2≈9.3+1.6=10.9(m2).10.9×150≈1 635(朵).答:装饰这个花柱大约需要1 635朵鲜花.点评:本题主要考查球和圆柱的组合体的应用,以及解决实际问题的能力.变式训练

有一个轴截面为正三角形的圆锥容器,内放一个半径为R的内切球,然后将容器注满水,现把球从容器中取出,水不损耗,且取出球后水面与圆锥底面平行形成一圆台体,问容器中水的高度为多少?

分析:转化为求水的体积.画出轴截面,充分利用轴截面中的直角三角形来解决.解:作出圆锥和球的轴截面图如图4所示,图4 圆锥底面半径r=Rtan303R, 圆锥母线l=2r=23R,圆锥高为h=3r=3R,∴V水=3rh243R33·3R2·3R43R353R,3球取出后,水形成一个圆台,下底面半径r=3R,设上底面半径为r′,则高h′=(r-r′)tan60°=3(3Rr'), ∴53R33h'(r+r′+rr′),∴5R=3(3Rr')(r'3Rr'3R), 22322∴5R3=3(33R3r'3),43163解得r′=3R6R, ∴h′=(3312)R.答:容器中水的高度为(3312)R.思路2

例1(2006广东高考,12)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为____________.活动:学生思考长方体和球的结构特征.教师可以借助于信息技术画出图形.分析:画出球的轴截面可得,球的直径是正方体的对角线,所以球的半径R=

332,则该球的表面积为S=4πR=27π.答案:27π

点评:本题主要考查简单的组合体和球的表面积.球的表面积和体积都是半径R的函数.对于和球有关的问题,通常可以在轴截面中建立关系.画出轴截面是正确解题的关键.变式训练

1.(2006全国高考卷Ⅰ,理7)已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积是()

A.16π

B.20π

C.24π

D.32π

分析:由V=Sh,得S=4,得正四棱柱底面边长为2.画出球的轴截面可得,该正四棱柱的对角线即为球的直径,所以,球的半径为R=S=4πR=24π.答案:C 2.(2005湖南数学竞赛,13)一个球与正四面体的六条棱都相切,若正四面体的棱长为a,则这个球的体积为_____________.分析:把正四面体补成正方体的内接正四面体,此时正方体的棱长为

22a,于是球的半径2

2122242226,所以球的表面积为为24a,V=224a.3答案:224a 33.(2007天津高考,理12)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为___________.分析:长方体的对角线为12322214,则球的半径为

142,则球的表面积为4π(142)2=14π.答案:14π

例2 图5是一个底面直径为20 cm的装有一部分水的圆柱形玻璃杯,水中放着一个底面直径为6 cm,高为20 cm的一个圆锥形铅锤,当铅锤从水中取出后,杯里的水将下降几厘米?

图5

活动:学生思考杯里的水将下降的原因,通过交流和讨论得出解题思路.因为玻璃杯是圆柱形的,所以铅锤取出后,水面下降部分实际是一个小圆柱,这个圆柱的底面与玻璃杯的底面一样,是一直径为20 cm的圆,它的体积正好等于圆锥形铅锤的体积,这个小圆柱的高就是水面下降的高度.解:因为圆锥形铅锤的体积为()2×20=60π(cm),32163设水面下降的高度为x,则小圆柱的体积为(202)x=100πx(cm).23所以有60π=100πx,解此方程得x=0.6(cm).答:杯里的水下降了0.6 cm.点评:本题主要考查几何体的体积问题,以及应用体积解决实际问题的能力.明确几何体的形状及相应的体积公式是解决这类问题的关键.解实际应用题的关键是建立数学模型.本题的数学模型是下降的水的体积等于取出的圆锥形铅锤的体积.明确其体积公式中的相关量是列出方程的关键.变式训练

1.一个空心钢球,外直径为12 cm,壁厚0.2 cm,问它在水中能浮起来吗?(钢的密度为7.9 g/cm)和它一样尺寸的空心铅球呢?(铅的密度为11.4 g/cm)

分析:本题的关键在于如何判断球浮起和沉没,因此很自然要先算出空心钢球的体积,而空心钢球的体积相当于是里、外球的体积之差,根据球的体积公式很容易得到空心钢球的体积,从而算出空心钢球的质量,然后把它与水的质量相比较即可得出结论,同理可以判断铅球会沉没.解:空心钢球的体积为V钢=

43633

3435.8343×20.888≈87.45(cm3),∴钢的质量为m钢=87.45×7.9=690.86(g).4∵水的体积为V水=×63=904.32(cm3),3∴水的质量为m水=904.32×1=904.32(g)>m钢.∴钢球能浮起来,而铅球的质量为m铅=87.45×11.4=996.93(g)>m水.∴同样大小的铅球会沉没.答:钢球能浮起来,同样大小的铅球会沉没.2.(2006全国高中数学联赛试题第一试,10)底面半径为1 cm的圆柱形容器里放有四个半径为12cm的实心铁球,四个球两两相切,其中底层两球与容器底面相切.现往容器里注水使水面恰好浸没所有铁球,则需要注水___________cm3.分析:设四个实心铁球的球心为O1、O2、O3、O4,其中O1、O2为下层两球的球心,A、B、C、D分别为四个球心在底面的射影,则ABCD是一个边长为cm的正方形,所以注水高为(1+2213)cm.故应注水π(1+

22)-4×

413123()()π cm.3232答案:(+22)π

知能训练

1.三个球的半径之比为1∶2∶3,那么最大球的表面积是其余两个球的表面积之和的()A.1倍

B.2倍

C.9574倍

D.倍 分析:根据球的表面积等于其大圆面积的4倍,可设最小的一个半径为r,则另两个为2r、3r,所以各球的表面积分别为4πr、16πr、36πr,答案:C 2.(2006安徽高考,理9)表面积为23的正八面体的各个顶点都在同一个球面上,则此球的体积为()A.2

3222

36r2224r16r95(倍).B.3

C.23

D.223

分析:此正八面体是每个面的边长均为a的正三角形,所以由8×3a4223知,a=1,则此球的直径为2.答案:A 3.(2007北京西城抽样,文11)若与球心距离为4的平面截球所得的截面圆的面积是9π,则球的表面积是____________.分析:画出球的轴截面,则球心与截面圆心的连线、截面的半径、球的半径构成直角三角形,又由题意得截面圆的半径是3,则球的半径为

4322=5,所以球的表面积是4π×52=100π.答案:100π

4.某街心花园有许多钢球(钢的密度是7.9 g/cm3),每个钢球重145 kg,并且外径等于50 cm,试根据以上数据,判断钢球是实心的还是空心的.如果是空心的,请你计算出它的内径(π取3.14,结果精确到1 cm).4503()≈516 792(g), 解:由于外径为50 cm的钢球的质量为7.9×32街心花园中钢球的质量为145 000 g,而145 000<516 792, 所以钢球是空心的.设球的内径是2x cm,那么球的质量为7.9·[解得x3≈11 240.98,x≈22.4,2x≈45(cm).答:钢球是空心的,其内径约为45 cm.5.(2007海南高考,文11)已知三棱锥S—ABC的各顶点都在一个半径为r的球面上,球心O在AB上,SO⊥底面ABC,AC=

2r,则球的体积与三棱锥体积之比是()

43(502)343x]=145 000,3A.π

B.2π

C.3π

D.4π 分析:由题意得SO=r为三棱锥的高,△ABC是等腰直角三角形,所以其面积是13r312×2r×r=r,2所以三棱锥体积是rr23,又球的体积为

4r33,则球的体积与三棱锥体积之比是4π.答案:D 点评:面积和体积往往涉及空间距离,而新课标对空间距离不作要求,因此在高考试题中其难度很低,属于容易题,2007年新课标高考试题就体现了这一点.高考试题中通常考查球、三棱锥、四棱锥、长方体、正方体等这些简单几何体或它们的组合体的面积或体积的计算.我们应高度重视这方面的应用.拓展提升

问题:如图6,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A—BEFD与三棱锥A—EFC的表面积分别是S1,S2,则必有()

图6 A.S1<S

2B.S1>S2

C.S1=S2

D.S1,S2的大小关系不能确定

探究:如图7,连OA、OB、OC、OD,则VA—BEFD=VO—ABD+VO—ABE+VO—BEFD+VO—ADF,VA—EFC=VO—AFC+VO—AEC+VO—EFC,又VA—BEFD=VA—EFC,而每个小三棱锥的高都是原四面体的内切球的半径,故S△ABD+S△ABE+SBEFD+S△ADF=S△AFC+S△AEC+S△EFC,又面AEF是公共面,故选C.图7

答案:C 课堂小结

本节课学习了:

1.球的表面积和体积.2.计算组合体的体积时,通常将其转化为计算柱、锥、台、球等常见的几何体的体积.3.空间几何体的表面积与体积的规律总结:

(1)表面积是各个面的面积之和,求多面体表面积时,只需将它们沿着若干条棱剪开后展成平面图形,利用平面图形求多面体的表面积.求旋转体的表面积时,可从回忆旋转体的生成过程及其几何特征入手,将其展开求表面积,但要搞清它们的底面半径、母线长与对应的侧面展开图中的边长关系,注意球面不可展开.(2)在体积公式中出现了几何体的高,其含义是:

柱体的高:从柱体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为柱体的高;

锥体的高:从锥体的顶点向底面作垂线,这点和垂足间的距离称为锥体的高; 台体的高:从台体的一个底面上任一点向另一个底面作垂线,这点和垂足间的距离称为台体的高.注意球没有高的结构特征.(3)利用侧面展开图或截面把空间图形问题转化为平面图形问题,是解决立体几何问题的常用手段.(4)柱体、锥体、台体和球是以后学习第二章

点、直线、平面位置关系的载体,高考试题中,通常是用本模块第一章的图,考查第二章的知识.(5)与球有关的接、切问题是近几年高考的热点之一,常以选择题或填空题的形式出现,属于低档题.作业

课本本节练习1、2、3.设计感想

本节教学结合高考要求,主要是从组合体的角度来讨论球的表面积和体积.值得注意的是其中的题目没有涉及球的截面问题(新课标对球的截面不要求),在实际教学中,教师不要增加球的截面方面的练习题,那样会增加学生的负担.

第五篇:立体图形的表面积和体积复习课教学设计

《立体图形的表面积和体积复习》教学设计

二小——杨爱军 教学内容:人教版小学数学六年级下册第六单元整理和复习第二节图形与几何例5。教学目标:

1、通过整理、复习,使学生进一步理解立体图形的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强知识之间的内在联系,使所学知识进一步条理化和系统化。

2、进一步培养学生的空间观念,体会转化、类比等教学思想。

3、利用体积和表面积公式解决生活中实际问题,感受数学与生活的密切联系。

教学重点:系统整理立体图形表面积和体积的推导过程,体会数学知识之间的内在练习。教学难点:灵活运用所学知识解决简单的实际问题。教学过程:

一、创设情境、复习导入。

出示:杏仁露罐

师:这是什么?它在生产完成之后要进行装罐或装箱,这时候工人师傅要考虑哪些数学方面的问题,你知道吗?

生:这个饮料罐能装多少杏仁露?制作一个饮料罐至少用多少铁板?……

师:这些问题都与我们学过的立体图形的表面积和体积有关。这节课我们就一起系统地整理和复习这方面的知识。(板书课题)

[意图:借助学生熟悉的杏仁露罐,自然地引出课题,激活了学生已有的知识储备,促使学生以良好的心理态势进入后继的梳理复习。]

二、出示目标、学有方向。

1、理解并掌握各立体图形表面积和体积的计算公式并进行系统的整理。

2、理解各立体图形表面积和体积公式的推导过程。

3、能应用公式进行有关计算,解决生活中的实际问题。

三、整理复习,形成网络。

1、表面积和体积的意义。

师:什么是立体图形的表面积?请举例说明。师:什么是立体图形的体积?请举例说明。

小结:立体图形的表面积就是指一个立体图形所有的面的面积总和,立体图形的体积就是指一个立体图形所占空间的大小。

2、表面积和体积的计算方法。(1)小组合作,系统整理。

师:下面就请同学们以小组为单位,自主复习达成第一个目标:各立体图形的表面积和体积计算公式是什么?把这些公式按一定的规律进行整理。要求一边回忆一边整理,看哪个小组整理的最好。

师:整理好的同学请在小组中说一说你是怎样进行整理的?(2)汇报展示,交流评价。

师:哪位同学自愿上讲台展示、汇报你的整理情况。其余的同学要注意认真地看,仔细 地听,待会对他整理情况说说你的看法或者有什么好的建议。

师:可以按学习知识的先后顺序进行整理。

师:可以表面积和体积分别进行整理。

师:表格整理一目了然,用字母表示公式简捷、方便。

3、复习公式的推导。(1)公式推导。

刚才,我们已经对立体图形表面积和体积的计算公式进行了整理。那么,这些计算公式是怎样推导出来的?请同学们选择1-2种自己喜欢的图形,自己说一说。(2)整理知识间的内在联系。①同学们。我们已经对立体图形的表面积和体积计算公式进行了整理,并且也知道了这些公式的推导过程。那么,这些立体图形的表面积计算公式之间有什么内在联系?体积计算公式之间又有什么内在联系?对照自己整理的公式,想一想,然后把你想的法说给同桌听听。②反馈学生交流情况,明确其内在联系:

a、立体图形的表面积计算公式的内在联系:长方体和圆柱体的表面积都可以用侧面积加两个底面积;(长方体侧面展开也是一个长方形)

b、立体图形的体积计算公式的内在联系:长方体体积计算公式推导出了正方体和圆柱的体积计算公式,也就是说正方体、圆柱的体积计算公式都是在长方体体积计算公式的基础上推导出来的;长方体、正方体、圆柱的体积都可以用底面积乘高来计算;等底等高的圆柱体的体积是圆锥的3倍。

C、为什么长方体、正方体和圆柱体的体积都可以用底面积乘高来计算,而圆锥为什么不可以?

师:v=sh还可以理解为“横截面积×长”。长方体、正方体和圆柱体上下两个面完全相同,而且上下粗细完全一样,而圆锥的特征不一样。任何粗细均匀的柱体的体积都可以用这个公式来计算。

4、小结。

从立体图形的表面积和体积计算公式的推导过程中,我们不难发现有一个共同的特点:就是把新问题转化成已学过的知识,从而解决新问题,这种转化的方法、转化的思想,是我们数学学习中一种很常见、很重要的方法。

[意图:梳理立体图形的表面积、体积公式推导过程,没有采取简单的一问一答式,而是充分发挥小组合作学习的优势,留给学生充分地时间和足够大的学习空间,放手让学生尝试归纳、整理、探究,充分调动学生学习的积极性和主动性,使学生在梳理知识中形成网络,进一步深化了对知识的理解。最后通过对“长方体、正方体和圆柱的体积可以用底面积乘高计算,而圆锥为什么不可以”这一问题的探讨,引导学生抽象出长方体、正方体和圆柱的形体特征的共同点。]

三、应用拓展,提高技能

师:刚才同学们对立体图形的表面积和体积的有关知识进行了系统的整理,下面请同学们运用这些知识解决几个问题?

1、刚才这个饮料罐从里面量高是10厘米,底面直径6厘米。(1)它的容积是多少毫升?

(2)这个饮料罐上标注净含量为285毫升,标注是否真实?(3)这种饮料通常是24瓶装一箱,每排4瓶,装6排放置。请同学们算一算,要制作这样一个纸箱至少需要多少硬纸板?每个包装箱的容积大约是多少?

2、明查秋毫。

(1)棱长6厘米的正方体表面积和体积完全相等。()

(2)一块正方体铁块熔铸成一个圆柱体,形状变了,所占空间的大小没变。()

(3)一个圆锥和一个长方体底面积和高都相等,那么圆锥体体积是长方体体积的1/3。

()

(4)圆柱的体积,也可以用圆柱的侧面积的一半乘以圆柱的底面半径来计算。

3、走进生活。

学校在操场边的空地上挖了一个长6米、宽3米、深0.4米的坑,准备装上沙作为沙坑使用。它的旁边有一堆圆锥形的沙,底面周长是12.56米,高1.5米。这堆沙够用吗?

4、展示才能。(1)求瓶内胶水体积

有一种饮料瓶的瓶身呈圆柱形(不包括瓶颈),容积是20毫升。瓶中装有一些饮料,正放时饮料高度为20厘米,倒放时空余部分的高度为5厘米,瓶中现有饮料多少升?

(2)老师这儿有一个铅球,怎样求出这个铅球的体积呢?

[意图:练习题的设计,创设了灵活多样的问题情境,用不同的形式,在不同层次上展开练习,让学生多角度解决问题,注重数学知识与生活世界的联系,不断提高学生综合运用的能力,从中感受到数学在生活中的广泛应用性。]

四、再现知识,总结反思

1、通过这节课的整理和复习,你最大的收获是什么?

2、关于立体图形的表面积和体积你还有什么问题?

师:今天我们复习了立体图形的表面积和体积的计算公式,并且利用这些知识解决了生活中遇到的一些实际问题。希望同学们在今后的学习和生活中大胆尝试,勇于创新,让学到的知识为实际生活服务。

下载《球的体积和表面积》教学设计word格式文档
下载《球的体积和表面积》教学设计.doc
将本文档下载到自己电脑,方便修改和收藏,请勿使用迅雷等下载。
点此处下载文档

文档为doc格式


声明:本文内容由互联网用户自发贡献自行上传,本网站不拥有所有权,未作人工编辑处理,也不承担相关法律责任。如果您发现有涉嫌版权的内容,欢迎发送邮件至:645879355@qq.com 进行举报,并提供相关证据,工作人员会在5个工作日内联系你,一经查实,本站将立刻删除涉嫌侵权内容。

相关范文推荐

    “长方体、正方体表面积和体积的应用”教学设计(5篇)

    教学目标: 1.在练习中,进一步理解长方体和正方体表面积、体积的含义,能正确、灵活地解决求表面积和体积的问题,会求变化后规则图形的表面积和体积。 2.通过观察、比较、归纳、......

    立体图形的表面积和体积》整理复习教学设计

    立体图形的表面积和体积整理复习永宁县第二小学 姚春燕 教学内容: 北师大版六年级下图形与测量中的《立体图形》的表面积和体积。 教学目标: 1、通过整理复习活动回忆梳理长......

    立体图形表面积和体积教案

    教学内容: 教科书第98页例4及做一做。 教学目标: 1.学生在整理、复习的过程中,进一步熟悉立体图形的表面积和体积的内涵,能灵活地计算它们的表面积和体积,加强知识之间的内在联系,......

    试计算酒桶体积和表面积

    试计算酒桶体积和表面积 我读了《趣味几何学》,在“黑暗中的几何学”一章中,我了解了酒桶,对它体积和表面积近似计算时,可用图1: 即把酒桶看作两个截圆锥体,想算截圆锥体体积,要从......

    《表面积和体积的对比》教案

    目标通过对比练习使学生进一步分清表面积和体积各自的计算方法以及这两个概念的区别,能够正确地计算长方体和正方体的表面积和体积。重点分清这两个概念和各自的计算方法。仪......

    柱体、锥体、台体的表面积和体积教学设计5篇

    范例:以新课标教材人民教育出版社A版(2004年)必修2《1.3.1 柱体、锥体、台体的表面积与体积》一、教学目标1.知识与技能 通过对柱、锥、台体的研究,掌握柱、锥、台的表面积和......

    黄冈实验学校高一数学教案1、3、2 球的体积和表面积学案

    教学,重要的不是教师的“教”,而是学生的“学” heda2007@163.com 1、3、2 球的体积和表面积 学案编写者:黄冈实验学校数学教师孟凡洲 小故事:位于香港栈桥回澜阁西部、西陵峡......

    《立体图形的表面积和体积》教学反思(五篇)

    我从教也十多年了,也带了几个毕业班,对于长方体的表面积计算的方法,也只是按照课本的思路去讲解,引导学生计算的,在新授课的时候,学生也没有提出其他的计算方法。在今天的毕业总复......